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We develop a field-theoretic description of nucleation for systems with long-range interactions undergo-
ing deep quenches. We find that the critical droplet can be related to a percolation cluster and has a fractal
dimension less than the spatial dimension d. For 4 > 6 ‘‘spinodals’’ are found for any potential range R;
in contrast, for d <6 spinodals are found only for R — oco. We also compare our results to those of

mean-field theory.

Classical (e.g., Becker-Déring) nucleation theory' has
been shown to give a good description of the decay of the
metastable state in d =3 nearest-neighbor Ising models far
from the critical point®> and is thought to be a good descrip-
tion of nucleation in fluids.> Cahn and Hilliard* and
Langer® have formulated field theories that relate the critical
droplet in classical nucleation to a spatially nonuniform
saddle-point solution of a Ginzburg-Landau ‘‘y*’ model.
Such a field-theoretic formulation has led to significant in-
sight into the nucleation process.’

Recently it was proposed by one of us that noncompact
fluctuations are important in deep quenches in metastable
states.> In order to obtain quenches of sufficient depth it
was necessary to study models with interactions of longer
range than nearest neighbor.” Monte Carlo simulations on
such models suggest that the dominant fluctuations in deep
quenches are noncompact® and that critical (i.e., nucleating)
droplets may also be ramified.’

In this work we present a field-theoretic description of
nucleation in systems undergoing deep quenches based on
the standard Ginzburg-Landau ¢* free-energy functional®

Fp) = [ = 1(a/2) RIUT 612 = by(x)
+eyt(x) —hy(x)} 1)

where A is proportional to the applied magnetic field, R is
the interaction range, a and c are constants, and b is propor-
tional to 7/T.—1 and is negative for T < T,. The partition
function Z (4) is defined by the functional integral

Zn = [opefw . @

The mean-field approximation for the free energy F(i) is
obtained by setting the gradient equal to zero in Eq. (1) and
replacing ¢ by its most probable value . For T < T, the
free energy has the form of the standard double-well poten-
tial [see Fig. 1(a)].®> For h =0 the wells are of equal depth
and as |4| increases one well becomes shallower than the
other [see Fig. 1(b)]. That value of h=h; for which the
shallow well disappears [see Fig. 1(c)] locates the classical
spinodal.!® It is straightforward to obtain the value of ¢ at
the spinodal

o= —L(1b1/6c) 1 3)

It is important to note that the mean-field free energy is the
result of an exact calculation of Z(#) in the limit* R — oo.

In order to investigate quenches near the region of the
mean-field spinodal, we define a new field,

¢(x) =[y(x) —¥ylRVa . )

28

Equation (1) can be written as
(@)= [ax 141V 6()12 +ed(x) — ag(x)
+(c/R*4M*(x)} | (%)
where e=(h;—h)/(RvVa) and a=(6]blc)'?/(AR)3. We

(c)

FIG. 1. ¢* mean-field free energy for T < T, as a function of the
order parameter §. (a) is for A =0, (b) for 0 < h < hy, and (c) for
h=hg,
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now restrict our considerations to that region of thermo-
dynamic space near the classical spinodal, hence ¢(x) << 1.
This requires that R >>1 and e << 1. In this region we
can, to a good approximation, neglect the ¢*(x) term. We
have, therefore,

F(#) =F(g) = [dR141V 31 +ed(x)—add(x)) .
©

The mean-field approximation for the free-energy functional
of Eq. (6) has one minimum and one maximum (see Fig.
2).

Following Cahn and Hilliard* and Langer® we now search
for nonuniform solutions of the Euler-Lagrange equation,

— V2(x) +e—3agp’(x)=0 . @)

These solutions are saddle points of the free-energy func-
tional of Eq. (6) and describe the profile of the critical drop-
let.

We assume the droplet is spherically symmetric and that
the interface can be considered flat, so that Eq. (6) becomes

—d?’¢(x)/dx*+e—3adp’(x) =0 . (8)

We return to the flat interface approximation below. The
solution of Eq. (8) is

d(x)=vVe/3al—1 +3/cosh2[(%ea)1/“x]] .

In order to obtain the exponential part of the lifetime of
the metastable state, which describes the nucleation barrier,
we make the following variable transformations in Eq. (6),

d(x)=(e"/a')u(s), s=e"ax (10)
Equation (6) becomes
F(u) = (€[ (ea)¥*a'])
x fd‘s’{[Vsu(s)]2+u(s)—u3(s)} . (11)

The coefficient in front of the above integral is proportional

FIG. 2. ‘¢’ mean-field free energy as a function of ¢ for
h<hgand T < T,

to R9 For large R, therefore, the partition function can be
approximated by a steepest-descent integral that is evaluated
in the neighborhood of two saddle points. One saddle point
is associated with the spatially uniform metastable state (i.e.,
¥) and the other with the critical droplet [Eq. (9)]. Due to
the negative cubic term in Eq. (11), the steepest-descent in-
tegral will not converge as v — +oo, and the contour will
have to be deformed into the complex plane.>!' This defor-
mation will give rise to an imaginary part of the free energy
which can be related to the lifetime of the metastable state.
The lifetime 7 will be of the form

r=f(e &) explce’?/[(ea) ']} , (12)

where cis a constant and f(e, «) is a function that is slowly
varying compared to the exponential for large R.

Equations (9), (11), and (12) are the central results of
this work. Before discussing the physical implications of
these equations, we briefly discuss the flat interface approxi-
mation. This approximation is certainly not exact; however,
all conclusions discussed below will rely only on the ex-
istence of a nonuniform bounded solution of

+1-3u%(s)=0 ,

_du(s)  d—1|du(s) 13)
ds

d? s

obtained from the functional derivative of Eq. (11) and the
assumption of spherical symmetry. The solution must also
have the property that as s — oo u(o0) = —+/1/3. It can be
shown that such a solution exists.!" The differences
between the use of the planar interface solution given in Eq.
(9) and the true solution of Eq. (13) will be in the value of
cand the form of f(e, «) in Eq. (12).

There are several conclusions to be drawn from Egs. (9),
(11), and (12). The first point to make is that the coeffi-
cient €¥2[ (ea)¥*a!/?] is proportional to

R4 h — hy) 32—t — g 14)
The saddle-point evaluation of the integral
z(n) = [ oue~Fw (15)

will be exact in the limit K — oo; it should, however, be a
good approximation for large K. From Eq. (14), the large-
K limit implies for d < 6 that R >>1 and A is not too near
the mean-field spinodal value. However, for d > 6 the
saddle-point integral becomes a very good approximation for
h—hg << 1, for all R.

The equation for the lifetime of the metastable state [Eq.
(12)] also exhibits interesting differences above and below
d=6. From the above discussion it is clear that for d > 6
and for R =1 the exponential part of the lifetime of the
metastable state increases as h approaches h;. However, for
d <6 and R, K >> 1 the exponential part of the lifetime of
the metastable state decreases as h approaches kg, similar to
the result of Cahn and Hilliard.*!> These results seem to
indicate, consistent with other work,%!3 that d =6 is a criti-
cal dimension above which certain aspects of the mean-field
theory of spinodals are correct.

The difference between the behavior of the lifetimes
above and below d =6 can be understood by calculating the
free-energy cost of creating a critical droplet. If we define
¢(o0) as the value of ¢(x) at x = in Eq. (9), then the
free-energy cost is given by

St el (x) — d(00) ] —al(x) = g3 (o)1} . (16)
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The free-energy cost is proportional to €@/ —(d/4)y/
a2V +d/4)  We can see that as h — h;, e — 0 and for d <6
the excess free energy goes to zero while for 4 >6 it
diverges.

It is important to understand what information the above
equations contain about spinodals. Above d =6 it would
appear that Eq. (12) indicates the existence of a well-
defined classical spinodal at h = A, for finite R. This con-
clusion is based on the existence of an infinite lifetime 7 at
h=hs so that statements about thermodynamics make
sense. The same thing can be said for d <6 and R — oo.
There is, however, one crucial difference in these two cases.

The quantity 4, depends on the constants a, b, and c in
Eqy (1). These in turn depend on how the field or coarse-
grained variable y(x) is defined. For R — oo the procedure
gives unique values for a, b, and c; however, for finite R
there appears to be no unique procedure for any finite
dimension.!* Different coarse graining procedures give dif-
ferent values of a , b, and ¢, and hence different values of
hs. These different values imply that above 4 =6 there ex-
ist well-defined spinodal exponents, but the location of the
spinodal is not well defined. The physical implications of
this impreciseness are discussed in detail elsewhere.®

For d <6 and R finite, the argument of the exponential
in 7 goes to zero and A approaches h;. This implies that
even if there were a spinodal at A =h it could not be
described by this theory. However the ‘‘spinodal’’ can be
approached as closely as one wishes by making R larger.
This will result in apparent singularities in thermodynamic
quantities—the so-called pseudospinodal.’

Finally we argue that the critical droplet is ramified (as
defined below) and has in fact a structure that can be
thought of in terms of a percolation model. It has been
shown that the Ising critical point can be described in terms
of a percolation model.'*!® The model is the correlated-site
random-bond model where one has a d-dimensional Ising
model and considers sites with spin down to be occupied.
Bonds are then distributed with a random probability
between any two occupied sites. These bonds can connect
occupied spins at arbitrary distances. This model can be
shown to be the s — 1 limit of the dilute s-state Potts
model!® with the Hamiltonian

—-BH=1J %(sﬁui,j—l)n,»nj— %n,-nj

—AEn,+H 2(380-‘_]'_1)”,' s (17)

where n; can have the values 0 or 1, 80,0 is the Kronecker
delta, A is the chemical potential which is a function of K
and A, his the Ising field, and H is the Potts field.

The free energy of this model in the mean-field approxi-
mation is given by'?

= 3(s=Dnd—1/3Dw (s —1) (s —2) w
—swas =Dy +3b’ +cpt—hp— (s =1 HS ,
(18)

where b, ¢, and 4 are as defined above. The factors w; and
wy are finite and nonzero, and r, is a function of J. The
quantities ¢ and ¢ are the percolation and Ising-order
parameters, respectively. The Ising problem can be
recovered by setting s=1. The percolation free energy is
given by!” dF/ds|, .

At the spinodal,

dF
ds

s -

=($)(r—wabx)) & + (130w —H . (19)
1

If Jis chosen so that

ri—wayp =0, (20)

then the mean-field spinodal line coincides with a percola-
tion line.'* From Eq. (19) one easily sees that the percola-
tion exponents are the same as the spinodal exponents. In
particular, the correlation length ¢ and the connectedness
length &, diverge with the same exponent as do the suscep-
tibility and the mean cluster size. Consequently, a droplet
description at the spinodal can be obtained using percolation
clusters as droplets in a way similar to what is done at the
critical point.">''® As a consequence, a fractal dimension!®
dr < d can be assigned to the fluctuations at the spinodal.
We define these fluctuations to be ramified.

In the standard nucleation picture, and in its field-
theoretic representation, fluctuations up to the critical drop-
let size are considered quasiequilibrium fluctuations about
the relative minimum of the free energy. Consequently
standard equilibrium concepts should be applicable to such
fluctuations. In particular, from Eq. (9) we see that the ra-
dius of the critical droplet r, is proportional to

(ea) VA =R(h—hy) "4 1)

however, R(h —h,) "4 is proportional to the correlation
length ¢ at the spinodal, even in the limit?® R — . The
critical droplet then can be considered as a percolation clus-
ter with dy < d.

To summarize, we have presented a field-theoretic
description of nucleation of Ising-type systems undergoing
deep quenches. We have found that the nucleating droplet
is ramified (i.e., has dy < d) in agreement with computer
simulations in d =3 Ising models.® We also found that for
d > 6 the exponential part of the lifetime of the metastable
state increases as the spinodal is approached in agreement
with meanfield treatments*!! but decreases as the spinodal
is approached for d < 6.
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