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Nonlinear-optical properties of biexcitons: Single-beam propagation
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A nonperturbational method is developed for the calculation of the nonlinear-optical susceptibili-

ty of a system composed of two types of bosons: excitons and biexcitons. When applied to CuCl,
this calculation accounts for the renormalization of the polariton dispersion relation due to the pres-
ence of the biexciton transition. It also gives a two-photon absorption towards the biexciton, with a
resonance frequency which shifts with intensity. The calculated transmission spectrum for a light
beam propagating through CuCl reproduces the features of the experimental spectrum. It contains
an asymmetric dip at half the biexciton frequency, with a width dependent on the incident intensity.
The nonperturbational treatment suggests that this width is due essentially to the shift of the ab-

sorption frequency during propagation, rather than to the collisiona1 mechanism postulated within
the perturbational framework of nonlinear optics.

I. II4TRODUCTION

The nonlinear-optical response of a material system has
traditionally been expressed in terms of a perturbational
expansion of the induced polarization in powers of the in-
cident electromagnetic field. Several methods have been
developed for the calculation of the corresponding coeffi-
cients, called the optical susceptibilities. Clearly, the
domain of validity of the perturbation expansion is limited
only to those situations in which the infinite series of the
successive orders of the induced polarization converges.
Thus, the description of some near-resonant nonlinear-
optical phenomena may not be possible within the pertur-
bational framework, since the successive orders of the sus-
ceptibility diverge due to their resonance denominators.

A case in point is the description of the nonlinear sus-
ceptibility of a semiconductor in the vicinity of the two-
photon biexciton resonance: At relatively low light inten-
sities the resonance-enhanced nonlinear-optical response
of CuCl in so strong that forward degenerate "four-wave"
mixing cannot be distinguished from higher-order
(4+ 2n)-wave processes. In the perturbational language
of nonlinear optics this can be expressed as a renormali. za-
tion of the third-order susceptibility P' ' by the higher-
odd-order g's. The corresponding calculation, however,
presents many difficulties since it involves the summation
of an infinite series in which each term is divergent (near
resonance) while at the same time the bookkeeping of
high-order mixing processes involving three distinct waves
represents a formidable task. The nonlinear-optical
response of CuC1 in the vicinity of the biexciton resonance
must therefore be expressed within a nonperturbational
framework.

In the light of this observation the interpretation of ex-
periments based on a perturbational analysis of such sys-
tems may need to be reconsidered. An example is the
"two-photon" absorption line shape of biexcitons in CuC1.
In contrast to conventional two-photon absorption the
biexciton linewidth was found to be intensity dependent
and was thus attributed to "collisional broadening" in the

biexciton gas whose density increases with intensity. " The
collisional mechanism, however, could not be corroborated
by different experiments. A reexamination of the absorp-
tion line shape within a nonperturbational theory is thus
in order. Another example concerns the spectral line
shape of the four-wave-mixing signal resonant with the
two-photon biexciton transition. The observed asym-
metry could not be accounted for by the third-order sus-
ceptibility obtained from a simple exciton-biexciton
model. Thus a Fano interference effect between the sharp
biexciton level and the two-polariton continuum was in-
voked to explain it. The nonperturbational description of
four-wave mixing, however, may require that this mecha-
nism be revised.

In this paper we address the problem of the nonpertur-
bational calculation of the nonlinear-optical response of
an exciton-biexciton system using CuC1 as a reference. To
keep the physics and the algebra simple we limit our
description to single-beam experiments (such as transmis-
sion or reflexion spectroscopy) by (I) calculating the non-
linear intensity-dependent dielectric function of the medi-
um, and (2) by accounting for the nonlinear propagation
of light through such a medium. Some of our conclusions
are applicable also in multibeam experiments; a more
thorough examination of such experimental configura-
tions is left for a planned future publication. The calcula-
tion of the nonlinear dielectric function and the corre-
sponding renormalization of the polariton dispersion rela-
tion near the two-photon biexciton resonance has been ad-
dressed also by other authors using a variety of formal ap-
proaches: Green's-function techniques, the summation of
perturbational (infinite) series, or the solution of Bloch-
type equations of motion. Our results reduce to theirs
under the appropriate approximations. The paper is or-
ganized as follows. Section II reviews the basic concepts
of nonlinear optics relevant to the nonperturbational treat-
ment. The physical model for an exciton-biexciton system
and the unitary transformations diagonalizing its Hamil-
tonian are py'esented in Sec. III. Section IV contains the
calculation of the nonlinear susceptibility and discusses
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the effects observable in the propagation of a light beam
through such a system. Finally, Sec. V contains the con-
clusions of this study.

II. CxENERAL CONSIDERATIONS

A. Optical susceptibility

We consider a semiconductor described by a Hamiltoni-
an Ho and interacting with the electromagnetic field.
Within the dipolar approximation the interaction Hamil-
tonian is

H i
—— PE(—r, t ), (2.1)

where p is the dipole operator, while E is the electric field
operator. In what follows we shall adopt a semiclassical
treatment by using an effective Hamiltonian which deals
only with the occupied modes of the elctromagnetic field
and treats the corresponding electric field as a c-number
E. The interaction with the unoccupied modes is included
through its lowest-order term: the dipole-dipole interac-
tion among the polarizable units in the system. This pro-
duces a renormalization of the electric field felt by the in-
dividual polarizable units, which in classical optics (and
electrostatics) in known as the "local-field correction. "'
For an isotropic polarizable medium, the local field at a
point r is given by the field produced by the induced po-
larization at all other points, in addition to the externally
applied field. That is, it can be written as

4mEi~=E.ppi+ 3
g1'P (2.2)

where p; is the polarization induced on the ith-type polar-
izable unit (excited state) while y; is a parameter
(0 & yt & 1) which depends on the degree of delocalization
of the electrons associated to excitation i. For completely
delocalized electrons (e.g., in metals), y =0, while for exci-
tations confined to a single unit cell y=1. Under these
considerations the full electromagnetic interaction of Eq.
(2.1) can be rewritten as

Hi —— PEi (r,t)— (2.3)

where Ei is a c number and is given by Eq. (2.2),
We assume that at t = —ac the system is found in the

nth eigenstate of Ho,
~

n ) and that the field is turned on
adiabatically to attain the value E at t =0 so as to avoid
trarisients in the response of the system. The state of the
system after the turn on of the field is

responds to the expectation value of p, per unit volume
after the field has been turned on. That is

P=(n
i
(P/V)

i
n )

=(,n
i

U ( —oo, O)(P/V)U( —ao, O)
i
n) . (2.6)

At this point it is customary to expand U and U in a
perturbational series in powers of the field and obtain the
optical susceptibilities of different orders. Clearly, howev-
er, a calculation of U through a nonperturbational scheme
would give the optical response of the material to all or-
ders, without distinction among the effects due to the dif-
ferent susceptibilities. The result of Eq. (2.6) may then be
written formally as

P =a(Ei )Ei (2.7)

defining thus u, the nonlinear polarizability. The induced
polarization may also be calculated in terms of the exter-
nally applied field, by explicitly introducing the local-field
correction, and by solving Eqs. (2.2) and (2.7) self-
consistently. The solution can then be expressed formally
as

P=~(E ppi)E ppi

defining thus X, the (macroscopic) nonlinear susceptibility.
The nonlinear susceptibility (rather than the nonlinear po-
larizability) is the quantity relevant to an experiment,
since the applied (rather than the local) field is one of the
experimental parameters.

A major problem in the description of the optical
response of a real material system is the inclusion of the
effects of relaxation processes. Such processes are most
often treated phenomenologically by the addition of a
small imaginary part (iy) to the corresponding frequency.
In such a case, however, care must be exercised since the
phenomenological Hamiltonian is not Hermitian, and its
eigenstates cannot be properly defined (e.g., they do not
remain normalized as they evolve in time). It has been
shown" that with such a Hamiltonian the calculation of
the expectation value of the induced polarization can still
be performed, if the time evolution of the bra and the ket
are correlated at all times through the simultaneous time
ordering of both U( —oo, O) and U ( —oo, O) in Eq. (2.6).
This double time ordering is generally possible only when
both U and U~ are expanded in a perturbation series.
However, if both the real and imaginary parts of the fre-
quency follow the same combination rule,

i
n) =U( —oo, t=O)

i
n), (2.4) ~nn'+ ~n'n" =~nn" (2.9)

a=Ho+a (2.5)

since
~

n ) is the eigenstate of H that is reached when H,
is turned on adiabatically.

The optical response of the system is given by the polar-
ization induced on it by the electromagnetic field. It cor-

where U, the time-evolution operator, can be expressed in
the interaction picture as a time-ordered exponential of
H&. Clearly, U is the transformation that diagonalizes the
full Hamiltonian

(where co;J is the frequency difference between the ith and
jth states), the same result is obtained whether the evolu-
tion operator and its conjugate are time-ordered sirnul-
taneously or independently. " This implies that when Eq.
(2.9) is satisfied for all complex frequencies associated
with a material system, the evolution operator U( —ao, O)
can be calculated (separately froin its conjugate) through
nonperturbational techniques as the unitary transforma-
tion that diagonalizes H.
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B. Nonlinear propagation

An optical experiment involves the observation of a
light beam traversing a material system and is thus
described by the Maxwell equations for the generation
and/or propagation of the beam through the oscillating
induced polarization of the medium. For z-axis propaga-
tion of a single beam, the Maxwell equations reduce to

d 1

dz k
(2.15b)

that is, when the fractional variation of the wave vector is
small over a wavelength or, in other words, when a wave
vector (and a wavelength) can be defined locally. We note
that if the nonlinear part of the susceptibility is small
compared to the linear part, the dispersion relation (2.14)
can be expanded as

BE
BZ2

1 B2

, (E+4rrP),
c Bt

(2.10) 67 CO co +NL
V eL +~NL eL +

c C C 2~Eg
(2.16)

e(E)= 1+4rrX(E), (2.12)

and X(E) is the macroscopic susceptibility. For the case
in which e(E) does not change its value with distance,
Maxwell's equations permit us to reduce Eq. (2.11) to the
first-order equation

BE = -kE
Bz

where

(2.13)

where P is the induced polarization. The conventional
procedure' consists of separating P into linear and non-
linear parts, solving the problem of linear propagation,
and calculating the effects of the nonlinear part of P as a
deviation from linear propagation within the slowly vary-
ing envelope approximation. The nonperturbational treat-
ment of the induced polarization, however, requires that
both the linear and nonlinear parts of P be treated on the
same footing. We shall examine such a treatment for the
simple case in which the only time dependence of both E
and P is an oscillation at frequency co. In such a case, dif-
ferentiating with respect to time in Eq. (2.10) we have

BE co CO(E+4m P ) = — e(E)E, (2.11)
Bzz cz c2

where we define formally the nonlinear dielectric function

so that Eq. (2.13) reduces to the familiar slowly varying
envelope approximation.

III. MODEL HAMILTONIAN

A semiconductor interacting with an electromagnetic
field in the vicinity of the two-photon biexciton resonance
can be described as an idealized system involving two
types of quasiparticles: excitons and biexcitons. The
reason is that in the vicinity of that resonance the electro-
static and exchange interactions among excitons can be
simply represented by the formation of a new quasiparti-
cle, the biexciton. Both excitons and biexcitons behave
approximately as bosons when they are created at low
densities.

The Hamiltonian of the crystal may be written as

Hp =+cop(q)bq bq+ QQ(Q )BgBg (3.1)
e Q

where the operators b» and bq (Bg and Bg) create and an-
nihilate, respectively, an exciton (a biexciton) of wave vec-
tor q(Q) and frequency p~p(Q). If we assume that excitons
are active in one-photon absorption while biexcitons can
be accessed through a two-photon transition with the exci-
ton as an intermediate state, the interaction of the crystal
with an electric field of the form

k = (~/c )v~e (2.14) —I COt+ fk1' ~itc ECOt —Ekl'

« ik2/ (2.15a)

or rearranging,

is the wave vector. Equation (2.13) is rigorous when e is
independent of the incident light field (linear propagation)
or when e depends on the incident intensity (or the abso-
lute value of E) but that latter parameter remains constant
throughout the sample (i.e., there is no absorption). In
such cases Eq. (2.14) permits the definition of the non-
linear dispersion relation.

When e is a weak function of z, as in the case in which
light is weakly absorbed while it propagates in the non-
linear medium, passage from Eq. (2.11) to (2.13) is still
possible, as in the theory of propagation through media
with weak refractive-index variations. ' In that case,
however, Eq. (2.13) involves a small error which may be
evaluated by redifferentiating Eq. (2.13) to obtain Eq.
(2.11). The error is small when

can be written as

Hi —— ~N pi(Ee ' 'bk+E*e'"'bk)

gpp(E'e —' 'Bk+qbq+E'*e' 'Bk+qbq ), (3.2)
e

where p& is the transition dipole per unit cell for the exci-
ton transition, and X is the number of unit cells in the
crystal, while pz is the dipole matrix element for the
exciton-biexciton transition. The spatial part of the phase
factor for the electromagnetic wave e' " is incorporated in
the definition of the exciton or biexciton operators with
the corresponding wave vector.

In writing Eq. (3.2) the rotating-wave approximation
has been invoked by eliminating the antiresonant terms of
the interaction Hamiltonian; this approximation limits the
calculation only to the resonant features of the nonlinear-
optical response. We note also that a prime (E') has been
used to denote the possibility that the electric field felt by
the exciton and by the biexciton are not exactly the same.
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H=Hp+Hi . (3.3)

Equations of motion under this Hamiltonian are some-
what difficult to solve because of the time dependence in
the interaction Hamiltonian H

&
. They are, however,

greatly simplified if they are recast in a rotating frame of
reference such that the explicit oscillations of the interac-
tion Hamiltonian are eliminated, as is routinely done in
the theory of NMR or coherent optics. Since there are
two types of excitations it is necessary to use a "double"
rotating frame' composed of one reference frame for the
excitons rotating at co (the frequency of the radiation field)
and one for the biexcitons rotating at twice that frequen-
cy, 2'. The transformation to this doubly rotating frame,
then, is essentially equivalent to a transformation into an
interaction picture in which the overall Hamiltonian of
Eq. (3.3) is partitioned into a "zeroth-order" Hamiltonian
of the form

H pigbqbq+2co+BgBg
Q

and an "interaction"

(3.4a)

This may arise from local-field effects on the two quasi-
particles, given that the extension of their Wannier func-
tions differ greatly: In CuC1 the exciton radius (-7 A.) is
of the order of the lattice spacing while the volume of the
biexciton is —300 times larger, indicating that the
local-field produced by the exciton polarization varies rap-
idly over the dimensions of the biexciton. Thus, the biex-
citon is subject to an average field which essentially ex-
cludes the contribution of the exciton polarization and
conversely it does not contribute to the local field felt by
the exciton. In other words, in considering local-field ef-
fects according to Eq. (2.2) we may take y = 1 for the exci-
tons and y =0 for the biexcitons.

The full Hamiltonian of a crystal interacting with a
laser beam (plane wave) of wave vector k is, of course,

to be complex. For the equations of motion of the opera-
tors b~ and 8& we may thus write

COp(g) ~COp(q) i—y
Q(Q)~Q(Q ) —i I

(3.6a)

(3.6b)

U 'HU=e '(e 'He ')e ', (3.7)

where the anti-Hermitian operators Si and S2 are linear
and quadratic, respectively, in the Bose creation and an-
nihilation operators. The translational part can be written

5 i g(xqb» xq——bq ) +g(y—gBg —ygBg ), (3.8a)

For the creation operators b~ and Bf the conjugate fre-
quencies must be used. Clearly, for the different levels
within each Bose oscillator, the combination rule of Eq.
(2.5) is always satisfied: The decay rates of (b) and (B)
are 4y and 4I", respectively. In order to be able to calcu-
late the induced polarization without the need for double
time-ordering procedures we must postulate that Eq. (2.6)
holds even between exciton and biexciton states.

When E is turned on adiabatically the equations of
motion of any operator under the Hamiltonian (3.5) can be
solved in a very straightforward manner, by simply apply-
ing to that operator the unitary transformation that diago-
nalizes Eq. (3.5) and then introducing an imaginary part
to all detunings, positive for creation operators and nega-
tive for annihilation operators. Since the Hamiltonian in-
volves only Bose operators and is quadratic, the unitary
transformation that diagonalizes it can be obtained in ana-
lytic form. The calculation is easiest performed in two
stages: First, the linear terms in (b +b ) can be eliminated
through a translation of both exciton and biexciton opera-
tors, and then the quadratic cross terms in (B b+Bb ) can
be diag onalized away through a rotation in exciton-
biexciton coordinate space. That is the diagonalization
procedure can be written as

H"=H —H' . (3.4b)

Equations of motion in this interaction picture, then, in-
volve the Hamiltonian lg 1 g + (3.8b)

so that when applied on the exciton and biexciton opera-
tors the translational part gives

H=e' 'H"e ' '=H +H

H p =+5(q)bqtbq+ ga(Q)BgtBg
Q

(3.5a) —Sl S)
Bye =kg +gg

and so on. As shown in the Appendix, the values

(p,E)h
xk=

b,5—
f
p2E'

[

(3.8c)

(3.9a)

Hi = ~~iJ i«bk+E'bk )

V~g«'Bq+k —bk+ E'*Bq+k bk ), (3.5c)

piE(IJ, pE')

b,5—
i
p, 2E'

i

(3.9b)

where 5(q) =cop(q) —co and b(Q) =Q(Q) —2pi are, respec-
tively, the detunings of the exciton relative to the one-
photon transition and of the biexciton relative to the two-
photon transition.

Relaxation processes may be included phenomenologi-
cally in the equations of motion by allowing the exciton
and biexciton frequencies {or the corresponding detunings)

x =0 for q~k (3.9c)

yg ——0 for Q~2k (3.9d)

with b, =b, (2k), 5=—5(k), eliminate the linear terms of the
Hamiltonian. The partially transformed Hamiltonian
now reads
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e '~e '=+5(q)b,'b, +pa(g)B~tB~
q Q

@pe(E Bq+kbq+F. Bq+i, bq) (3 10)

where the constant term (order zero in the operators) re-
sulting from the translational transformation has been

dropped.
We note that Eq. (3.10) can be separated into X in-

dependent and mutually commuting partial Hamiltonians,
each of which involves one exciton (q) and one biexciton
(Q =q +k) linked through the radiative interaction. Each
one of these Hamiltonians may be diagonalized through a
rotational transformation of the form

e '
bqe

' =cosl Oq I
b +(8 /IO I

)sin
I Oq I Bq+k,

(3.11b)

cos
I Oq I Bq+k (Oq/

I Oq I
)sin

I Oq I bq

(3.11c)

It can easily be shown (see Appendix) that for

3.12
E"

each partial Hamiltonian is diagonalized. The overall ro-
tational transformation is, of course,

S2 =Oq Bq +k bq Oq Bq +k bq
(q)

such that

(3.11a)
S,=QS2 ',

giving for the overall diagonalized Hamiltonian

(3.13)

Ql Ql
U 'HU=g

2
+ li E'I' 5'+5'

q q+'
'2

+ IP2E I

1/2

.Bk+qBk+q ~

(3.14)

where 5' =5(q) and 6' =b (q +k ) for brevity.

IV. PROPACxATION OF A SINGLE BEAM

We consider a plane electromagnetic wave of wave vec-
tor k and frequency co propagating through the crystal.
Such an experiment, of course, involves the observation of
the transmitted radiation of the same wave vector. The
experimental observable thus consists of the induced po-
larization of wave vector k, which is given by the expecta-
tion value over the adiabatic state of the total dipole
operator,

P"=PL+P2 =~&V ibk+iJ»k+q bq (4.1)

where p, 1,pz distinguish the direct contributions of the ex-
citon and biexciton transitions for the sake of clarity: The
expectation value of p1 corresponds to the probability that
a photon of wave vector k is emitted while the system un-
dergoes a transition in which an exciton is annihilated,
while the expectation value of p, 2 gives the probability that
the experimental observation of a photon occurs when a
biexciton-to-exciton transition takes place.

With the use of the unitary transformation obtained in
Sec. III and Eq. (2.6) the direct contribution of the exciton
transition to the induced polarization is

P 1EA
Pi ——(i

I
U '(Pi/V) U

I
i ) =— (4.2a)

for all initial states Ii ). The detunings are taken to be
complex,

h=h(2k) i I, 5=5(k) iy .— —
We note that for E'=0, Eq. (4.2a) gives the linear polari-
zation corresponding to the exciton transition. For finite

E' this polarization is renormalized (by its denominator)
for all virtual biexciton-to-exciton transitions, so that it
gives the probability that the exciton transition occurs as
part of the two-photon biexciton-to-ground transition.
The direct biexciton contribution is

P2 &&
I

U '(P2/V»
I

i &

E ~"ui 2I&I'&'
V I~5—Ii 2&'I'I'

s 2E' &i
I b,'b, Bq'+kBq+k

I

i &—
1/2

(4.2b)

and corresponds to the probability that the photon emitted
by the oscillating induced polarization is associated with
the biexciton-to-exciton part of the two-photon biexciton
transition. The first term in Eq. (4.2b) is due to the
translational part of the unitary transformation and is the
same for all initial states. The second term results from
the rotational part; it is essentially proportional to the
exciton-biexciton population difference and displays a res-
onance at approximately the exciton-to-biexciton transi-
tion frequency. This term thus corresponds to the case in
which the exciton-to-biexciton transition occurs because
of the presence of a real population of excitons and biexci-
tons while the translational term is associated with the
probability that the exciton-to-biexciton transition occurs
as part of a coherent two-photon (rather than two-step)
process.

In most experimental situations the initial state of the
crystal contains no excitons or biexcitons, i.e., I

i ) =
I
0),

so that only the first term in Eq. (4.2b) need be considered.
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In order to relate these calculations to exprimental ob-
servations, however, it is more convenient to calculate the
nonlinear susceptibility in which all local-field factors are
included explicity so that the induced polarization is ex-
pressed as a function of the applied fields. As was dis-
cussed in an earlier publication, ' if both the excitons and
biexcitons are affected by the same local field the non-
linear susceptibility becomes a multivalued function of the
incident electric field and thus may give rise to a bistabili-
ty in the refractive index and in the reflectivity of the
medium. Such an intrinsic bistability (without an optical
cavity) due to dipole-dipole interactions which introduce
an "internal*' feedback in the material has also been dis-
cussed by other authors in different systems. However,
although this effect may in principle be observable in
exciton-biexciton systems, it is questionable whether CuC1
can exhibit such intrinsic bistable behavior. The reason
lies in the large extension of the biexciton wave function
which implies that these quasiparticles are affected by the
externally applied electric field directly, rather than the lo-
cal field [yb;,„-0 in Eq. (2.2)]. Using this "size" argu-
ment, we may thus assume that only the exciton is subject
to local-field considerations (y,„=I). We may further as-
sume that we also have y = 1 for the background polariza-
tion which arises from all nonresonant transition processes
(i.e., to all states other than the exciton and the biexciton).
Under these assumptions we have

E'=E
4~E=E) =E,ppi+ (u +ai)Ei

(4.4a)

(4.4b)

where a is the background polarizability while a~ is the
direct exciton contribution to the polarizability corre-
sponding to Eq. (4.2a). Equation (4.4b) can be rewritten
as

This is the case that will be considered in this paper.
However, when the initial state is prepared experimental-
ly, as in time-resolved pump-and-probe —type experiments,
the second term has to be explicitly included.

The nonlinear polarizability may be immediately ob-
tained from Eqs. (4.2) through its definition (2.7).
Neglecting the local-field corrections, the polarizability of
a semiconductor initially in its ground state can be written
as

&i+Pi ~ pi(Ah*5'+2ii
I
p2E

I
)

a =a)+a2=
I
~&—

I s i&
I

'
I

'

has been used. Thus, if local-field considerations are in-

cluded, the nonlinear susceptibility is given by

(4.6)

Substituting a, and a2 from Eq. (4.2) we obtain an expres-
sion similar to Eq. (4.3), the only difference being that the
exciton frequency gets shifted to

4m N 2 &~+26~6— —p)3 V 3

Thus, as in the case of the linear susceptibility of polari-
tons, ' inclusion of local-field effects for excitons only,
simply produces a shift of the exciton frequency, an effect
which cannot be measured independently.

By expanding X (or a) in powers of the incident electric
field, we can verify that we obtain the standard expres-
sions for the fully resonant terms in the different orders of
the susceptibility. For example,

y(&) Xp~
(4.7a)

V 6

is the one-photon absorption coefficient (or dispersion),
while

(4. Jib)

corresponds to the sum of aII fully resonant third-order
terms, as, for example, diagrams Di and (D& + D»+Di8)
in Ref. 6. Alternatively, each order of the susceptibility
could have been obtained by the standard diagrammatic
techniques (limited to fully resonant terms) and the sum-
mation of the infinite series would have yielded Eq. (4.3).
From that point of view, Eq. (4.3) may be considered as
representing the "renormalization" of the first-order sus-
ceptibility by the inclusion of higher-order processes in-
volving many photons. Individual optical processes of
different orders, however, cannot be distinguished experi-
mentally in a one-beam experiment. Thus the conceptual
distinction of different orders and the description of the
nonlinear-optical response of the system in a perturbation-
al language are not very meaningful: A one-beam experi-
ment is described by a propagation equation for the elec-
tromagnetic field and thus the relevant quantity for such a
treatment is the dielectric function in which all orders of
the susceptibility are treated on the same footing. That is,

(4.8)

Ei~ =fE.ppi,

with the local-field factor f given by

(e„+2)/3
I —(4ma i/3)(e„+ 2) /3

where the Lorentz-Lorenz relationship

(4.5a)

(4.5b)

where e is the background dielectric constant, while
ALT 4m&pi/Ve is th——e longitudinal-transverse polariton
splitting. It is straightforward to verify that at low light
intensities Eq. (4.8) gives the well-known polariton disper-
sion relationship in the rotating-wave approximation
(RWA),

(4.5c) (4 9)
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(4.10a)=coT 1+8m—
V e

reduces to

It should be remembered that within the RWA the
Lydanne-Sachs- Teller relationship,

' 1/2 1/2
6p

3.1862-

3.1860-

2
Pi1+4m—

V e coT

which is a good approximation as long as

COLT ((Q)T,

(4.10b)

(4.10c)

3.1858-)
~~ 3,1856

cr 3.1862-

2~e—1

~a+1 (4.1 1)

and thus justifies a posteriori the use of the RWA.
At high intensities, of course, the polariton dispersion

relation is greatly modified, and effect which in the per-
turbational viewpoint is attributed to the renormalization
of the susceptibility. Since our model neglects all
exciton-exciton interactions other than biexciton forma-
tion, Eq. (4.8) can be expected to provide a good descrip-
tion of the renormalization and the dispersion modifica-
tions only in the vicinity of the two-photon biexciton reso-
nance.

In the vicinity of that resonance, i.e., at b, =(p2E) /5,
the dielectric function diverges if there is no damping.
This implies that the reflectivity experienced by a plane
electromagnetic wave propagating in the direction perpen-
dicular to the surface of the sample and given by

3.1860-

3.1858-

3.1856
0,6 10 14 18 2 2

WAVE VECTOR (10 cm ')
2.6

FIG. 1. Polariton dispersion in the vicinity of the two-photon
biexciton absorption in CuC1 (3.186 eV) at different incident in-
tensities (a) with no damping and (b) with damping (y =0.05 and
I =0.15 meV). Solid line ( ) is for 30 M%'/cm, dashed line

( ———) is for 3 MW/cm, and dotted line ( ~ ~ ~ .) is for 0.3
MW/cm .

becomes unity. This corresponds to a two-photon polan-
ton effect since the electromagnetic waves cannot enter
the crystal. The "forbidden" spectral region, however, is
limited to a single point: the frequency for which e= ao.
This is in contrast to the well-known one-photon polariton
effect in which light is totally reflected because the dielec-
tric constant is negatiue over a relatively wide spectral re-
gion between the longitudinal and transverse exciton fre-
quencies. As the incident intensity increases the two-
photon polariton divergence is displaced to lower frequen-
cies while the dispersion relation around the divergence
becomes less steep. Thus, as the intensity increases the ef-
fective gap of the two-photon polariton (i.e., the region in
which the reflectivity is larger than a given value Ro)
widens. This effect is presented in Figs. 1 and 2. In all

l3, 17.figures the following parameters of CuC1 are used
=4.1, ~o=3.204 eV, A=6.372 eV, ~z T

——5.4 meV, and
p2 ——1&10 ' esu. The value for p2 is taken from Ref.
13. Since it is the product p2E that enters in all formulas,
a different value of p2 would simply change the intensity
scales.

The problem of the nonlinear dielectric function in an
exciton-biexciton system has been examined also by other
workers. ' A detailed comparison of the assumptions and
the severity of the approximations used in the different
approaches is published elsewhere. ' Here it suffices to
point out the main difference in the results of our treat-
ment compared to the theory of Mirz et al. In the vicin-

1.0

0.6-

0.4-

~ 0.0-~06

0.4- (b)

0.0
3.1856 3.1858 3.1860

FREQUENCY (eV)
3.1862

FIG. 2. Reflectivity of CuC1 in the vicinity of the two-photon
b' citon absorption {a) with no damping and (b) with damping

( =0.05 and 1 =0.15 meV). Solid line ( is or

MW/cm, dashed-dotted line ( —~ ——) is or
dashed line ——— is ord 1' ( ———) is for 3 MW/cm, and dotted line (. ~ ~

is for 0.3 MW/cm .
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ity of the two-photon biexciton resonance the Marx for-
mula for the susceptibility can be written as 0.32 '(a}

Eo—E QPOA/2x=-
55—2npM

(4.12) 0.24

dI co2 I lmPe(I) . ——
dz c

(4.13)

The condition of validity (2.15) of the above equation may
be rewritten in terms of the dielectric function as

where nz is the polariton density, while M represents the
exciton-biexciton —transition matrix element. For a given
polariton density this equation corresponds to a dispersion
curve which displays a polaritonlike gap (i.e., a region in
which E&0) in the vicinity of the two-photon biexciton
resonance. ' This behavior is in contrast to that of our
model in which e is always positive and diverges at only
one point. This difference is due to the neglect of the
direct biexciton contribution to the polarization in the
derlvatlon of Eq. (4.12): Oui' ieslllts reduce to tlie saiiie
equation if the biexciton contribution [Eq. (4.2b)] is not
included in the calculation of the susceptibility.

If damping is included, the divergence of the dielectric
function disappears, thus closing the effective gap of the
two-photon polariton and smoothing out the sharp peak in
reflectivity. This is shown in Figs. 1 and 2 for y=0.05
meV and I =0.15 meV. These values, although probably
not very accurate, were chosen so that they verify the rela-
tion 2y+I =0.25 meV found experimentally. ' At the
same time, a "two-photon" absorption towards the biexci-
ton state occurs, with an intensity-dependent effective
two-photon absorption coefficient given essentially by the
imaginary part of the overall nonlinear susceptibility. As
should be expected the imaginary part of the susceptibility
in Eq. (4.3) is never negative, indicating that a single in-
cident beam propagating through a nonlinear medium can
only undergo absorption and is never amplified. Figure 3
presents the real and imaginary parts of the dielectric
function of CuC1 at different intensities. We note that the
width of the absorption peak (ImX) is essentially constant
at all intensities and approximately equal to the biexciton
damping constant. Its height and its position, however,
vary linearly with intensity. The same is of course true
for the effective dispersion relation (ReX), which, at the
same time, displays a marked asymmetry.

The spectral characteristics of the dispersive and ab-
sorptive parts of the susceptibility, however, are not
directly accessible in an experiment on a macroscopic
crystal. What is measured experimentally is the transmis-
sion of the sample which (in the nonlinear case) is not very
simply related to the susceptibility. The transmission
spectrum of a light beam propagating through a sample of
finite thickness may be calculated by inserting the non-
linear dielectric function of Eq. (4.3) into the equation of
propagation (2.11). If the dielectric function (which de-
pends on the beam intensity) varies little along the propa-
gation length, the propagation equation may be simplified
to Eq. (2.13), which can be rewritten to yield directly the
transmitted intensity I,

a 016
Ct

0.08

O.OG

0.24

0.08

0.00
3.1856 3.1858 3.1860

FREQUENCY (eV)
3.1862

FIG. 3. (a) Real and (b) imaginary parts of the nonlinear-
optical susceptibility of CuC1 for damping constants y=0.05
meV and I =0.15 meV. Solid line ( ) is for 30 MW/cm,
dashed-dotted line (———.) is for 15 MW/cm, dashed line
( ———) is for 3 MW/cm, and dotted line ( ~ ~ ~ -) is for 0.3
MW/cm

de Imve
~3/2

(4.14)

This equation is verified at all frequencies for CuC1 with
damping parameters of the order of 0.1 meV and intensi-
ties of up to a few tens of MW/cm, thus justifying the
use of the approximate propagation equations (2.13) and
(4.13) under such conditions.

Figure 4 presents the calculated transmission spectrum
observable by a tunable narrow-line laser passing through
a 0.50-pm film of CuCl obtained through the numerical
solution of Eq. (4.13) at different frequencies. For in-
cident intensities higher than -50 MW/cm, the full
propagation equation (2.11) should of course be used. We
note that at all intensities this spectrum presents a dip at
half the biexciton frequency, whose depth and width in-
crease with intensity. At high intensities the dip becomes
asymmetric, and its low-frequency side becomes less steep.
The decrease of transmittance with increasing intensity
can easily be related to the increase of the effective two-
photon absorption coefficient (the imaginary part of the
susceptibility) as shown in Fig. 3. However, the justifica-
tion for the width and the asymmetry of the transmission
spectrum is a little less obvious, since the imaginary part
of the susceptibility displays a totally different behavior:
Its width is essentially constant and its asymmetry barely
perceivable while its peak undergoes a displacement to-
wards lower frequencies, essentially proportional to the in-
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FICx. 4. Calculated transmission spectra of CuCl in the vicini-

ty of the two-photon biexciton absorption. Intensities are given
jn MW/cm2.

cident intensity. Part of the width of the transmission
spectra of Fig. 4 is due to a trivial cause: The flattening
out of the spectrum at low transmittances. The overall
appearance of the transmission spectrum and its relation-
ship to the imaginary part of the susceptibility may be un-
derstood if we consider that the absorption process is
"chirped, " that is, its peak frequency changes. For exam-
ple, an incident beam of -50 MW/cm experiences an ab-
sorption spectrum centered -0.15 meV below 0/2 (half
the biexciton frequency). As the beam propagates in the
material it gets attenuated due to (linear or two-photon)
absorption. This attenuation causes the absorption max-
imum to shift to higher frequencies and brings about a de-
pletion of a new spectral region of the beam and so on. In
the limit of full attenuation of the beam the absorption
maximum moves back to Q/2. The shift of the absorp-
tion peak therefore produces an apparent width to the
transmission, an asymmetry towards the low-frequency
side of 0/2, and a transmission at 0/2 for sufficiently
long propagation distances.

It is possible, thus, that the intensity-dependent absorp-
tion width of the two-photon biexciton resonance, ob-
served experimentally and attributed to biexciton density
and collisional effects, may be due, at least in part, to the
interplay of propagation, intensity attenuation, and the
chirping of the absorption peak.

V. SUMMARY AND CONCLUSIONS

The optical behavior of interacting excitons cannot be
treated successfully through the perturbational formula-
tion of nonlinear optics as the large oscillator strengths in-
volved and the near-resonance conditions cause the pertur-
bational series to diverge. The interpretation of optical
experiments on biexcitons, therefore, through the tradi-
tional perturbational framework of nonlinear optics, has
led to dubious conclusions.

In order to account for the optical properties of excitons
and biexcitons in a semiconductor such as CuCl without
recourse to the perturbational methods of nonlinear optics,
we have adopted a model which is based on a quantum-
mechanical description of excitons and biexcitons as bo-
sons and a classical description of the light field. This
permits us to express the Hamiltonian as a quadratic form

of Bose operators which can easily be diagonalized
through a unitary transformation. The unitary transfor-
mation is then used to calculate the induced polarization
and the nonlinear susceptibility relevant to the experimen-
tal observation. This nonperturbational method automati-
cally enumerates all nth-order processes through the alge-
braic properties of the Bose creation and annihilation
operators. It can easily be generalized to account for the
nonlinear-optical response relevant to multibeam experi-
ments.

The nonlinear susceptibility thus obtained can account
for the observations of one-beam experiments through the
Maxwell equations. If damping is not included, the
dielectric function obtainable from the nonlinear suscepti-
bility gives directly the renormalization of the polariton
dispersion curve in the vicinity of the two-photon biexci-
ton resonance. This renormalization is manifested by the
divergence of the dispersion relation at one only point
which is at half the biexciton frequency for low intensities
but gets displaced to lower frequencies as the incident in-
tensity increases. The opening of a polaritonlike gap asso-
ciated to the renormalization of the dispersion, found by
other authors, can be obtained only if the direct biexciton
contribution to the susceptibility is neglected.

Inclusion of damping removes the two-photon diver-
gence of the renormalized polariton dispersion relation
and introduces an imaginary part to the linear susceptibili-
ty which corresponds to an effective two-photon absorp-
tion coefficient. This absorption coefficient presents a
sharp resonance at the same frequency as the divergence
of the renormalized polariton dispersion relation. With
increasing intensity, thus, its peak shifts to lower frequen-
cies while its width remains constant.

The intensity-dependent transmission spectrum corre-
sponding to this two-photon absorption coefficient, how-
ever, exhibits a different behavior. For crystals of finite
thickness, its peak is located at half the biexciton frequen-
cy (independent of intensity), while its width and asym-
metry increase with increasing intensity. The appearance
of the transmission spectrum is due to the fact that the
absorption of a propagating beam is chirped, since the ab-
sorption maximum experienced by a light beam depends
on the beam intensity. Thus attenuation of the beam due
to absorption implies that the absorption spectrum seen by
the beam shifts to higher frequencies as the beam pro-
pagates in the medium. This gives an apparent width and
an asymmetry to the transmission spectrum. Strictly
speaking, our results are applicable only to one-beam ex-
perirnents. We may however, expect that similar con-
clusions are valid also in multibeam experiments if al-
lowance is made for modifications due to multibeam ef-
fects, such as induced absorption or four-wave mixing.

The intensity-dependent width observed experimentally
for the two-photon biexciton transition has been attributed
to collisional broadening brought about by the intensity-
dependent density of the biexciton gas. This mechanism
was postulated to account for the unconventional behavior
of the third-order susceptibility X' ' obtained in the inter-
pretation of these experiments within the traditional per-
turbational formulation of nonlinear optics. The results
obtained from the nonperturbational treatment of non-



AAA2 I. ABRAM 28

linear susceptibility and of propagation, however, suggest
that the chirped nature of absorption of a propagating
beam may account, at least in part, for the intensity-
dependent width observed in the biexciton absorption
spectrum.
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APPENDIX: DIAGONALIZATION OF THE HAMILTONIAN

The rotating-frame Hamiltonian of Eq. (3.5),

/5(q)bqbq + /~(Q)BgBg ~+V'1(Ebk+E bk ) P2/(E Bq+kbq +E Bq+kbq }
Q

(A 1)

may be diagonalized through the successive application of two unitary transformations: a translation and a rotation, as
in Eq. (3.7}. Application of the translation adds a displacements to each operator as in Eqs. (3.8b) so that the
transformed Hamiltonian reads

e 'He ' =+5(q)(bq+xq )(bq+xq )+ gb (Q)(B&+y&)(Bi2+y& } ~N p, [E(bk+xk )+E*(bk+xk )]

P2+—[E'(Bq+k +yq+k )(bq +xq )+E'*(Bq+k+yq+k )(bq +xq )] . (A2)

Collecting terms, we note that the coefficients of b and B vanish, respectively, when

5(q}xq ~&piE5kq p2E yq+—k =0
and

A(q+ k )yq+k p, 2E'xq ———0,

(A3a)

(A3b)

where 5'k is the Kronecker 5 symbol. Similar expressions [the complex conjugates of Eqs. (A3)] are obtained for the
coefficients of the corresponding annihilation operators.

For q =k, the solution of the system of two linear equations (A3) is

(p iE)6(2k )

b, (2k)5(k) —
i
p2E'

i

(p iE )(p2E')

b(2k)5(k) —
I piE

I

while for q&k and Q&2k we obtain

xq ——0,
yg

——0.

(A4a)

(A4b)

(A4c)

(A4d)

It is thus for these values that the translational transformation diagonalizes away the linear terms of the Hamiltonian.
The partially diagonalized Hamiltonian is given in Eq. (3.10) and can be written as

e 'He '=QH (A5a)

where

Hq =5(q)bqbq+ ~(q +k)Bq+kBq+k p2(E'Bq+k bq +E—'*Bq+kbq } .
When applying the rotational transformation (3.11) we have

e ' Hqe ' =5(q)(cbq+s Bq+k)(cbq+sBq+k)+b(q+k)(cBq+k sbq)(cBq s*bq+k)— —

pi[E (cBq+k sbq)(cbq+sBq+k)+E *(cBq+k s bq)(cbq+s*Bq+k)]

where

c=cos
i 8q i

s=(8q/[ 8
/

)sin
/

8

(A5b)

(A6)
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for brevity. Collcx:ting terms in Eq. (A6) we obtain, for the coefficient of Bb,
[5(q)—A(q+k)]cs, +@2(E's E'*—c ), (Aj)

(AS)

and its complex conjugate for the coefficient of 8 b. Clearly, these coefficients vanish forE", 2
I s 2E'

I

2
I

E'
I &(q) A(q—+k)

and thus the Hamiltonian (A5b) is diagonalized for this value of 8». The overall Hamiltonian, after application of the
translational and rotational transformations, is given by Eq. (3.14).
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