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Electronic structure of line defects by means of the scattering theoretical method.
Application to lines of vacancies in the simple cubic lattice
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The scattering theoretical method recently used to describe the electronic structure of point defects
in solids is extended to study line defects. The method is applied to the case of lines of vacancies in
the simple cubic lattice within a tight-binding model. Lines of vacancies in the [100], [110], and
[111]directions are considered, and their formation energies are estimated within the independent-
electron approximation. The interaction energy between parallel lines of vacancies is also studied
and the results are compared with those obtained for the interaction energy between single vacancies;
both interaction energies are shown to be remarkably similar.

I. INTRODUCTION

In the last few years there has been a strong revival of
interest in the electronic properties of defects in solids. '

Point defects, such as vacancies, have been studied in the
bulk, surfaces, and interfaces of both metals and semicon-
ductors. ' ' On the other hand, line defects, such as
dislocations, have received little attention. ' ' This is
mainly due to the following: (i) the most dramatic effect
of dislocations is to be found in the mechanical properties
of solids; therefore these properties have attracted most in-
terest, and (ii) the difficulties in treating the severe break-
ing of symmetry introduced by line defects. Nowadays it
is generally recognized that, as do point defects, line de-
fects should dramatically affect the electronic properties
of solids and may play a fundamental role in determining
such an important property as the catalytic activity of
metal surfaces. Recently, there have been several attempts
to extend the methods of calculation used to study sur-
faces and vacancies to the case of line defects. ' ' Those
analyses have always treated line defects by means of su-
perlattice methods.

The purpose of the present work is to show how the
scattering theoretical method recentIy used to describe the
electronic structure of surfaces, interfaces, and point de-
fects in solids can be extended to treat simple line defects.
In particular, we shall discuss its application to the case of
lines of vacancies in the three main directions of the
simple-cubic lattice. The formation energies of lines of
vacancies (the difference between the energy of a crystal
containing a line of N vacancies and the energy of a crys-
tal with N isolated vacancies) will be estimated in the in-
dependent electron approximation, and the interaction be-
tween parallel lines of vacancies will be studied in the
same approximation. Our results will be compared with
those obtained by Yaniv' ' for the case of single vacan-
cies. Of course, and due to the approximate nature of the
model Hamiltonian (simple cubic lattice, one orbital per
site, interactions up to first neighbors, neglect of the
electron-electron and ion-ion interactions, and absence of
ionic relaxations), our emphasis will be on the techniques
required by the extension of the scattering method to han-

die line defects, but not on the study of a realistic situa-
tion.

II. METHOD OF CALCULATION

The formalism we shall use is based upon the Green's-
function method. The single-particle Green's function as-
sociated with a given Hamiltonian Hp is given by

(E + irl Hp )Gp —1, —
E being the energy and g a positive infinitesimal. The va-
cancy or line of vacancies is introduced through a local-
ized perturbation V. The perturbed Schrodinger equation
is now written as

H
~

1/J ) = (Hp+ V)
~

1( ) =E
~ q) .

The perturbed Green's function is then given by Dyson's
equation, namely,

G =Gp+GpVG .

The phase shift associated with this scattering problem
is given by

5(E)=arg[D(E)] .

where D (E) is obtained through

D (E)=- det( 1 —Gp V) .

Finally, the change in the density of states caused by the
localized perturbation V is written as

In the present work we shall consider a simple single-
state Hamiltonian, which in the site representation takes
the form

Hp ——gh~~ i)(j
~

i and j run over the lattice sites and h,
&

is restricted to
nearest-neighbor interactions, namely h;J. =h p if i and j are
nearest neighbors and zero otherwise.
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Now, if a vacancy is created at a lattice site m, the lo-
calized potential can be written as

V = Vo
~
Iil) (II1

~

To treat this vacancy problem we can use a simple
method ' ' that greatly simplifies the calculations, name-

ly, we let Vo tend to infinity. In this way (4) can be
rewritten as Viv ——Vo g ~

m+jR)(in+ jR
~

(16)

case of lines of vacancies (LV) is as follows. A line of va-
cancies along the direction u is a set of vacancies separat-
ed by a vector R (R~u) that belongs to the three-
dimensional direct lattice and is the shortest vector in this
direction. Therefore, the localized potential of the LV is
given by

5 (E)=arg[GO(rn, m)] .

V =Vo{~m)(m~+~n)(n~). (10)

The phase shift associated with this potential is given by

5 (E)=arg[GO(m, m)GO( n, n )

—Go(m, n)GO(n, rn)] .

If the two vacancies were noninteracting, the phase shift
would be

5 (E)=arg[GO(m, m)GO(n, n)] . (12)

Here we note that with the simple Hamiltonian of Eq. (7)
the Green's function is no longer a matrix, but a scalar.
Therefore AN(E) is directly obtained from the unper-
turbed Green's function calculated at the site where the
vacancy has been created.

This method also allows us to study the interaction be-
tween two vacancies. ' In this case the localized potential
is written as

Once the LV is created the only symmetry that remains is
the translational symmetry along the direction of the line
defect and with a periodicity R. Therefore the most con-
venient representation to study the LV is a mixed one:
The spatial coordinate along the direction of the line de-
fect is Fourier-transformed, whereas the position represen-
tation in the plane perpendicular to the line defect is re-
tained. We denote the wave vector along the direction of
the line defect by k and the origin of a generic line of
atoms parallel to the LV by o.. The wave vector k runs
over the one-dimensional Brillouin zone (1DBZ), i.e.,—m. /R (k (m/R. The knowledge of the set of lattice po-
sitions over which o. runs requires an adequate geometri-
cal decomposition of the crystal lattice. The three-
dimensional Bravais lattice is decomposed into a family of
lattice planes perpendicular to the LV and characterized

by a vector G of the three-dimensional reciprocal lattice
(Aschroft and Mermin, Ref. 18, p. 90). Those lattice
planes are separated by a distance d =2m. /6, generally
shorter than R. Actually,

Therefore the increment in the phase shift due to
vacancy-vacancy interaction is given by

55 {E)=5 (E)—6- -(E)

G. R=GR =2mn, n &1

implies

2m Rd= 6 n

(17)

=arg 1—Go(m, n )Go( n, m)

Go(m, m)GO(n, n)
(13)

This allows us to calculate the vacancy-vacancy interac-
tion energy in the independent electrori approximation. '

The interaction energy is written as

E = f [bN (E) bN (E)]EdE—. (14)

This equation can be written by using Eqs. (6) and (13)
and integrating by parts:

E- -„=m' ' f [&- -„(E)—6- -„(E)JdE . (15)

Note that Eq. (15) is usually valid if the number of elec-
trons of the perturbed system equals the number of elec-
trons of the unperturbed system. Neither the system with
two noninteracting vacancies nor the system with two in-
teracting vacancies holds normally the same number of
electrons as the unperturbed system. Nevertheless, Eq.
(15) is applicable if the number of electrons of both per-
turbed systems is supposed to be the same. We do assume
this situation.

Equation (15) together with Eqs. (6)—(9) fully define
our system for the case of single vacancies. We turn now
to consider the case of lines of vacancies.

The extension of the formalism described above to the

It follows from the preceding discussion that the two-
dimensional vector cr gives the projection in a plane per-
pendicular to the line defect of the atoms in n =R /d lat-
tice planes. In other words, a does not describe a two-
dimensional Bravais lattice if n is greater than 1. For ex-
ample, n is equal to 1, 2, and 3 for the LV in the [100],
[110],and [111]directions, respectively.

This peculiar geometrical situation must be carefully
taken into account in the computation of the Green's
function in the mixed representation (o.,k). In fact, we
start from the Green's function in a three-dimensional
wave-vector representation k ( k E 3DBZ), in which the
Green's function is diagonal. In a second step, we con-
struct the two-dimensional Brillouin zone (2DBZ) corre-
sponding to the Bravais lattice defined by a lattice plane
perpendicular to the LV. Finally, we integrate the Green's
function over the 2DBZ to transform it into the position
representation o.. The possibility of such a constructive
process rests on the fact that the original three-
dimensional reciprocal lattice is always transformable into
a three-dimensional reciprocal lattice whose 3DBZ is a
right prism. The basis of the right prism is the 2DBZ,
and the following relationship holds:

Q3+( original ) =n,
Q 3Q (n ew )
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where 03D is the volume of the 3DBZ. This is the
reciprocal-space formulation of the real-space decomposi-
tion into lattice planes discussed above.

Once the pertinent entities are defined we can proceed
further. The Green's function in the mixed representation
is given by

VLv ——Vo g I
k, cr, )(k, cr„

I

k G 1DBZ
(21)

The potential VLv is Fourier-transformed along the direc-
tion of the LV and yields

& q ( o
~

—cr 2) o „being the origin of the LV. The elements of thee
Fredholm determinant [Eq. (5)] are

q &2DBZ

Go Vi'v) Ik2~cr2~ ~k~k2~ g Go(ki cr1 k3 cr3)~k3 cr3
I VLV I

k2~o'2~
k3, cr3

=5k k [(3 —Vp 5 Gp ( k i
o'

i ', k i
o' „)]

where the diagonality of Go in the k index has been used.
This is the crucial point in the whole theory: The
Fredholm determinant factorizes in the wave-vector index
k. It allows one to obtain the phase shift originated by the
defect.

&Lv(E)=argdet(1 —Go VLiv)

5Lv(E)= g argG0(k, o„;k,o„) .
k E]DBZ

(24)

Therefore the phase shift associated with a LV can be cal-
culated as easily as that corresponding to a single vacancy.
Similarly we may write the potential associated with two
parallel LV, namely

=arg + [1—VoGo(k cr k cr )]
k E1DBZ

arg[1 —VpGp(k o'„'k o'„)],
k E 1DBZ

which yields in the limit Vo~ oo,

(23)

VLv Vo g (Im+1

+
I
n+jR)(n+gR

I
) . (25)

In this case the change in the phase shift due to the in-
teraction between LV is given by

Go(k, o „;k,o '„)Go(k, cr,';k, o „)
65Lv(E) = arg 1—

k G 1DBZ Gp(k cr„;k,o'„)Gp(k o' '„'k o' '„)

where o „and o „' are the origins of the two LV. By introducing this expression in Eq. (15) we may calculate the interac-
tion energy between two parallel LV.

The above formalism can also be applied to the study of dislocations if situations in which the Burgers vectors add to
zero are studied. ' This requisite also applies to the superlattice method, ' but whereas within the present formalism a
finite set of dislocations may be studied, within the superlattice method a periodic repetition of a finite set of dislocations
is solved. As an example of the power of the Green's-function method the phase shift produced by two edge dislocations
along the [100]direction in the simple cubic (sc) lattice and with opposite Burgers vectors is given in an appendix. In this
paper we have not further applied the scattering theoretical method to the study of dislocations.

III. LV IN THE sc LATTICE

In this section we shall present our results for LV in the three main directions of the cubic lattice. We first concentrate
on a single LV. To use the formalism presented in the preceding section, we must calculate the Green s function of the
cubic lattice. A thorough discussion of the properties and the method for calculating the Green's function of the cubic
lattice can be found in Ref. 20. Here we shall briefly discuss a few points relevant to the present work. In particular, we
are interested in calculating the Green s function as a function of the component of the crystal momentum in the direc-
tion of the LV. This can be written as

b i[$2(m2 —n2)+tIt3(rn3 ll3)]

(27)

where p =cik, k being the crystal momentum; note that pi is the component in the direction of the line of vacancies. z
is a+i ri, e being the energy referred to the energy of the s orbital and ri a positive infinitesimal, f' is a function of the
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three components of P, and a;,b;, i =2,3 are the integration limits. The function f and a; and b; actually depend on the
direction we are concerned with. Equation (27) can be rewritten in a more convenient way for the three main directions
of the cubic lattice:

b b i[$2(m& —n2)+$3(m3 jf3)]

G(P), m2, m3, $),ng, n3)= $2f P3 E (b~ )
(28)

f~ ——2hp(cosg&+cosg2) r f2=2hp, b =1, (29)

and the three components of P vary in the following inter-
vals:

where E =z —f~(P~, P2) and B =fz(P~, Pq). Both f ~ and

f2 and the constant b depend on the actual crystal direc-
tion. This double integral can be easily calculated for the
[100] direction (see Chap. 5 of Ref. 20), and for the other
two directions, i.e., [110] and [111],one of the integrals
(P3) can be solved analytically and the other must be
solved numerically.

The values of the different functions and parameters for
the three main directions are as follows. For the [100]
direction we have

I

and

Finally, for the [111]direction the functions are

f~
=2h pcos[(~2/2 —P })/W3]

f2
——4h pcos[(P & +$2/~2) /W3],

b =1/v 2,
and

(31)

—m (pp & ~, m& $3 (—& .

For the (110)direction we obtain

f &

——2hpcosgz, f2 4h pc——os/), b = 1/W2, (30)

—m'/~3 ($) & vr/~3,
—2&2/37r & p& & 2&2/3m,

—~2m & p3 & v 2m .

Here we note that in order to evaluate the P3 integral
analytically we integrate in a rectangular zone larger than
the actual zone (a regular hexagon).

Once we have calculated the Green's functions, the ap-
plication of the formalism described in the preceding sec-
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FIG. 1. (a) Local density of states (normalized to one state
per spin) at a bulk atom in the sc lattice obtained by means of a
one-state (s-like) Hamiltonian. (b) Phase shift per spin [5(E) de-
fined in Eq. (4)] of a bulk vacancy (solid line), and of a LV in the
[100] direction [in this case 5(E) is per spin and per atom]
dashed line) and in the [100] direction (dashed-dotted line). The
energy is referred to the nearest-neighbor interaction h 0.
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FIG. 2. Same as Fig. 1 for a diamond lattice. The dashed
line in (b) corresponds to a LV in the [110]direction.
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FICz. 3. Formation energy (see text) for LV in the main three
directions of the sc lattice as a function of the position of the
Fermi level. All energies are referred to the nearest-neighbor in-
teraction ho.

tion to the present case is straightforward. First we
describe our results for isolated LV. Our results for the
phase shifts per spin for a single vacancy and for LV in
the [100] and [110]directions are shown in Fig. l. In the
case of LV, 5(E) is also normalized to one atom. The
phase shift for a LV in the [111]direction is not shown
for the sake of clarity. We note that although the phase
shift corresponding to LV significantly differs from that
of an isolated vacancy, no qualitative changes are found.
To further illustrate this point, we consider the case of a
more structured lattice, namely, the diamond lattice; again
we use a single-state Hamiltonian. In Fig. 2 we show the
phase shifts corresponding to a single vacancy and a LV in
the direction of the most stable edge dislocation in the lat-
tice, namely the [110] direction. We note that as in the
case of the isolated vacancy, the LV introduce a localized
state in the dip of the density of states at E =0.0 (see Fig.
2), and that both phase shifts are strikingly similar. This
similarity should be a consequence of the nondirectionality
of the s states and does not hold for higher-energy regions,
where a full sp Hamiltonian is needed. ' ' We note that
the result shown in Fig. 2 cannot be compared with those
obtained by other authors by means of much more ela-
borate calculations' ' because the changes in the lower
part of the valence band were not discussed by the previ-
ously mentioned authors.

We return to the sc lattice and consider an aspect of our
results more interesting than the phase shifts shown in
Fig. 1. In Fig. 3 we show the formation energy of the
three main LV in the sc lattice as a function of the posi-
tion in the band of the Fermi level. This energy has been
calculated by obtaining the difference in energy between X
isolated vacancies or the same X vacancies forming a line.
The result is strikingly similar to the interaction energy of
two single vacancies (see Fig. 4 of this paper and Fig. 1 of
Ref. 14); this is a consequence of the very weak interaction
between second-nearest-neighbor vacancies along the three
directions herewith considered (see Ref. 14). On the other
hand, our result points in the same direction as the well-
known fact concerning dislocations in the sc lattice, name-
ly, that the most stable edge dislocation in this lattice has
its line in the [100] direction. ' In fact, our results (see
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FIG. 4. Interaction energy between parallel LV being separat-
ed by lattice vectors (1,1,1), (0,2,0), and (0, 1,0). The interaction
energy between single vacancies separated by the same vectors is
also shown (dashed lines).

Fig. 3) indicate that a vacancy line in the [100] direction is
more stable, no matter how full the band, than in the other
two directions. It must be noted that in absolute terms, no
vacancy line should be stable, and if one is formed
through, say, annihilation of two edge dislocations of op-
posite signs, it should decompose in voids of either spheri-
cal or disk shape.

Finally, we discuss our results for the interaction energy
between LV in the same crystallographic direction. We
concentrate on the most stable direction, namely, the [100]
direction. In Fig. 4 we show our results for LV separated
by three vectors, (O, l, l), (0, 1,0), and (0,2,0). This figure
also shows the results for the interaction between single
vacancies. The most remarkable aspect of this study is
that both the interaction between single vacancies and that
between LV are very similar. Again this seems to be a
consequence of the very low interaction between second-
nearest-neighbor vacancies. Before ending this discussion
we also note that the interaction between LV shows
Friedel oscillations very similar to those shown by the in-
teraction between single vacancies. ' This result should be
a consequence of the rather weak anisotropy of the sc lat-
tice, which leads to a Fermi surface very close to a sphere.
A complete discussion of this point can be found in Ref.
13.

IV. CONCLUDING REMARKS

In this paper, we have extended the scattering theoreti-
cal method, which is being widely used ot handle the prob-
lem of defects in solids as well as surfaces and inter-
faces, ' ' to treat the more complex problem of line de-
fects. We have shown that this method can solve very
easily the case of LV, eliminating the need for superlat-
tices. Although the method can also be used to treat any
other line defect in which the breaking of the crystal sym-
metry is weak, such as lines of divacancies (this case has
been solved in this paper when the interaction between LV
was considered; see also Ref. (15) or sets of dislocations
whose Burgers vectors add to zero (see the Appendix), it
cannot be applied to the case of an isolated dislocation
where a very severe breaking of crystal symmetry takes
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.,(32) .'.(W 2)„,

i x

s electrons. Similar conclusions are found for the dia-
mond lattice with a single s orbital per atom. The study
of the formation energy of the LV has allowed us to con-
clude that the LV in the [100] direction is the most stable;
this result is in agreement with the well-known fact that
the most stable dislocation line in the sc lattice occurs in
the [100]direction.
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FIG. 5. Atomic positions of the atoms on the plane z =0 of a
sc lattice with two edge dislocations parallel to the [001] direc-
tion and with opposite Burgers vectors. The problem-adapted
numeration of the atomic positions is particularly important.
The strength of all the bonds (solid lines) is ho.

place (see also Ref. 19).
We have applied the method to the simplest case, that

of the sc lattice with a single orbital per atom. We have
discussed the very strong similarities between the case of
LV and that of isolated vacancies; this is a direct conse-
quence of the nondirectionality of bonding associated with

I

APPENDIX: DISLOCATIONS IN THE sc LATTICE

As in Sec. III, the Hamiltonian involves one s state per
site and interactions are restricted to nearest neighbors.
The system that we study is shown in Fig. 5; it possesses
two edge dislocations running along the [001] direction
with opposite Burgers vectors, a (1,0,0) and a ( —1,0,0),
respectively. The distance between the dislocations is 4a.

We write the Hamiltonian of the perturbed system using
the problem-adapted notation shown in Fig. 5. The differ-
ence between this Hamiltonian and the Hamiltonian of the
perfect sc lattice is

( —
)
00m3) &Olm3

i
+ i 10rn3&&01m3 I

—
I
10m3&&»m3 I

+
I 2om3 && ™3I

—120m3&&»m~ I

+
~
30m3) &21m3

~

—
~

30m3) &31rn3 +H c ~ ), (A 1)

where only an infinite sum along the direction of the
dislocation appears. Now, the direction of the dislocation
is Fourier-transformed in the way explained in Sec. II.
The Fredholm determinant [Eq. (5)] factorizes in the
mixed representation (see Sec. II), remaining an effective
8X8 block for each wave vector k. The reduced dimen-
sion for each k is a result of the localized nature of the
perturbation V [Eq. (Al)] in the position coordinates of
the plane perpendicular to the dislocation. Finally, the
phase shift is given by

5(E)= g argD (E,k), (A2)
k E1DBZ

where D(E,k) stands for the 8&&8 generic block of the
Fredholm determinant.

The preceding analysis remains valid for more distant
dislocations or for a set of dislocations with Burgers vec-
tors adding to zero. The main difference is only the di-
mension of the pertinent block of the Fredholm deter-
minant. It increases as the complication of the studied
system grows.
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