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Hydrogenic atom in semi-infinite space
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A variational method is developed to determine the recycling function in a Green s-theorem calcu-
lation of the energy levels of a hydrogenic atom in semi-infinite space. It is shown that, with suit-

able choice of the trial wave function, the problem is reduced to an equivalent one-dimensional
eigenvalue problem with eigenvalue bE, the energy shift of the bulk levels. The method can be ap-
plied to any state, and the three lowest energy levels obtained this way are compared with available
existing results. The change of eigenstates as the atom approaches the surface is also discussed.

I. INTRODUCTION

The problem of a hydrogenic atom near a rigid wall is
of great interest in surface physics because it recapitulates
almost all the properties of the Wannier exciton as well as
the shallow states of impurity atoms near the surface. The
problem becomes quickly very complicated and requires
rather sophisticated theoretical treatment if one intends to
include the microscopic structure of the surface. For-
tunately, these microscopic complications have little effect
in most cases when surface states are ignored. As a par-
ticular example, D'Andrea and Del Sole' obtained excel-
lent agreement with experiments in their calculation of the
normal-incidence reflectivity by treating the exciton sim-

ply as a hydrogen atom including the center-of-mass
motion.

For the atom located precisely on the surface of a semi-
infinite medium, the problem was solved exactly by
Levine. Because of the presence of rigid surface, the
boundary condition of the problem allows only n(n —1)/2
states with I+m odd for each principal quantum number
n instead of n states when the atom is in the bulk. He
also found many other interesting conclusions which are
not directly related to the present work.

When the atom is situated inside the medium but not
too far from the surface, it is no longer possible to solve
analytically the Schrodinger equation with the proper
boundary condition. Harper and Hilder made use of the
Green's theorem to recycle the eigenfunction P„t of the
hydrogen atom in the bulk. The shift of energy levels due
to the surface calculated this way, however, were satisfac-
tory only when the atom was not close to the surface. In
fact, when the atom approaches the surface, the energy
levels turn out to be equal to their isotropic values in
violation of the boundary condition.

The situation was significantly improved by Gallardo
and Mattis who introduced the recycling function g(z)
such that the true wave function with surface is given by——X(()„t where (()„t is the hydrogen wave function in
the bulk. By choosing suitable forms of P, they were able
to reproduce the correct energy levels at the surface as ob-
tained by Levine. The most obvious defect is probably
that the energies are not smooth functions of the distance

of the atom from the surface. As a matter of fact, each
energy curve is a result of two intersecting curves. For in-
stance, the ground-state energy consists of E2~0 for small
distances and E~oo for large distances. When these two
curves intersect, they discard the unwanted parts on the
ground of noncrossing energy levels resulting in a kink in
the ground-state energy curve at the intersection. Similar
situations exist in other energy levels. Futhermore, the en-
ergy curves possess positive slope in the neighborhood of
the surface. This, as has been noted by the authors them-
selves, violates the Hellmann-Feynman theorem which re-
quires a negative slope reflecting the repulsive nature of
the surface.

Since the method does not involve any adjustable
parameter, the result depends solely on the choice of the
recycling function g. Therefore, we reformulate the prob-
lem in a way that the energy shift is a functional of the re-
cycling function P which contains a single parameter. We
first minimize the functional to determine the form of the
function g. This variational procedure leads to a one-
dimensional eigenvalue problem with the energy shift as
the eigenvalue. The equivalent one-dimensional potential
energy in this equation has no singularity throughout the
half-space and hence the equation can be solved numeri-
cally for minimum energy shift by adjusting the parame-
ter. Thus we have obtained the energy levels that are free
of all the deficiencies mentioned above at the expense of
introducing one adjustable parameter.

In Sec. II we formulate the problem and show how it is
reduced to an equivalent one-dimensional equation. Sec-
tion III is devoted to the calculation of ground-state ener-

gy and the excited states are treated in Sec. IV. In Sec. V
we give a brief discussion of our results and some related
questions that are of more general nature.

II. FORMULATION OF THE PROBLEM

For an atom whose center of mass is located at (0,0,zo)
in the semi-infinite space, the Schrodinger equation can be
written as

( —V + V)%'(x,y, x) =EV(x,y,z),
with the boundary condition

28 4413 1983 The American Physical Society



4414 ZHENPENG LIU AND D. L. LIN 28

m still is. Hence the recycling function P introduced in (6)
does not change the eigenfunction e' ~ and is therefore a
real function.

Substituting (5) in (1), we obtain

%(x,y, O) =0, (2)

where we have chosen the z axis to be perpendicular to the
surface. While the validity of the boundary condition (2)
is still an open question as has been discussed in great de-
tail by D'Andrea and Del Sole, we nevertheless still as-
sume it here as they did to avoid the excessive complica-
tions due to the microscopic structure of the surface. This
boundary condition has been shown to be correct in the
absence of surface states when a large surface barrier
prevents electron and hole escape from the surface. ' It
has also been derived from the image-potential infinite
barrier that electrons and holes experience approaching
the surface.

In Eq. (1) we have used the atomic units, i.e., the first
Bohr radius ao ——e4 /pe for length and the Rydberg
R =pe /2e A for energy. Accordingly, the potential-
energy operator is given by

2
)
—2[x +y +(z —zo) ] ' 2, z) 0
ao, Z~O.

—2/*V/ VX —1/1 V X=BE
I P I

X,
where AE=E —E' is the correction to energy level caused
by the rigid surface at z=O. Taking the complex conju-
gate of (7) and adding them up, we find

v. (14 I
'v» = ~E

I 4 I

'& .

Integrating (8) over space with the boundary condition (6)
and applying Careen's theorem, we have

fP*V4 dSAE=-
fP*%d r

The image potential caused by the surface has been ig-
nored because its inclusion in addition to (2) has been
shown to yield negligible effect. The corresponding
Schrodinger equation for an atom in full space is

fd'r
I

(t
I

'(Vy)'
&E[X(r )]= d'r

I P I
X

(10)

This is the formula used by Harper and Hilder and by
Csallardo and Mattis to calculate AE by choosing simple

(3) forms of the recycling function P. Instead of (9), we mul-
tiply (8) by 7 and integrate over the half-space to obtain

—V ——P(r) =E'P(r ),r
(4)

%(x,y,z ) =X(x,y, z)P( r ),
and require the boundary condition

with the usual boundary condition that P( r ) =0 as r ~ co.
To find the energy shift due to the rigid wall, we write,

as in Gallardo and Mattis,

where we have made use of the boundary condition (6) to
drop out the integrated term on the left-hand side. It is
not difficult to show that (g) is the Euler equation of (10)
if we regard AE as a functional of the function g. Hence
we can apply the variational method to calculate the ener-

gy change by minimizing the functional b,E in Eq. (10).
We choose the trial function

X=e 'Q(z),

g(x,y, 0)=0 . (6)
where X=A,(zo) is a parameter to be determined by the
minimum value of hE and

Although the rigid wall destroys the spherical symmetry
of the problem, it preserves the symmetry under rotation
about the z axis. This means that the orbital angular
momentum l is no longer a good quantum number while

r=[x +y +(z —zo) ]'~

Substituting (11) into (10) we obtain, after a simple calcu-
lation,

2

+2k(z —zo)f2{z)Q
dzf dz f, (z) A, Q +0 dz

f dz f, (z)Q
(12)

where we have defined

f,{z)=f 1/1 e "dx dy,
2A pf~(z) =f I P I

dx dy .

(13a)

(13b)

I

If we now introduce another function W(z) defined by

Q(z) =f, ' 'W(z), (15)

we can rewrite (14) in the form of a one-dimensional
Schrodinger equation,

r

d dQ
dz dz

df2f2+ {z—zo) Qdz

We are now ready to apply the variational principle to the
functional bE due to changes in the function Q(z), noting
that b,Q =0 at both ends. The standard procedure leads to
the Euler equation,

+U 8'=DE 8'.
dz

(16a)

In order that the solution reproduces the exact form of +
in the limiting cases zo ——0 and zo~oo, we impose the
boundary conditions

W(0) = W( co ) =0 .

+&f&Q=&Ef &Q (14) In (16a), the equivalent potential energy U is given by

(16b)
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III. GROUND STATE

For the ground state, we require that the wave function

+~(('210 as Zo ——O

+~/(00 as zo —+ oo

Thus the parameter A,(zo) in Eq. (11) starts from the value

0at z =0 and changes to zero as z0~oo. The function

Q, on the other hand, must approach to z at z0=0 and
Q~l as zo~oo. Using the hydrogen ground-state wave
function P, oo in (13) we find

—2( 1 —A. )z i 1

2(1 —A, )

—2(1 —A, )zif, =Ae

(19a)

(19b)

where z~ =
~

z —zo
~

and A is just a constant. With f~ and

f2 given by (19) we find from (17) the equivalent potential
energy

1+1,
z i + 1/2(1 —A. )

1

4[z) + 1/2(1 —A, )]

U=1—

(2O)

In Fig. 1, we plot U as a function of z& for the two limit-
ing cases. It is found that in general the potential U has a
minimum at the origin for any finite z0. The minimum
value changes smoothly from —2 to —0.75 when the
atom moves in from infinite to the surface. As z&~co,
U~1 for all A, . It is a smooth continuous function with a
discontinuity in its derivative at the origin. When A, in-
creases from zero, the potential well depth decreases and
at the same time its width increases. Consequently, the
atom provides less binding and the wave function spreads
wider, reflecting the repulsive effect of the wall as the
atom approaches it.

It is a simple matter to verify that when z0 ——0, Eqs. (16)
has exact normalized eigenfunction,

z(z+ 1) / e —/ (21)

with eigenvalue hE =
4 . This implies that the ground-

1state energy of the atom located at the surface is —4, an
exact result. As z0~ 00. Equations (16) also yield the ex-
act solution

1 fr' 1 flU=—
2 fi 4 fi

I

+(z —z, ) +A.', (17)
fi ' fi

where the prime means derivative of the function with
respect to z. The normalization of the wave function 8'is,
from (5), (11),and (15), given by

f ~

e
~

d2r =f dz g fdx dy e

dz

S' dz=1 .
0

i.5

0.5

—I.5

-2
0

z (ao)

FIG. 1. Two limiting cases of the one-dimensional equivalent
potential for the ground state.

gr=(z + ~ )1/2 (22)
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FIG. 2. Variation of the parameter for the ground state as a
function of the distance zo.

with eigenvalue hE =0.
For an arbitrary finite z0, however, the equation has to

be integrated numerically. We look for solutions to Eqs.
(16) with the equivalent potential energy given by (20).
The calculation involves the following steps. We first ad-
just AE for a given k to find 8'(z) which satisfies the
boundary conditions (16b) in a manner similar to that
described in Kramers. ' Then we repeat the procedure by

1

changing the value of A, in the range 0 & I, & —, to obtain
hE as a function of A, . The eigenvalue and corresponding
eigenfunction are determined by the minimum of the
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function AE(k). The parameter A, for ground state deter-
mined by the minimum value of 4E for different zp is
plotted in Fig. 2 as a function of zp and the ground-state
energy calculated this way is shown in Fig. 3 along with
other existing results for comparison. It is observed that
the energy increases smoothly all the way as zp decreases
and approaches the surface with a negative slope as re-
quired by the Hellmann-Feynman theorem.

IV. EXCITED STATES

From the above calculation of the ground state, we ob-
serve that the success of our method depends upon the
fact that the recycling function can be put in the form of
(11). This form of P then leads naturally to the explicit
form of the equivalent potential U in (16) as well as the
exact solution for the limiting cases zp ——0 and zp~ ~. It
turns out that this is often not as simple in the case of ex-
cited states. For a given principal quantum number n,
only n(n —1)/2 states with I+m odd survive as the atom
approaches the surface, all other levels are presumably
squeezed into the continuum. Our method described
above can be applied directly to Levine levels of largest al-
lowed ! m!, namely, m =n —2. For a Levine level speci-
fied by (n, l =n —1, ! m! & n —2), we have to construct a
more complicated trial wave function.

Consider, for example, the first excited state $3~o. One
may try

+gg„(z, r, A, )P„(r ), (25)

—2+*V@ V'X —
! N! V X —XQ&V =b,E!@!X,

where g„(r,z, , A, ) are required to vanish as A, ~O or zo~ ~
on one hand and to recover the Levine state as zp ——0 on
the other. The subscript v stands for the set of quantum
numbers needed to specify the hydrogen wave function
and the summation may run over all the sublevels of the
same m within the (n —1)th shell including P„
Just which states are involved in the sum will depend on
the Levine level in question. The main point is that the
function +„~ reproduces an exact solution on the surface
and in the bulk, and at the same time the parameter P in P
can be expressed in terms of k by means of the expression
(25). It may be pointed out in passing that although levels
of opposite m are still degenerate for all zp as can be seen
from time reversal invariance, they do not mix because of
the symmetry mentioned earlier.

In the following we shall outline how the Green's
theorem method must be modified to accomodate the ex-
tra terms in (25). Equations (1)—(4) remain unchanged.
The P's appearing in (25), being wave functions for the
sublevels within the same shell, all satisfy (4) with the
same energy E'. Hence the substitution of (24) in (1) leads
to, after a little algebra,

qi=XP=e "Q(z)(P+r)e (23) (26)

by introducing another parameter P which assumes the
value 2 for large zp and increases to 6 at zp ——0. Unfor-
tunately, P=(P+r)e "~ is not an eigenstate of the hydro-
gen atom in the bulk and one cannot apply the Green's
theorem method to calculate AE. To resolve this difficul-
ty, we propose

where

0=+(P„V'g„+2VJ„VP„)

!=g V'(gP. )+ E+—
V r

(27)

with

(24) Taking the complex conjugate of (26) and adding to it, one
obtains

V (!0!'VX)+XRe(&Q*)= bEX!q! ', —(28)

0 where Re means the real part of a complex function.
Multiplying (28) by X and integrating over the half-space,
one finds

-0.2—
-0.25

-0.4

J[!@! (V'X) —X Re(+Q*)]d'r
AE= f ! 4!~X~rl3r

(29)

-0.8

—l.O'
0 0.4

l

0,8 l.2 I.6 2.0

where use has been made of Green's theorem as well as the
boundary condition (6). Again one can show without dif-
ficulty that (28) is the Euler equation of the functional
(29).

Using the definition (11), one then applies the variation-
al principle to the functional b,E by varying the funtion Q
with AQ =0 at both ends. This yields

d dQ d 2fi + ~'fi —~ fr+(z zo)—
dz dz dz

FIG. 3. Comparison of the ground-state energy calculated in
this work with those obtained by Gallardo and Mattis (GM) and
by Harper and Hilder (HH). The dotted line indicates that part
discarded in GM.

=BEf,Q, (30)

where f& and fz are given by (13) with P replaced by 4
and f3 is defined by
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f3 ——f e "Re(40')dx dy . (31) gz, o
—k(7 —18K,)r j(z —zo) . (34)

The equivalent one-dimensional equation (16) follows
directly if one uses (15) with the equivalent potential ener-

gy operator given by

With the definition (11),our trial function is then

4=e "Q(z)4 . (35)

1 fI'U=-
2fi 4 fi

fz f'z f3+(z —zp) — +&fi fi fi
Thus we choose, for the first excited state,

42OO+02l04210= [2—( 1 —7k+ 18K, )r]e

(32)

(33)

It can readily be verified that 4' reduces to the exact wave
function at the surface and in the bulk if the parameter A,

varies from —,
' at zp ——0 and decreases to zero as zp~ oo,

while the function Q(z) behaves like z at the surface and
approaches a constant as zp~oo. The equivalent poten-
tial energy can be calculated from (32) by evaluating the
f 's with the function N given by (33). The calculation is
tedious but straightforward and the result is

2
1 F' K 1U= —— ——+— (36)
4 F F 4 '

where where F' is the first derivative with respect to z
~

and

3 1 + 13k,—54K p 2( 1 —14K +.135k, —612K, +972k )
1

(1 2A, )(1 7~+18A2) 1

(1 2~)2(1 7A, +18A2)2

2(1 —14k, +135k, —612k, +972k, )

(1—2A. )'(1 —7A, + 18k,')'

(
3 g) Q 2(2+ &—&A, —36K,') 2( 1 +6k)( 1 —3K+ A,

' —36K,'+ 108K, )

(1 —2k)(1 —7A, +18k, ) (1—2A, ) (1 —7A, +18k, )

l

(37)

(38)

'p=&pz&i =e "Q«)Aii (39)

which recovers the exact solution at zp ——0 if A, = 6 and

Q=z. Thus A, increases from zero to —, as the atom ap-

proaches the surface from infinity. The equivalent one-
dimensional potential energy is again of the form of (36)
with

Substituting (36) in (16) and remembering (15), we have
the equivalent one-dimensional equation which can then
be solved numerically for AE.

The next state that survives at the surfaces is P3q~. The
trail wave function is

1 K 1 F'
U =

4

2

(42)

where F and E are determined by the wave function 4
through the f 's as we have illustrated in the above two
cases. The equivalent potentials U4 for levels in the next
shell have been worked out but numerical calculation has
not been performed because of the lack of practical in-
terest.

V. DISCUSSION

We have applied variational principle to determine the
recycling function in the Green's-theorem method for ca1-

and

3z) 3F=zi+
1 —2A, (1 —2A)

(40)

E=(1+2k,)z, + 1+6K
2(1—2A, )

(41)
-0.05-

The procedure of numerical calculation of the energy
shift AE is the same as in the case of the ground state.
We plot the first two excited-state energies vs zp in Fig. 4
and the variation of the parameter X as a function of zp is
plotted in Fig. 5 for these two states. It should be noted
that states with m and —m are still degenerate in the pres-
ence of the surface. Hence a single curve corresponds to
m =+1 in these figures.

Energy levels of any arbitrary excited states can be cal-
culated by this method in a straightforward way. The
algebra may become more involved as one goes to higher
levels but remains elementary. In fact, the one-
dimensional equivalent potential-energy operator corre-
sponding to any Levine state with principal quantum
number n is given by

-O.IO-
—I/O

CL

w -O.i5

-0.20

-0.25
0 2

zo(go)

FIG. 4. Energy of the first excited state. Note that the de-
generacy is partially lifted by the surface.
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O. IO

0.05

0

0( 0

FIG. 5. Parameter A, for the first two excited states.

culating the energy shift of a hydrogenic atom caused by
the surface. All energy levels can be calculated as a func-
tion of distance of the atom from the surface. They are all
continuous smooth curves giving exact energies at both
ends. It appears in general that the bulk state P„
changes gradually into the Levine state P„t as the atom
reaches the surface. Physically one might think that the
influence of the surface on the wave function would not be
so severe in the xy plane as in the z direction that the
number of peaks of the probability distribution would not
change.

Recently, Lee and Mei" developed a perturbation

method using pseudopotential technique to calculate the
energy shift for zo greater than the atomic radius in the
state under consideration and found that states in the con-
tinuum contribute significantly to the bound state in ques-
tion as the atom moves toward the surface. However,
nothing can be said about the change in wave function as
zo decreases further.

Since l+m is odd for all Levine states, all the bulk
states with I+m odd must disappear near the surface.
They are presumably pushed into the continuum as has
been pointed out by Gallardo and Mattis who have also
given an argument to discuss the level crossing when zo is
small. To our knowledge, there is no theory up to this
time that predicts when and how these states disappear
into the continuum. We have, however, tried to trace the
state $2~p numerically from large zp toward the surface.
As we have discussed previously, for a fixed zo the eigen-
value AE of Eq. (16) is determined by the value of k
which minimizes AE. This can be done until zo-4.
When zo (4, no extremum AE was found for all physical-
ly allowed A, . Since the probability

~ Pz&p ~

peaks at
around z~ ——z —zo-4, it is not unreasonable to conclude
that the bulk states with l+m odd start to disappear as
the atom approaches to a distance zo of the order of the
atomic radius in that state.
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