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Effective two-dimensional Hamiltonian at surfaces
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By means of decimation techniques as applied in the renormalization-group method, a
new method is proposed to obtain the effective interactions for two-dimensional Hamiltoni-
ans at surfaces. The method has been applied to a simplified model of a transition metal
and to Si. For the transition metal we recover well-known results as regards the general

properties of the surface density of states, while for Si our results show that an effective
two-dimensional Hamiltonian can be introduced along the line proposed by several authors,
but with energy-dependent parameters.

where co is the energy and LI the Hamiltonian writ-
ten in a given basis. Projecting Eq. (1) onto the two
subspaces d and R associated with the dangling
bonds we are interested in and with the rest of the
whole space respectively, we obtain the following
equations:

( ciMd H dd )G dd + ( H dR )G Rd L dd

I Rd )G dd+(tu RR H RR )G Rd —Rd

By eliminating G Rd Eqs. (2) yield

(~—dd ~ dd X dd)G dd —dd

where the self-energy, X dd, is given by

Xdd Z dR(toI RR H RR ) LI Rd

(2)

(3)

(4)

I. INTRODUCTION
In the last few years there has been a widespread

interest in two-dimensional Hamiltonian models
directed to the understanding of the mechanisms
driving different semiconductor reconstructions. '

The purpose of this approach is to circumvent the
computational difficulties associated with a calcula-
tion of the whole three-dimensional structure. ' In
particular, simple two-dimensional Hamiltonians for
Si surfaces have been proposed within a tight-
binding approach, by introducing a nearest-neighbor
interaction adjusted to give the appropriate disper-
sion relation for the surface band.

A very general discussion of two-dimensional ef-
fective Hamiltonians within a tight-binding ap-
proach can be given following the procedure of
Lohez et al. Consider the matrix equation for the
Green function G:

(coI H)G =I, —

Equation (3) looks like a two-dimensional Hamil-
tonian with effective interactions defined by the dif-
ferent Hamiltonian components LI dd, H dR, and
HRR. The complex effective interaction, Xdd, is
dependent on the energy co, a fact introducing insur-
mountable problems for using Eq. (3) unless this to

dependence is small or negligible within the region
of interest. As a matter of fact that is what is ex-
pected to happen for the dangling-bond surface
states of Si in the region of the optical gap.

The main purpose of this paper is to analyze the
behavior of Xdd for Si(111) surface, by means of a
numerical procedure explained in Sec. II. By exten-
sion, we apply this procedure to the case of a simpli-
fied transition-metal surface and discuss the effec-
tive interactions for its reduced effective Hamiltoni-
an.

In our procedure we introduce a small variance
over the general method given above. Instead of
working with the Green function in the real space,
in a first step we work with a fixed momentum
parallel to the surface (a. ), and look for the self-
energy in the subspace of interest. This gives us
X(~,co) instead of X(R—R';co); in a second step,
X(R—R', co) [or Xdd(co) in the previous notation] is
obtained by an appropriate Fourier analysis.

In Sec. II we discuss the procedure used to obtain
the self-energy. In Sec. III we present our results for
the surface of a simplifed model of a transition met-
al and for a Si(111) face. A final discussion of these
results is also given in Sec. III.

II. METHOD

In this section we start with Eq. (1) for the Green
function G, and write it in an appropriate basis
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which we assume to be defined for our surface by a
layer number m, an orbital index a, and a momen-
tum ~, parallel to the surface, belonging to the first
Brillouin zone (BZ) of our two-dimensional surface
lattice. Let us use a to denote the number of in-
dependent orbitals in each layer.

In this representation, a matrix element of, say,
the Green function G, takes the foriii G ~ (a. ).
In the following, instead of using this notation we
shall write G (~). or G ~ (a. dependence un-
derstood), in such a way that an element (a,a') of

the matrix G (a. ) is G ~ (x. ).
Now, we write Eq. (1) for G in this representation

by taking the elements (am, a'0) as follows:

coG p
—gH G ~ p ——5 0 . (5)

Let us now assume that the interaction between or-
bitals extend up to second-neighbor layers; with this
particular case we try to show how to generalize the
procedure to long-distance interactions. Then, Eq.
(5) can be explicitly written as follows:

(~L O, OH 0,0)G 0,0 H 0, 1G 1,0 H 0,2G 2,0

H 1 pG o—,o+ (col 1 1 H 1 1—)G l, o H 1 2G 2 o —H 1 3G 3 o ——0,
H 2,0G 0,0 H 2, 1G 1,0+ (~I 2, 2 H 2, 2)G 2,0 H 2, 3G 3,0 H 2,4G 4,0 0

Hm m 2—G m —2,0 Hm, m —1G m —10+(01 Hm, m)Gm, o Hm, m+lG m+1, 0 Hm m+2Gm+2 p=0,

(6a)

(6b)

(6c)

(6d)

where the different interactions between layers m and m' are given by H, and use has been made of the
fact that interactions extend only up to second-neighbor layers. It is convenient to remark at this point that a
layer, in the language used here, may be built up by several "crystal layers"; the number of crystal layers form-
ing a layer is given by that number allowing us to write Hamiltonian (1), well inside the bulk, in the folln
given by Eq. (6d).

For an ideal structure, we have

and

H =H(m —m')

H 13(m —m') =H~@ (m' m) . —

(7a)

(7b)

For simplicity we limit our discussion to the case in which for the third layer [Eq. (6c)) we recover the gen-
eral equation (6d). (In our second-neighbor approximation, this implies an ideal unrelaxed surface. ) A more
general ease can be readily obtained. For the case of an ideal unrelaxed surface, Eq. (7a) can be used for all the
matrix elements H ~ appearing in Eqs. (6).

In the literature, these equations have been solved by the transfer-matrix method, "by reducing them to a
finite system by taking a slab, ' or by other methods. In our procedure, we have followed decimation tech-
niques as applied in the renormalization-group method. ' The advantages of our procedure are its quick con-
vergence and its saving of computer time.

It is now convenient to rewrite Eqs. (6) in the following way:

coI H(0) H(1) G—p
—
p —H(2) 0 —2,0G

H(1) coI H(0) —G 1 0—H(1) H(2) G 3,o

—H(2) H(1) G 2 0—coI H(0)—H(1) G— m+2, 00 G
+0 —H(2) G 10 H(1) coI H(0)

i
—G—H(1) —H(2) 6 m—+3,o

r2 m —2+ m+rl m+2 (10b)

for m even, or equivalently, with an obvious nota-
tion,

I
rV90+~$2= 0

In these equations, 0,2,4, . . . , are the numbers as-
sociated to the different superlayers formed by the
layers (0, 1), (2,3), (4,5), and so on. Note that the
number of layers defined inside each superlayer is
related to the order of the interaction (second order
here). According to decimation techniques, we
proceed in successive steps by eliminating the even
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Green functions associated to superlayers
2,6,10, . . . , in Eqs. (10). Thus in a first step we
consider the following equations:

S 2= —W '(~2% p+~ IS 4),

&6———W I(~29'4+r19'8)

(12a)

(12b)
~28' I}+W9'2+~ I 8 4 ——0,
~28 4+ W9 6+~ 19 8=O,

Z 2 S 8+ WX lp+ Tl $ 12=0 ~

and write

(11a)

(1 lb)

(11c)

S Ip
———W '(~2Ã 8+~ 1% I2) . (12c)

Now these equations are used to eliminate
S 2, S b,

9' Ip, . . . , from Eqs. (1Q). This procedure
yields

(W r I W—'~2)9' p
—(~ I W '~ I)W 4 ——

Q r (13a)

2W ~22)Xp+( W Z2W 2 I ZI W ~22)%4 (ZIW r I)X8 Q

(Z2W Z2)X4+( W Z2W Zl 2 IW Z2)X8 (Z IW ZI)X 12 9 '

(13b)

(13c)

These equations coincide with Eqs. (10) by an ap-
propriate renoi-inalization of the different matrices.
Thus with the following definitions:

W,' = W ~ I W—
Wb = W —r I W 'r2 ~2W

(14a)

(14b)

(14c)

(14d)

we recover foririally Eqs. (10) with new renoririal-
ized parameters. For instance, ~1 and rz measure
the effective interaction between renoi-irialized su-
perlayers 0 and 4, 4 and 8, and so on, while
( W —~ I W '~2) can be defined as the effective
matrix of (ro H) for la—yer 0 and
(W—~ I W 'r2 r2W 'r I)—the same effective ma-
trix for superlayers 4, 8, . . . .

Now, the procedure can be iterated, and at any
step, say p, we obtain the following matrices as a
function of the ones obtained in step (p —1):
W(P} W(P —I } 1P

—I}(Wg(
—I})—I Ig

—I }

Wg(} W(g —I } 1P
—I}(W(g —I})—I

g(

—I }

(jr-I}t W(g-1})-1 I(-I}

1P} (P
—I })W g(

—I }]—I (P
—I }

Iy} g(

—I }~W g(

—I }~
—I (g

—I }

(15a)

(15b)

(15c)

(15d)

Note that for the second step, r I and r2 give(2) (2) ~

the effective interaction between renormalized su-
perlayers 0 and 8, 8 and 16, and so on, while r'I '

and ~2 ' measure the effective interaction for super-
layers 0 and 16, 16 and 32, etc. In general, after p
steps, r'P' and ~g' give the effective interaction be-
tween superlayers 0 and 2&+', having renormalized
out 21' superlayers. This is the important point of
the procedure followed in this paper, since the num-

ber of renoriiialized superlayers grows with an ex-
ponential power of the number of steps. On the oth-
er hand, we can expect both r 'P' and r g} to decrease,
for any value of co, with the increasing number of
steps; this is a conclusion that can be reached on
physical grounds by noting that the effective in-
teraction between superlayers must be small when
they are far apart. Let us assume that, after pp

(po) (po)
steps, r I and ~2 are negligible. Then, Eqs. (13)
reduce to

(po) I
W', Sp —— 0 (16a)

(16b)(2'
(po) (po)It is obvious from Eqs. (15) that when r I and v2

are small enough, a new step produces no change on
(po)

the values of W, and W b, the physical meaning
of this result is clear: the surface and bulk super-

(p, )
layers are practically decoupled. Then, W, and

'o'
Wb give the effective matrices of (ro H), for the-
surface and bulk superlayers, respectively.

In practical terms, ~'I ' and ~2 ' become small as a
function of the chosen degree of accuracy for our ef-

(po)fective Hamiltonians. Accordingly, we neglect w I
(po)

and ~2 when, for step (pp+1), the differences be-
(po) (po)

tween the values of every term of W, (or Wb )
(po+ &)

and W, (or W b ) are smaller than a given
number, for any frequency. This is equivalent to say
that, to a given accuracy, a slab of 2 superlayers is
large enough to decouple both surfaces. Note that
our results, after pp steps, are equivalent to the ones
given by the matrix-transfer method after 2 ' steps.

(po) (po)
and Wb give the effective Hamiltonians

for the isolated surface and bulk superlayers, respec-
tively, and allows us to obtain, for instance, the den-
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sity of states not only for the surface but for the
(po)

bulk, too. As regards W, ', this matrix gives an ef-
fective Hamiltonian in a basis which includes not
only the dangling-bond orbital, but the 2a orbitals
associated to the last two layers. A final step must
be given if we are interested in obtaining the effec-
tive two-dimensional Hamiltonian associated, say, to
the dangling bonds of a Si(111) face. In this case,
we eliminate from Eq. (16a) all the terms associated
to G o 0 and G ~ 0, except those related to the
dangling-bond orbital. For the case of Si(111) (see
below), this amounts to renormalizing out seven or-
bitals of the last surface layer. This final step gives
(coI ~q Hgfgf ff—) where H gfgf ff is the effective Hamil-
tonian associated to the dangling-bond orbitals, for a
given momentum x parallel to the surface. Once
that H ~~,r((a, ro) has been obtained, we get the ef-
fective interactions for the dangling bonds by means
of the following equation:

H dd, f8ru R) gH jg, off(~, ~)e
BZ

III. RESULTS: TRANSITION METALS
AND Si

In this section we apply the method given above
to getting the effective two-dimensional Hamiltoni-
an for the surfaces of a simplified model of transi-
tion metal and Si.

A. Transition metal

In this case, we consider a (111) surface of a sim-
plified transition metal with only two hybridized
bands (s and d), and a fcc structure. For this model
we follow Harrison, ' and define the transition-
metal structure by means of the following parame-

FIG. 2. Same as in Fig. 1 for the d band.

ters (measured in eV):

e, =O, e~ ———3

V„=—1, V,g
———0.2, Vgg

———0.25,

where e, and e~ are the mean levels for the s and d
bands, and V„, V,&, and V~& are the interaction
parameters for the different first-neighbor orbitals.
In this model we neglect second-neighbor and fur-
ther interactions.

With this simple first-neighbor interaction model,
we can simplify the analysis given in Sec. II. In par-
ticular, instead of defining superlayers by two layers,
we can now identify a superlayer with a layer and
even with a "crystal layer. " This allows us to reduce
the dimensions of the matrix Careen function, 9', to
the number of orbitals per atom, namely, two. In

(po) (po)
the same way, W, and W & reduce to square
matrices of 2&&2, giving the effective Hamiltonians
for the surface and the bulk layers. The first matrix
defines the effective surface Hamiltonian we are
looking for.

One word of caution must be put here. As is well
known, in all the matrix-transfer methods a finite
broadening must be introduced in the energy in or-
der to get meaningful results. This amounts to sub-
stituting ru by co+i 5, where 5 is a quantity related to

ImGss
{eV-')

I I I 7.5
u (eVj -1.5

FIG. 1. Bulk (dashed line) and the surface (full line)

density of states (m 'Imo ) for the s band of a simplified
model of transition metal (see text).

FIG. 3. Real (full line) and imaginary (dashed line}
values of e, as a function of co, for the surface of a simpli-
fied model of transition metal.
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0

C.5

FIG. 4. Same as in Fig. 3 for ed [5ed =ed(co)+ 3 eV].

the degree of accuracy accepted for the calculation.
In our case, we have taken 5=0.05 eV, in such a
way that the accuracy of our results can be expected
to be better than 0.1 eV. On the other hand, in or-

(Po&
der to get the same accuracy in the matrices 8',g

~ ~ ~

and Wb, we have to give six steps (po ——6). Fmal-
ly, Eq. (17) has been applied to the present case by
taking 45 points in the irreducible part of the two-
dimensional BZ.'

We show our results in Figs. 1 —6. In Fig. 1 (arid
Fig. 2) we give the surface and bulk density of states
for the s (and d) band. Note the small narrowing of
the surface density of states, a well-known effect. '

In Figs. 3 —5 we give the effective values of 6„6g,
and V„as a function of co. Note the changes ap-
pearing in the effective interaction V„; they are not
greater than 30%%uo, and their effect is to decrease the
absolute value of V„ inside the band, this fact being
related to the narrowing of the surface density of
states.

Another interesting fact of our results is that the
effective interactions for second (and further) neigh-
bors are rather small. This is shown in Fig. 6, where
V„ is drawn as a function of co for first, second,
third, and fourth neighbors.

The general conclusion of our results for the sim-
plified model of transition metal we have analyzed,
is that the effective interactions for the surface layer
are not far from the ideal bulk interactions. This
suggests that even a monolayer of a metal may qual-
itatively reproduce properties of the surface of a

-1.0—

],5 I i i j i i i i i i i i i i & i i i & & i i & c g x i i i s I i s s j s « i & s

-15 ~rt V)

FIG. 6. Same as in Fig. 3 for the first-, second-, third-,
and fourth-neighbor interactions (only the real part has
been shown).

semi-infinite crystal. In particular, we can expect
the height barrier of a metal-semiconductor junction
to be practically formed with only a metal mono-
layer.

PA

ho (pQ)

Q5 i

/
, ~ ~ J

,r/ f .Q' ~ p
I I

ta c
. u(cg)

8
-o.i

I
I

FIG. 5. Same as in Fig. 3 for V„[5V„=V„(co)+1 eV].

FIG. 7. Real part of the effective hybrid level e and the
effective interaction t between dangling bonds up to the
fourth neighbor for the Si(111)face.
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B. Si(111)surface

For Si we have considered the 111 surface of a
tight-binding model with Koster-Slater parameters,
having interactions between the different orbitals ex-
tending up to second neighbors. In this case, we
have defined a layer by two "crystal layers, "with in-
teractions extending up to nearest-neighbors layers.
Other details of interest are the following: 6 (see
Sec. III A) has been taken to be 0.05 eV; the number
of steps to get convergence has again been six and
the number of points used in the irreducible two-
dimensional BZ has been 45 as well.

The main results of our calculation are given in
Fig. 7, where we show the real part of the effective
hybrid level e, and the effective interactions between
dangling bonds extending up to the fourth neighbor.
The important result is that the interactions for the
second —and further —neighbors are negligible (as
well as all the imaginary components not given in
the figure) in the region around the main gap. Our
results show that an effective two-dimensional Ham-

iltonian with only two parameters, e and t „ is a
good approximation for analyzing the surface band.
However, these two parameters cannot be taken as
constants. According to our analysis, an appropriate
two-dimensional Hamiltonian for the Si(111)surface
must include in the parameters e and t& at least a
linear dependence on co. Note that the values given
in Fig. 7 are consistent with a surface band located
just below the valence-band edge e, in good agree-
ment with the results of Pandey and Phillips' (the
hybrid sp level is around 1.3 eV below e„). We
stress that the two-dimensional effective Hamiltoni-
an is only useful near the main gap; for instance,
surface resonances could be only analyzed in prac-
tice by means of the whole three-dimensional de-
cimation technique.
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