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A new exact closed-form expression is given for the random-phase-approximation longi-

tudinal polarizability function of a two-dimensional electron gas in a magnetic field. De-

tailed approximations are given for several limiting cases. Static screening and the nonre-

tarded plasmon dispersion relation are examined in detail.

I. INTRODUCTION

The purpose of this paper is to present a tractable
formulation of the longitudinal dielectric screening
properties of a two- (or three-) dimensional (2D or
3D) electron gas in a static uniform magnetic field.
A preliminary report of this analysis was presented
in Ref. 1(a) and the development of these results will
be fully explained here along with a discussion of
some of their physical ramifications. The longitudi-
nal dielectric screening properties of a 2D quantum
plasma have been investigated before; specifically by
Chiu and Quinn" ' and Haring et al.

Chiu and Quinn obtained the complete magneto-
polarizability tensor for the system by solving the
linearized equation of motion for the density matrix
in the random-phase approximation (RPA). In their
notation this paper is concerned only with the com-
ponent X» of this tensor. Their expression for this
quantity (in the zero-temperature limit) is

X»(q, co) =—
2 2('+I»»

rnci)q 0
Q2 OO Q2

,J.'(x)„a2—n2

J (X)—M—'x ax. ~
where A=co/co„X =qvF/to, and

m.c ( —1)'cos(2vrl g/co, )5=
l2m.g t

(we have set A'=1 and g is the chemical potential).
Chiu and Quinn in their treatment emphasize tem-
perature high enough that the oscillatory term in 5
is negligible and values of the field such that only
one of the pole terms need be retained, so they can
approximate the carrespanding Bessel functian ap-

propriately to the long- and short-wavelength limits
in discussing the properties of the magnetoplasmon
spectrum.

Horing et al. have studied the quantity X»,
which in their notation is —(e /k )ImI, by solving
the RPA integral equation for the longitudinal
dynamic nonlocal inverse dielectric function. They
then present a variety of series expansions appropri-
ate to low wave numbers. In particular, they obtain
various representations for the oscillatory terms
neglected by Chiu and Quinn. '" Horing and Yildiz
go on to apply their results to the plasmon disper-
sion relation in the nonretarded limit, look at the de
Haas —van Alphen (dHvA) structure of the oscilla-
tor strengths for the Bernstein resonances, and study
static screening in the high-field quantum limit.

Our aim in this paper is to replace the infinite
summations in the work of Chiu and Quinn and
Horing and Yildiz by exact closed-form expressions
in terms of a simple integral over a finite range.
These expressions are valid for all values of the
field, wave number, frequency, and temperature.
They have the advantage of isolating the cyclotron
resonance and dHvA oscillatory behavior, have sim-

ple expressions in the local and low-frequency lim-
its, which reproduce the results of Chiu and Quinn
and Horing and Yildiz, and are numerically tract-
able for other ranges of the parameters.

The starting point for the calculation is essentially
Eq. (22) of Horing and Yildiz, but to make the pa-
per more self-contained we start off in Sec. II with a
brief derivation of this result. In Sec. III we show
how Horing and Yildiz's integrals can be performed
exactly and show how this leads directly to
Maldague's finite-temperature generalization of
Stern's polarizability formula in the zero-field lim-
it. In Sec. IV we perform the manipulation required
to obtain the desired integral representation. In Sec.
V we present various limits for the polarizability,
along with some numerical results for the case
where up to four Landau levels are occupied. We
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also examine the plasmon spectrum in the nonre-
tarded limit and static screening in this case.

Although the concern of this paper is the 2D
magnetoplasma, our method applies equally well for
the 3D system, and for comparison, the two cases
have been presented in parallel.

local disturbance U(2):

V(1)= f K(1,2)U(2) .

For a medium described by the Hamiltonian A, K
is the theririodyinamic average with respect to the
canonical weight function

II. FORMALISM p(A )=e ~ =e (2)

The methodology adopted is that of Martin and
Schwinger. It was first noted by Matsubara that
the canonical density matrix is formally equivalent
to the quantum-mechanical time-evolution operator
if time is identified with imaginary temperature.
Hence standard field-theoretic techniques can be
used if the results can be analytically continued
from the real- to the imaginary-time axis. The
analysis of the longitudinal magnetoplasma dielec-
tric properties in terms of thermodynamic Careen's
functions has been carried out by Horing and we
shall rely, when possible, on his results. The inverse
dielectric function K(1,2) [n denotes a space-time
point (r„,t„)] is defined in terms of the effective po-
tential V(1) at point 1 in a medium due to a weak

which can be viewed as the translation operator
through the imaginary-time interval ~= iP—T.he
necessary averages with respect to p(A ) have period
r, so that the equation for K can be referred to the
"time" interval [0,v.]. For spatial and temporal
homogeneity we have

I( (1,2)=K(ri —rz, t, —ti),
and as a consequence of this periodicity we can per-
foiiri a Fourier analysis and write

v even

This then leads to the spectral representation

2~(2, ——2, ) k(p, co+) k(p, co )
p, t& tz =— t) tz+— e . +

21T e
—EEOC ] e 1 CC)7

or, in terms of the spectral weight function

A (p, co) =i [k(p, co+) —k (p, co )],

K(p, ti —ti) = 5(t) tz)—
dCO iru(&) —&2) ~ de 1 $7+ e,—~cot ~ —cu' p, co'
27T 2& co —co 2

where

k(p, z)=1+ f 2& Z —Q)
(8)

5U(2)

This provides the necessary analytic continuation
since the integral in (8) is analytic off the real z axis
and vanishes as

~

z
~

~(2(2 in the upper and lower
half-planes. Martin and Schwinger have shown that
the physical value of K ( r; t) is the Fourier
transform of k(p, co+).

Now, from (1),

V(1)= U(1)

1 3V r] r3 ] f3 t3 r3 t3+ (10)

However, by the Schwinger variational principle,

56i(3,3+) = Gi(2, 2+)Gi(3, 3+)

where 6„ is the n-particle Green's function. Thus,
from (9),

56i(3,3+)
K(1,2)=5(1,2) —1 f U(1 —3)

5U(2)

and for two-body interactions with potential U ( r ), —Gp(3 2 3+ 2+) . (12)
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Therefore,

K(1,2) = 5(1,2)

+1 U 1 —3 p 3,2 3 2

K(1,2) = 5(1,2)

—i J f v(1 —3)G', (3,a)

&&6', (4, 3+)K(4,2) . (16)
—Gi(2, 2+)Gi(3, 3+)] .

(13)
The RPA is obtained by introducing a Hartree
decoupling of the two-particle Green's function

(The superscript 0 denotes the absence of interac-
tions. ) This is the RPA integral equation for the in-
verse dielectric response function. Because of spa-
tial homogeneity, (16) can be solved by Fourier
transforms and we obtain

Gq(3, 2;3+,2+)=6 i(3,3+)Gi(2,2+),
56'(1, 1')

5V(2)
=6 i(1,2)6 i(2, 1'),

in which case (11) becomes

(14) k ( p, v) = [1+iu ( p )I ( p, v)]
where

7I (
~

) dt i (, m—v/r))t
p, v

or

K(1,2) = 5(1,2)

56, (3,3+) 5V(4)
5V(4) 5U(2)

(15)

X ) q —~ ] q —p ~

(2~)
(18)

(d is the dimensionality). Finally, after carrying
through the analytic continuation described above,
we obtain the RPA dielectric function

767
e(p, tu)=[K(p, co+)] '=1 —u(p)ImI p, +iu ( p )ReI p,

The analytic properties of the retarded and advanced Green s functions for the noninteracting electron gas al-
low us to distort the t contour to run along the real-time axis, so (18) can be written

+
V CO

p~ qe$qpe (20)

The Green's functions for two and three dimensions have been evaluated by Horing and Horing and Yildiz.
From their results we have, for 2D,

+
ImI p,

ao c +I ao dS, ttt Q) cue~=2i co' 0 co' — e ' cot
2ui 4w 2

te '' exp0 2m toe

1

cos[ —,co, (2t is) ]——cosh(co, s /2)
sinh(tu, s /2)

—(t ~—t) (0&c &1) (21)

and, for 3D,

~SCO 8 3/2 —1 m
1/2

mco,

tanh(
z co,s)1

2

dt e '"' exp — [(2t is) +s ]—
0 Sms

cos [co,(2t ——is)] —cosh(
~

co,s)1 1

&( exp
2m cu, sinh(co, s /2)

(i ~ i)— —
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[co, =
~

eH
~

/mc &0 is the cyclotron frequency, p, (pI) is the component of p parallel (perpendicular) to the
magnetic field H]. This is all that is required to get Re@=1+X(p,co), where p is the polarizability. The ima-
ginary part of e can be found similarly, or by a Kronig-Kramers analysis. We shall render the complicated ex-
pressions (21) and (22) relatively simply by making several integral transformations.

III. SEPARATION OF THERMAL AND DYNAMIC EFFECTS:
ZERO-FIELD LIMIT

First the co integration in (21) and (22) can be eliminated by noting that

CO 0 CO' e'" = (23)

where fo(co) =(1+e~' ~') is the Fermi function, and g is the chemical potential. The next step is the elim-
ination of the s integral. Consider

—Xcoih(as) C) '+' d~ sse-- 2. . .. 2'iTl slnlTS

e
—A. cothas

(24)

This integral is an inverse two-sided Laplace transform and can be evaluated by the convolution theorem. We
note'

~

~

C+ico
ts

27Tl Sln ITS
sech ( —,t)

1 2 1

4~
(25)

aI1Cl

c + i c() d+ e —A, cothas

~

~

~

ts

c —i~ S

e "L~ (2A, ), t &2an

—,e [L„ I(2A, )+L„(2A,)], t =2an (26)

(27)
6 (2A, ) =L (2A, )+2L"' I (2A, ),

and m = [u /2a], where L„' ' denotes an associated Laguerre polynomial. Therefore, since

where m = [t/2a] (greatest integer less than or equal to t/2a) and L„ is the Laguerre polynomial of order n.
Therefore, from the convolution theorem and the differential properties of the Laguerre polynomials,

I c= J sech —, (c —c)G (2).),4~

—,@sech [ —,P(g —u)] =—Bfo(u)
(28)

we have, for 2D,

Re@(p,al) =1+ 2m' e 2

du
p 0

c)fo(u)
dte ' 'sin

Bu 0 2m c(1
Sina~ct eXp — (1—COSa~ct)

p'
2m ')c

)(, G[agc0 j (1—COSCOct)
p'

m Cuc
(29)

We emphasize that (29) is exact within the RPA—no additional approximations have been made. To establish
some degree of confidence in our procedures we shall take the zero-field limit in (29) and recover Stern s for-
mula. '

As co, ~0 we can make the replacements sine(1, t~c(I, t and 1 cosco, t~—, c(I,t, and take advanta—ge of the
uniforiil asymptotic estimate

n L ' —-x J (2x' ) (30)
n



28 LONGITUDINAL DIELECTRIC BEHAVIOR OF A TWO-. . .

to obtain

G(„&„) (1 —cosco, t) =Jo(2ptv'u/2m)+
p' 2&2m /u J)(2ptV'u/2m)[u/co, ] .

mt' pt
(31)

Then, since

lim x [a /x) =a lim [x]/x =a,
x —+0

we have
n

2(2m) e' „, ~foX' (p, co)= yy cos u t sin z t, t
p 0 (jy 0

where

(33)

u'= v'g/y, z'= V'g/y .
pkF 2kF

Now, by combining the trigonometric functions in the integrand of (33) and using Ref. 10, we have

cos u't sin z't
&

t = —, z'+u', + z' —u' (34)

where

It( )= g [~ ~

—(
' —1)' 'e(~

~

—1)].
Hence

(2m) ~ e
p, co p'

(3&)

x j, dyy'" ~f0 I2z' —sgn(z'+u')6(
~

z'+u'
~

—1)[(z'+u')' —1]'~'
y

—sgn(z' —u')6(
~

z' —u' —1)[(z'—u') —1]'~
I . (36)

This is precisely Maldague's finite-temperature form of Stern's expression.

IV. SEPARATION OF CYCLOTRON RESONANCE —BERNSTEIN POLE BEHAVIOR

Next consider the integral
OO

T= dt e '"'sin(a sint)P(cost) .
0 (37)

By decomposing the range of integration into segments of length 2m and taking advantage of periodicity we
find on summing a simple geometric series,

T=csc(trx) f dt sin(xt)sin(c sist)P( —cost) . (38)
0

Hence (29) can be expressed

2

X (p to)= csc
2me

p Cuc
t sin

COc

2 2

sin sint exp — ( 1+cost)
2m coc m coc

X I, —dn
"~f0 p'
G(„i ) (1+cost)

u c mcoq
(39)

which is again exact within the RPA. This forn~ula displays in a concise way all the features we expect of the
polarizibility. The factor csc(neo/co, ), which has a pole whenever the frequency is a multiple of co„ is an as-
pect of cyclotron-resonance —Bernstein pole behavior. The integral contains all other magnetic field and
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thermal behavior. The latter is relatively uninteresting and can be treated within the Sommerfeld approxima-
tion. In the zero-temperature limit, which corresponds to Bfo/Bu = —5(u —g), the expression becomes mani-
festly nonanalytic at co, =0, as was discussed in a preliminary report of this work. "

In the 3D case the integral corresponding to (24) is

a + ds s'"e"
L, 3 ———

a). f' —' 2ni sinns

In addition to (25), we have'

—A, cothas
e

—y/s e
(40)

c+i~ S ~t ' 'cOS 2 t, t~0S ts 1 /2 y/
C l~ 2~) Q~ t (Q

so by the convolution theorem

cos2+y{u —y)du sech [ , (t —u)]—dy G( )(2g)
4 3/2 0 Vu —y

and consequently,

(4l)

(42)

Ree ( p, co ) —l =—4', m e3/2 2
~ pi ~c t +p i Slnh) c t2 2

dt cos(cot)sin exp
2m Q)c

2
px

( I cosco—,t)
2mmc

2

( I —Cost2iq t)
px

4'i~, l
mesc

r)fo ~ cos[2p, tV {u —y)/2m ]fX du dy
0 Bu &u —y

(43)

In this case thecal effects are of no consequence and can be adequately treated in the Sommeeeld approxima
tion, which leads to corrections of order (ks T/g) . At T =0 K the corresponding polarizability is

r

2' (p, ee)= —G'ee. 1 nos)ees)dee J sin e„si
0

a —
(,+i/to~ )(1—cosco t)

S1nco, t e
c

where

2ai
( I —cosco, t)Xcos(2a li

ting

—y )G„
~c

(44)

3/2 2 p
2 2

G = 2, all —— , ai—,pii
—[y/ill~]

~p 2m 2m

Note that in this case because of the additional t dependence associated with all, we cannot proceed as before
to isolate a cyclotron resonance factor. Since X has been completely analyzed for all field strengths '3'4 we
shall not dwell on (44), but go directly to consider the field dependence of X D. Similar formulas for the com-
plete magnetoconductivity tensor have been presented by Horing et al. '5 (without derivation).

V. DISCUSSIGN: LIMITS OF SPECIAL INTEREST

The quantity g(p, co) calculated in this paper is 2vrpX~~(p, co) in the notation of Chiu and Quinn" ' and
—(2me /p)ImI in the notation of Horing and Yildiz. We shall first present approximate foiias easily derived
from (39) in various limiting cases.

A. dHYA regime

At field strengths for which g,p /2m ))t2i„and temperatures small compared to the Feririi temperature, we
note that the integrand in (39) is negligible except near t =0, so that

2me
X (p, co) —= — csc e G)„i )(2x) j dssin 671

sin(x sint),
COc
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where x =p /2mtt1, . Now, by Fejer's formula, ' which is uniformly valid for large n and all x & 0,
a/2

e "L„' '(2x)- (2nx)
1T 2x

cos 2V'2nx —(2a+ 1)—
4

(46)

sin(1r/co, )(ru p2/—2m )

co —p /2m2

At intermediate fields where g/tt1, »1 we can make the approximation [u/co, ]=ulcc, . (This effectively
prevents taking the low-field limit where the Landau level spacing becomes so small that phase averaging must
be used, leading to [ultt1, ]=u/co, + —,.) This merely smooths out the dHvA forms, which are sharp only at
T =0 K anyway, and gives

' 1/2
2

Q)c sin(7T/co~ )(co+p /2m)
X (p, co) = —me csc

&P COc tt1+p /2m

X u u-'/4
0 Bu

cos
2 v'u/m ——
COc 4

+ (2&mu /p)sin 2p &u /m— (47)

Finally, at T =0 K, in terms of the standard dimensionless quantities z =p/2kF, u =men/pkF, and 2) =g/co„
we have

X (p co)=—
p

me csc('trtt1/tt1c ) sin[4vrz21(u —z)]
25/4 1/2 3/2 Q —Z

sin[4vrz21(u +z)]
u +z

r

z cos 2 zg ——+2 siI1 2 zg ——
4

(48)

which displays clearly the separation of cyclotron resonance and dHvA behavior.

B. High-field limit

This limit has been thoroughly treated by Horing et al. ,
' so we shall simply show how (39) leads to their re-

sults. First of all, we emphasize that for the 2D case, when other limits are to be taken, the zero-temperature
limit should be taken last. Thus we first set G(„& l

——1, then the u integral gives the factor f (0). Following
C

Ref. 17 we also introduce the quantity A, =p /2m', . Then the t integral can be written
r

—Im dt sin
0 COc

( —A, )"
e s' = —g f dt sin(nt)sin

n! Ct)c

= —Cg S111 (
2 2 2) —1

Cuc =0

Hence (39) becomes C. Local limit

X' (P,ai)=—2m ence
2

f (0)e
For low wave number (39) can be evaluated expli-

citly, whence we find

ntt gn n tt1

X ~ —n con=1 ' . c

Finally, noting that from (23), f(0)=( 21'/mtt)1n„
where n, is the areal density, we exactly reproduce
Eq. (16) of Ref. 17.

2

X' (p, co)=-
CO —6)c

x f, (2[u /co, ]+ I ) .
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This exhibits a structure similar to that observed in
the Hall conductivity' and suggests that screening
effects in metal-oxide-semiconductor inversion
layers may possess plateaus as a function of gate

)

voltage (which produces a continuous variation in

D. Zero-frequency limit

From (39) we have

2p7l8 2

X (p 0)= I'~
7Tp 2' co

20»

15»

C) 10»
CL

a
CU

T
0.2

l
'I

(H=

/

/id=;

I

I

I

5»
I

/

ft

0~(
1$

0.0
T

0.4 0.6 0.8

where

N =[//to, ], T =0 K, (52)

Fz (a ) = t sin(a sint )e "'+' "'
0

P

FIG. 2. Zero-frequency dielectric susceptibility P2 (p)
for values of the magnetic field. Units where
%=2m = l, e =2 are used and the (zero-field) chemical
potential has been arbitrarily set at /=0. 1.

X G~ [2a ( 1+cost) ]dt . (53)

The behavior of these expressions for high fields is
indicated in Fig. 1.

The behavior of X (p, Q) is shown in Fig. 2 for
strong magnetic fields. With respect to the units
Pi=2m = l, e =2, we have arbitrarily set /=0. 1

with to, =0, —,g, g, and 5$. It appears that the mag-
netic field suppresses the low wave-number singular-
ity in the polarizability and the singularity at
p =2kF. However, the discrete nature of the Lan-
dau levels introduces a small amount of structure on
the high momentum side of the maximum. It is
clear that the polarizability converges to its zero-
field value nonuniformly as the field tends to zero.
The effect of the field on the potential induced by a
point charge is to enhance the screening at large dis-
tances.

The effect of a magnetic field on the screening of

a point charge has been thoroughly discussed by
Horing and Yildiz. In the high-field quantum limit
they estimated the screened potential of a point
charge by using a low wave-number approximation
of the zero-frequency dielectric function. As an ap-
plication of (52) we have calculated this potential
numerically for the case co, =5/, /=0. 1; the results
are shown in Table I and Fig. 3, where we also
present the screened potential in the near quantum
limit, where the two lowest Landau levels are occu-
pied (co, =g;/=0. 1).

TABLE I. Screened potential of a unit point charge.
V(1): Exact value for high-field quantum limit ~, =5(.
V(2): Local screening approximation of Horing and Yil-
dlz.

2»

I '

I

/

l'
/s

f
I,'

fl ~

li i
fs i

(t t

r -= = ra=:s

N= 1

0 ~
0

FIG. l. Behavior of the function E„(a) introduced in
Eq. (53).

0.4
0.8
1.0
4.0
8.0

12.0
16.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

V(1)

2.149 55
0.902 94
0.671 63
0.151 89
0.10928
0.076 77
0.059 41
0.048 29
0.032 78
0.024 75
0.019 86
0.016 54
0.01421
0.01243
0.01103
0.009 88

V(2)

0.627 47
0.474 33
0.432 80
0.188 65
0.110 15
0.077 54
0.059 67
0.048 42
0.032 81
0.024 77
0.019 88
0.016 59
0.014 25
0.01247
0.01109
0.009 98
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VI. PLASMON DISPERSION RELATION

4395

We conclude with a discussion of the local nonretarded plasmon mode. In units where A'=2m = l, e2

=2, the 2D plasmon dispersion relation is

ec+(2/+st a)csc(ttfl) 1 dt sin( hatt) sin( asi st)e ''+' "'G„[2a(i~cost)]=0, (54)

where ep is the ambient dielectric constant and

ep ——[2/(ro, a)'~ ](0 —1) 'G„(0), (56)

and for n =0, the high-field quantum limit, we re-
cover precisely Horing and Yildiz*s result (with
ep ——1),

cp =rp~ +2@rp~

(noting that the quantity p in their formula is
2~co, /m in this limit). However, for high to inter-
mediate fields, (54) is numerically very tractable. In
Table II we present the plasmon mode for n =0, 1,2,
i.e., where up to three Landau levels are occupied.
These values were obtained on a desk calculator
(HP-67) in less than an hour. If a computer is used,
n (50 or even higher, which is a region that has
hitherto been inaccessible, should present no prob-
lem. We note from Table II that the exact plasmon
dispersion relation deviates from the local limit (57)

p
7

c

In the local limit, if n is not too large, we can ex-
pand the integrand in powers of a. The integrals are
then elementary and we obtain Chiu and Quinn's
wave-vector expansion. The leading term gives

beginning with relatively small values of the wave
number. For lower values of the magnetic field, G„
in the integrand of (55) can be replaced by its uni-
forrlt asymptotic value and the results go into
Stern's zero-field expression as shown in (30)—(36).

In addition to the local plasmon, (54) has nonlocal
roots, but since these are of little interest in the
nonretarded limit we shall not consider them fur-
ther. In summary, we have presented the develop-
ment of a new exact relatively simple closed-form
expression for the RPA polarizability of a 2D elec-
tron gas from which one cannot only recover the ap-
proximations presently in the literature, but also ob-
tain with relative ease results for experimentally ac-
cessible field values which have not yet been investi-
gated.
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TABLE II. Plasrnon dispersion relation for /=0. 1: (a)
co, =0.5, (b) co, =0.1, (c) co, =0.05. Reduced units are
used where Pi=2m =1, e =2, a=p'/cu„O, =co/~, . HY,
which represents Horing and Yildiz, denotes the results of
Ref. 2.

6»
CC

0 4-

2»

T T T T f T T T T $ T T T T 'f T T T T

0.0 0.5 1.0 1.5 2.0

FICx. 3. Screened potential due to a unit point charge.
Vo(R): High-field quantum limit. Vi(R): Lowest two
Landau levels occupied.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.15
0.20
0.30
0.40
0.50
0.60

1.00
1.13
1.18
1.21
1.24
1.26
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