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Density-functional theory of the surface tension of simple liquid metals
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A general density-functional formalism for an inhomogeneous liquid metal is described. The free
energy is expressed in terms of two densities: electronic and ionic. In the limit of small spatial densi-

ty variations of arbitrary wave number, the electron density can be eliminated exactly and the free
energy expressed as a functional of the ionic density alone, although the electronic degrees of free-
dom are still implicitly present. This formalism is applied within the gradient approximation to cal-
culate the surface tension and surface widths of a number of simple liquid metals. The free-energy
density is evaluated within the structural expansion in conjunction with a hard-sphere variational ap-
proximation to treat the liquid structure, and the gradient coefficient is calculated using a mean-
spherical-like approximation to estimate the direct correlation function. This first-principles calcu-
lation thus has as input only a parameter describing the pseudopotential and the bulk liquid density.
Results for the surface tension of the alkali metals are in excellent agreement with experiment. The
temperature derivative of the surface tension is calculated to within a factor of 3 of experiment and
probably within experimental error bars. Results for Al and Zn lead to a surface tension which is
considerably larger than experiment. Surface widths are in all instances computed to be quite nar-
row but in reasonable agreement with available experiment. It is argued that discrepancies for the
polyvalent metals arise not from the theory itself but rather from difficulty in calculating parameters
of the theory from first principles. To verify this, a simple scaling form for surface tension is pro-
posed, motivated by the density-functional theory but in which the relevant parameters are estimated
in terms of the liquid density and melting temperature. Agreement with experiment for the scaling
expression is at least as good as existing empirical expressions. Finally, a formalism is described
which permits, in principle, calculation of both the electronic and ionic singlet density near the liquid
surface. Both one-body and two-body forces are obtained, although no numerical evaluations of
these are presented. The possible relevance of these to liquid surface structure is briefly discussed.

I. INTRODUCTION

The surface properties of liquid metals are of interest
for a number of reasons, both fundamental and technolog-
ical. Since they are simple liquids (in the sense of having a
structure dominated by two-body central forces), 1iquid
metals might be predicted to behave in their surface prop-
erties very much like simple nonmetallic liquids, such as
liquid Ar. On the other hand, because they are metals,
their surface tensions might be expected to be very similar
to the surface energies of solid metals; this is often as-
sumed in solid-state calculations, in which zero-
temperature surface energies are compared to extrapolated
liquid-state surface tensions. Because electrons in solid
metals are known to be strongly perturbed by surfaces, the
same might be anticipated in liquid metals. Thus the con-
ventional linear-response theory which is used to treat
electrons in bulk free-electron liquid metals' might be
predicted to work poorly at liquid-metal surfaces. Even
worse, from the point of view of any perturbation theory
that might be applied, a liquid-metal surface is actually
the boundary between a metallic liquid and a nonmetallic
vapor, and a good theory of the surface must at least con-
sider the possibility of a metal-nonmetal transition at the
surface.

From a practical point of view, surface-tension forces

are of importance in many applications involving liquid
metals. In the low-gravity environment of space, for ex-
ample, where gravity-driven convection is minimized, so-
called Marangoni convection, due to surface-tension gra-
dients, becomes important. The driving force for this pro-
cess is the derivative of the surface tension with respect to
any physical quantity (temperature, concentration) which
may be varying parallel to the surface. Because such
derivatives are very difficult to measure accurately, any
theory which can shed light on these gradients, either for
specific metals or for liquid metals generally, may be use-
ful.

In the past few years a number of theorists have
developed new approaches to liquid-metal surfaces, among
them Evans and collaborators, Hasegawa and Watabe,
O'Evelyn and Rice, and Mon and Stroud. Most of these
have tended to be generalizations of the original work of
Lang and Kohn on solid metal surfaces, but suitably
modified to apply to liquids, and they have achieved vary-
ing degrees of success when applied to liquid surfaces.

The present paper is an attempt to approach the prob-
lem from a slightly different point of view —namely, by
generalizing a simple theory of classical fluids which has
proven successful when applied to Ar and similar materi-
als. The method to be used is a variant of a classical
density-functional formalism introduced by Ebner, Saam,
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II. FORMALISM

A. Reduction to a quasi-one-component
inhomogeneous fluid

A liquid metal with a surface is intrinsically inhomo-
geneous: The electronic and ionic number densities n, (x)
and n;(x ) vary in a (presumably) continuous way from the
high-density liquid metallic side to the low-density
nonmetallic vapor. Thus in order to understand the ther-
modynamics of the liquid-metal surface one requires a
model for the free energy of an inhomogeneous liquid
metal. Such a model is made possible by a theorem of
Hohenberg and Kohn. For present purposes, the theorem
states that the Helmholtz free energy I' of an inhomogene-
ous liquid metal is a unique functional of the electronic
and ionic number densities

F =F[n, (x),n;(x), T] . (2.l)

and Stroud in 1976. This method was previously used, in
a very simple phenomenological form, by Mon and
Stroud to calculate with success both the surface tension
and surface widths of a number of simple liquid metals.
The present work takes a similar approach but calculates
all the input parameters (except for the bulk liquid densi-
ty) from first principles instead of fitting them to experi-
ments, as was done by Mon and Stroud. Our results for
the surface tensions of the alkali metals prove to be within
a few percent of experiment. Agreement for the
polyvalent metals studied (Al and Zn) is not good, for
reasons to be discussed below. The surface widths in all
cases are found to be quite narrow, in agreement with pre-
vious calculations by other workers by quite different
techniques, but in disagreement with Mon and Stroud. In
the case for which a temperature derivative was calculated
(Na) agreement with experiment is reasonable, although
the error bars for experiment are so substantial as to make
quantitative comparison impossible.

We turn now to the body of the paper. Section II gives
a derivation of the necessary formalism. In particular, it
shows how a two-component inhomogeneous electron-ion
fluid (i.e., an inhomogeneous liquid metal) can be sys-
tematically reduced to a one-component inhomogeneous
fluid. This derivation provides the proof that, in the weak
pseudopotential approximation, the electronic degrees of
freedom can be integrated out and the inhomogeneous
liquid metal reduced to an inhomogeneous one-component
fluid with effective interactions. Section III presents the
application of the formalism to a number of liquid metals
and gives some empirical rules for estimating surface ten-
sions and derivatives of surface tensions, as deduced from
these results. At the end of Sec. III contact is made with
the better known solid-metal surface electronic density-
functional calculations and the differences in approach are
discussed. A more complex formalism is outlined in Sec.
IV, in a form which treats the electronic and ionic densi-
ties as independent variables, but no numerical applica-
tions are presented here. Finally, a brief discussion fol-
lows in Sec. V.

The theorem also states that the system chooses densities
n; ( x ) and n, ( x ) so as to minimize the functional F, con-
sistent with any given boundary conditions. Here n;(x)
and n, (x) are the ensemble-averaged number densities and
for our purposes the appropriate ensemble will usually be
one of fixed T and pressure I', suitable for describing a
liquid phase in equilibrium with its vapor.

The form of the functional I' is not known in general.
However, for weakly inhomogeneous systems in which n;
and n, vary by only small amounts (but with arbitrary
wave vector), it may be expanded in a Taylor series

where 5n~=n (x)—n, and a,P are indices which run
over the two constituents (electrons and ions), the kernels

G~p depend only on the difference x —x' because of the
homogeneity of the reference system, and they also depend
implicitly on n„n;, and T.

Following Hohenberg and Kohn and Ebner, Saam, and
Stroud, we can relate the kernels G p to the density
response functions for a uniform reference system by ima-
gining the two-component liquid metal to be subjected to a
fictitious external potential. This potential adds to the
free energy (2.2) a term of the form

2
H'= g f dx5n (x)V'"'(x) .

a=1
(2.3)

The true density profile is then obtained by minimizing
the sum of (2.2) and (2.3) with respect to 5n (x). The re-
sult is

2

5n~(q)= —g I[G(q)] 'I pVp"'( —q) .
P=l

(2.4)

Here the various quantities in (2.4) are Fourier transforms
defined by

5n (q)= f dx 5n (x)e'q'",

V~(q)= f dx V~(x)e'"'", (2.5)

6 p(q)= f dx 6 p(x)e'q

and G denotes the matrix inverse of G(q). Comparing
(2.4) with the usual definition of density-density response
functions or susceptibilities, we see that

G p(x)= — f dq e 'q'" [[X(q)] 'I p, (2.6)
(2m)

where X(q) is the 2&&2 susceptibility matrix of the cou-
pled electron-ion system.

Although (2.2) and (2.6) are exact as they stand (in the
limit of small 5n; and 5n, ), they are of limited utility be-
cause of the difficulty in calculating the three partial sus-
ceptibilities involved in the inhomogeneous terms. The
form of the functional simplifies considerably, however, if

F=Fo[n„n;, T]
2 2

f f dxdx'6 p(x —x')5n (x)5np(x'),
~=1 P=1

(2.2)
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we carry out the variational minimization to solve for 6n,
in terms of 5n; (physically motivated by the adiabatic ap-
proximation) thereby expressing the free energy in terms
of the ionic density alone. We rewrite (2.2) as

F =Fp+ g [G„(q)
~
5n, (q)

~2Q
q&0

+ [G„.(q)5n, (q)5n;*(q)+c.c. ]

"conduction" or "core" group. It is thus valid in both the
metallic liquid and the nonmetallic vapor on either side of
the interface.

B. Alternate forms of the density-functiona1
gradient expansion

The result (2.9) can be rewritten in a form which makes
it more readily extended to liquids which are Uery nonuni-
form, We first rearrange the terms in (2.9) as

+G;;(q)
~
5n;(q)

~

(2.7)

where 0 is the volume of the system. Minimizing (2.7)
with respect to 5n;(q) gives an expression for 5n,

F= f f(n)dx
——,

' f d x d x'G, tt(x —x') [5n (x)—5n (x')]2

+ -,
' f d x d x'G, tt(x —x') [5n (x)] (2.12)

G;;(q)
5n, (q) = — 5n;(q)

G„(q)
(2.8)

with an equivalent expression for 5n,'(q). Substitution of
(2.8) back into (2.7) gives (using the fact that the various
coefficients G are all real)

where f (n ) is the Helmholtz free energy of the liquid per
unit volume at density n, 5n(x)=n(x) —n, and we have

suppressed the subscript denoting ionic density. The first
integral in (2.12), of course, is simply the uniform free en-

ergy F0 written out in terms of a free-energy density.
Next using the relationship"

F=Fp+ g G tt(q)
~

5n;(q)
~2Q,

q&0

2

G,tt =G;; —— = —[X;;(q) ]6„

(2.9)

G,tt(r) = k~ TC (r—), (2.13)

where C(r) is the direct correlation function whose
Fourier transform is defined in Eq. (2.11), and the
compressibility sum rule

n;
X;;(q)= — S(q),

B
(2.10)

where n; is the ionic density as before. It can also be relat-
ed to the so-called direct correlation function C(r), de-
fined by'

where we have used the relation (2.6) to connect the ma-

trix elements of G to those of 7.
The result (2.9) has a very simple and appealing inter-

pretation. It states that, at least for weakly inhomogene-
ous two-component fluids such as liquid metals, the
second component (the electrons) can be eliminated in
favor of the first (the ions) and the free energy can be ex-
pressed exactly as a functional of the ionic density alone.
This is the analog for inhomogeneous liquid metals of the
usual method of treating homogeneous metals, whereby
the electronic degrees of freedom are systematically elim-
inated from the description of the fluid. ' Note that the
electrons are still implicitly present in the functional (2.9)
in two places: the uniform free energy Fp and the
response function X;;(q). Fp has, as is well known, a large
electron-gas contribution. For a classical ionic fluid,
P;;(q) is related to the ionic structure factor S(q) by'

S(q =0)=[1—nC(0)]

kBT=nkB TKT ——

n(B flBn )r„
(2.14)

where KT is the isothermal compressibility, we can rewrite
(2.12) in the form

F= n+—1 df
Bn

[n(x) —n] dx

+ —,k&T f dxdx'C(x —x';n)[n(x) —n(x')]

(2.15)

Finally, we observe that the quantity in large square
brackets represents the first two terms in a Taylor series
for f(n ( x ) ), the free energy per unit volume of a liquid of
ionic density n ( x ). Thus to this order we obtain the result
of Ebner et al. for a one-component fluid:

F[n(x)]= f f(n(x))dx

+ ,'k~T f dx dx'C(—x x';n)—

[1—n;C(q)] '=S(q) . (2.11)
)& [n ( x ) —n( x')] (2.16)

The structure factor, although it describes correlations be-
tween ionic positions, is still very sensitive to the electrons.
These electrons screen the ions and thereby help to deter-
mine the ion-ion forces which, in turn, control X;;(q).
Note also that the result (2.9) does not depend on any par-
ticular categorization of electrons as belonging to the

which was previously used by a number of workers to
treat insulating fluids and is here shown to be correct also
for metallic fluids, through second order in the density
fluctuations n(x) ri-

Although (2.16) is not exact beyond second order in the
density fluctuations 5n(x), it is reasonable to assume that
this form may still be approximately valid when the fluc-
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k~T
K(n)= f C(r;n)r dx .

12

(2.17a)

(2.17b)

This is the form which has been used in the calculations to
be presented below. It is exact to second order in the den-
sity fluctuations, in the limit of an ionic density which is
slowly varying in space on a scale set by the variations in
C(r;n) We. shall present numerical evidence below that
the gradient expansion whose first terms are represented
by (2.17) does indeed converge for most liquid metals:
This stands in contrast to the analogous expansion for a
quantum fluid such as an electron gas at T =0, for which
the convergence is dubious; see the discussion at the end of
Sec. III.

C. Relation to surface tension

Given a method for calculating the free energy of an in-
homogeneous fluid, it is a short step to write an expression
for the surface tension of the liquid in equilibrium with its
vapor. For a liquid in equilibrium with its vapor at pres-
sure P, temperature T, the relevant thermodynamic poten-
tial to be minimized is the "grand free energy"

Q[n(x)]=F[ (nx)] —p, f n(x)dx, (2.18)

where p is the chemical potential for the ions. The sur-
face tension is the extra grand free energy per unit area
due to the presence of the surface. If we use form (2.17)
for the Helmholtz free-energy functional and assume a
planar surface, the integral form for the surface tension is

f [f(n (z)) /Jn (z)+P]dz—
2

+ Xnz dz,
00 dz

(2.19)

while if the full nonlocal functional (2.16) is used the last
term in (2.19) is replaced by the term

f dz f dz'H (z —z', n )[n (z) n(z')], (2.—20a)

H(z;n)= kgT f pdpC[(p +—z )' ], (2.20b)

and n is some suitable intermediate density. Expression
(2.20) results from partially integrating the nonlocal term
in (2.16) for a planar surface, assuming n depends only on

tuations are larger, as at a surface. In that case the kernel
K(r —r ';n) in the interaction term [the second integral in
(2.16)] must be evaluated at some suitable intermediate
value of density n. Calculations carried out in Ref. 7 indi-
cate that for any reasonable choice of n the surface tension
and width remain little modified, at least for insulating
fluids.

If the density n(x) is sufficiently slowly varying, the
nonlocal second term in (2.16) can be expanded in a Taylor
series and the result expressed in terms of the density gra-
dient:

E[n(x)]= f f(n(x))dx+ f K(n(x))
~

Vn~ 'dx,

the z coordinate and that C(r —r ') depends only on the
difference

~

r —r '
~, as will be the case for an isotropic

fluid. In the present work, the gradient form [Eq. (2.19)]
has been used for all calculations. As may be seen it de-
fines a variationa/ princip/e for the surface tension: z is
the minimum value of the right-hand side of (2.19) over
all possible values of the function n (z) consistent with the
boundary conditions. The boundary conditions for a pla-
nar surface are, of course (taking the vapor phase to fill
the half-space z & 0),

n —+1lI (z~+ oo ),
n~n„(z~ —a) ),

(2.21)

where nI, n„represent the equilibrium densities of the uni-

form liquid and vapor phases at temperature T, pressure
P. The corresponding function n (z) which minimizes
(2.19) represents the equilibrium surface profile within this
formalism. In general, the minimization of (2.19) must be
done numerically, although for special forms of the func-
tion f /J, n +P—an analytic solution is available. The
minimization condition can be written as a Schrodinger-
type differential equation, but in practice this form is
probably not of greater utility than the original integral
fol m.

Two further points about (2.19) are in order. The pres-
sure P is present in the equation, of course, because the
asymptotic form of the grand potential far from the sur-
face in both the liquid and vapor phases is —P, which
must be subtracted to give the extra free energy due to the
surface. Also, in this as in other previous formulas, we
have suppressed the temperature dependence of the func-
tions f and K.

III. RESULTS

We next apply the preceding formalism to the surfaces
of several simple (i.e., nearly-free-electron) liquid metals.
We first describe microscopic calculations within the gra-
dient formalism, and then analyze the results from the
point of view of a simple scaling argument which leads to
an empirical relationship between the surface properties of
liquid metals and various bulk parameters.

A. Microscopic calculations

The gradient expression for the surface tension [Eq.
(2.19)] relates w to two density-dependent bulk properties
of a uniform metallic fluid: the free-energy density f (n, T)
and the direct correlation function C(r;n, T). Both of
these, in principle, must be computed as a function of den-
sity, at densities ranging between those of the uniform
liquid metal and that of the uniform vapor in equilibrium.
Since this is a density range over which a metal-nonmetal
transition occurs, it will naturally be very difficult to con-
struct a theory for f and C which treats both limiting den-
sities correctly. %'e have therefore sidestepped this prob-
lem by using an approach which is appropriate in the me-
tallic limit. The justification for this is basically intuitive:
One expects the surface properties of the liquid to be dom-
inated by the metallic regime, since the vapor (at tempera-
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tures near the triple point) is of very low density. For this
reason, for all of the numerical calculations below we have
taken the vapor density n, to be zero.

For the free-energy density f (n, T) we use the structural
expansion as described, for example, by Ashcroft and
Stroud. ' Within this approach the Helmholtz free energy
per ion, F(n, T) =f (n, T)/n, is given as

F:EMad +Egg +EBs +E0+ 2 kg T

—T(S;'."„' +S';."„+S„,) . (3.1)

Here EM,d is the Madelung energy, E,g the kinetic, ex-
change, and correlation energy of the conduction-electron
gas, EBs the so-called band-structure energy evaluated to(2)

second order in the electron-ion pseudopotential, E0 the
Hartree energy, —,

'
kz T the kinetic energy per ion, S;',„" the

ideal-gas contribution to the ionic entropy, S,',"„ the excess
ionic entropy, and S,~, the electronic entropy. The
Madelung term in Eq. (3.1) may be evaluated analytically
if the liquid structure factor is taken to be that of a hard-
sphere fluid, as given by the Percus-Yevick approxima-
tion. The resulting expression for EM,d is (in hartrees per
ion)

3Z ~ 1 —g/5+g /10
EMad

r, /a0 1+2' (3.2)

E,g ——Z —„(kFao)—3
(kFao)

4m.

1
I's+ ——O. 115+O.O31ln

2 a0
(3.3)

EBs ———(kFao) dx cos (2kFr, x)(2) 2

0

1
X —1 SpvHs(2kFox)

e(2kFx)

Eo
~cE0 =27TZ tl ion ~ 0

2 . 3

a0

2
(3.4)

(3.5)

and

where q is the hard-sphere packing fraction, equal to the
volume fraction of the fluid occupied by the hard-sphere
reference system, Z is the valence, r, is the usual electron
density parameter defined by n, =(4m/3r, ) ', and ao is
the Bohr radius. Similarly,

In the above formulas, kF is the Fermi wave vector of the
conduction-electron gas [given by kF ——(3n. n;,„Z)' ],
M/m is the ratio of the ionic to electronic masses, r, is
the empty-core radius defining the electron-ion pseudopo-
tential, e(2kpx) is the dielectric function of the interacting
electron gas' (x =k/2kF), and SpYHs(k) is the Percus-
Yevick hard-sphere structure factor at wave vector k. The
band-structure energy and E0 are computed assuming an
Ashcroft empty-core pseudopotential

Vp(k) = — cos(kr, ),4~Ze
k

(3.9)

where r, is the empty-core radius. Since E0 depends on
the behavior of the pseudopotential at small values (it is
the k~o limit of the difference between the pseudo-
Coulomb and bare Coulomb potential), while EBs is dom-
inated by wave vectors near the first peak of the structure
factor, the same value of r, may not be appropriate for
evaluating these two terms. We have used, in fact, dif-
ferent values, as indicated by the superscript on the value
employed in E0. The ionic excess entropy 5,',"„is evaluat-
ed for a fluid of hard spheres of packing fraction g, as cal-
culated from the so-called compressibility equation of
state. '

In the present calculations the core radius r, appearing
in the band-structure energy was obtained from fits to
Fermi-surface or liquid-state transport data. The Hartree

Eo
core radius r, was regarded as a constant to be fixed by
requiring that the total free energy have a minimum in the
liquid metallic state at the observed melting density. '

Table I indicates that the values obtained in this way for a
variety of simple liquid metals differ by less than 15%
from the values of r, used in E&s.

The free energy (3.1), evaluated with hard-sphere distri-
bution functions, is actually an upper bound to the true
free energy of the liquid metal. ' We have determined g
variationally, at each value of n; „and T, by minimizing F
with respect to it. For six values of n;,„/n~; (=q1.0, 0.8,
0.5, 0.2, 0.1, and 0.01), g was determined in this way (nt, q

being the density of bulk liquid) and Lagrange interpola-
tion was then used to calculate g (n;,„) for a continuous
range 0(n;,„/nb„~k ( 1.

The other quantity required for the surface tension is
the gradient term in (2.19), which presupposes knowledge
of the direct correlation function C(r). Following Mon
and Stroud, we have used the approximation

a 1 M
(e2/ao) 2m m

—ln(n;, „ao)+—',

(3.6)

CpYHs(r ~n ), r & o
C(r;n)= '

PV;;(r;n), r ~o, — (3.10)

S =—1—ex
ion 2

1 +ln(1 —g),
(1—g)

2kgT
TS,), ———

2 (kFao) (e /ao)

(3.7)

(3.8)

p= (kg T) ', Cpv(Hrs; n)is the Percus- Yevick
hard-sphere direct correlation function at ionic density n,
and V;;(r;n) is the effective (i.e., screened) ion-ion interac-
tion. For the present choice of the pseudopotential'
V;; (r; n) is just the Fourier transform of
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o. is the hard-sphere diameter appropriate to density n,
and we have determined this by the simple prescription

V;;(o ) = —,k~ T, (3.12)

where 0. is now the distance of closest approach of two in-
teracting ions, inasmuch as o. is then the classical turning
point for a thermal kinetic energy 2 kz T. The scheme em-
bodied in (3.10) thus accounts, albeit roughly, for both
short-range hard-core and long-range correlations.

The evaluation of the integral (2.17b) required for the
gradient coefficient is somewhat delicate. The reason is
that in the presence of the metallic screening V„(r) will
exhibit Friedel oscillations and decay only as 1 lr Since.
the ion-ion pair potential is available analytically in k
space, however, the contribution of the tail to the gradient
coefficient is readily expressed as

E'„li (n ) = — q dq V;; (q)6~

X lim f dr r q sin(qr)e
p~o 0' qr

(3.13)

The r-space integral is easily done, the limit p~O is well
behaved, and the tail contribution to K' is readily found
by this procedure. The core contribution from r(o is
easily obtained in closed analytic form using the Percus-
Yevick hard-sphere direct correlation function. The only
remaining input is the ionic chemical potential p. This is
simply the free energy per ion deep in the bulk of the
liquid since the pressure P =0 by comparison with I'.

The surface tension is now obtained from the functional
(2.19) as

r= f dz Q(n (z) }+K'(n,„)f dz

(3.14)

n;,„(z)= 2 (ni+n„)+ ,
'

(ni n„)t—anh(—rz) . (3.15)

When this form is substituted into (3.14) and the surface
tension minimized with respect to I, the result is

where we have made the further approximation of neglect-
ing the density dependence of K' and replacing it by its
value at the average ionic density n,„= , (ni+n„),—ni and
n„being the equilibrium liquid and vapor densities. This
is the density at which dn Idz is expected to be largest and
where, therefore, the gradient term should be of most im-
portance. ' We have used a single-parameter variational
trial density of the form

r=2exa, r=v'Wya, 2~=2rr, (3.16)



4380 D. M. WOOD AND D. STROUD 28

dc/dT (dyn/cm 'C)m /aoT (K) +expt

TABLE II. Predicted surface properties from gradient approximation for free energy [Eq. (3.16)]. The columns represent the abso-
lute temperature T in kelvin, the variational hard-sphere diameter o. in units of the empty-core radius r„ the gradient coefficient K,
the theoretical surface tension ~,h, the experimental surface tension ~,„p„ the surface halfwidth w, and the calculated derivative d7. /dT.

Element a/r, K' (e —ao) ~,h (dyn/cm)

K
Rb
Cs
Zn
Al

371
393
337
312
302
693
914

3.437
3.428
3.18
3.12
3.06
3.97
4.29

29.18
29.08
68.59
88.0

117.2
47.9
79.9

213
207
112.2
89.0
71.9

1936
2709

191

115
85
70

782
914

1.84
1.83
2.27
2.40
2.58
2.08
1.90

—0.28(=—0. 10 expt)

with

3 = J d(l z)Q(n(z)),
(3.17)

3
which exp1icitly gives both the surface tension and surface
width in terms of properties of a homogeneous liquid met-
al; here 2w is a reasonable estimate of the 10—90%%uo inter-
face width (see below). Of course, in contrast to the
Ginzburg-Landau calculations of Mon and Stroud, the
choice (3.15) does not give an exact minimization of the
surface-tension functional. As mentioned above, we have
taken n„=O.

The results of our calculations are summarized in
Tables I and II. We have examined al1 the alkali metals
except Li, a metal for which a local pseudopotential of the
empty-core genus is very probably inadequate, and we
have also carried out full calculations for two representa-
tive polyvalent metals: Zn and Al. It is evident that
agreement between the experimental and calculated sur-
face tensions of the alkalis is remarkably good —better
than that obtained by Mon and Stroud —and it must be
emphasized that these numbers are obtained with no ad-
justable parameters mhatsoeoer, but are entirely first prin-
ciples, except for the use of a simple model pseudopoten-
tial to represent the electron-ion interaction and the use of
the experimental bulk hquid density. In contrast, the re-
sults for the polyvalent metals are less satisfactory, the
calculated surface tension being a factor of 2.5 too large in
the case of Zn and a factor of 3 for Al. The calculated
surface tuidths 2w in all cases are quite narrow, ' generally
about 2 A. Although experimental data are sparse, avail-
able evidence for Cs (Ref. 15) and Hg (Ref. 16) suggests
that our model may be leading to a surface width which is
too narrow.

%'e have also made an estimate of the temperature
derivative dr/dT of the surface tension for one liquid
metal, namely, Na, for which our calculation of the sur-
face tension itself is in good accord with experiment. As
may be seen from Table I, the theoretical derivative is
rather larger than experiment, although the experimental
data itself is so uncertain that theory may be within the
experimental error bars. ' '

In view of the excellent agreement between theory and
experiment for the alkali metals and the less satisfactory
results for the polyvalents, it seems worthwhile to examine
the inputs to the density-functional theory in an attempt
to understand just where the discrepancies originate. The

(1 ri)4 1 e /ao

( I +2r)) nao ~gT n =nb„g,
(3.18)

is in generally good accord with the compressibility as ob-
tained via the therrnodynarnic derivative.

The variation of f(n) with n at lower density is more
difficult to compare with experiment, since most of this
region constitutes an "expanded" metal which cannot exist
as a uniform phase in thermodynamic equilibrium. How-
ever, the surface tension is probably insensitive to the
behavior of f(n) at Very low densities. To understand this
we consider Fig. 1, which shows f—pn plotted as a func-
tion of n for two representative liquid metals, Na and Al
(as calculated in the structural expansion). Both show
rather similar shapes having a strong peak at about —, the
homogeneous liquid density, and tend to zero at zero den-
sity, which is the uniform vapor density to a good approx-
imation. As is evident from Eq. (3.17), the surface tension
is closely related to an integral which depends mainly on
the area under this curve. It is thus not too sensitive to
what happens at low densities, where f—pn is small any-
way.

It is interesting to compare f pn as calcul—ated within
the structural expansion to that obtained by Mon and

main problem is most likely not the density-functional
theory itself, which is exact in the limit of small density
Auctuations, but rather in its execution. The implementa-
tion above made use of a number of approximations,
namely: (i) the replacement of the full nonlocal theory by
a local, gradient theory, (ii) extrapolation of the gradient
theory to large density variations, i.e., a surface where
conceivably higher powers of dn /dz might become impor-
tant, and (iii) the calculation of the inputs to the theory,
f(n (z)) and C(r;n) Of .these three, (iii) is the most likely
source of inaccuracy because both f and C must be extra-
polated to densities far away from the metallic densities
where they can be calculated with reasonable accuracy.

Our calculations for f(n) near liquid metallic densities
are undoubtedly reasonable. This is shown by a compar-
ison of experimental and theoretical compressibilities of
pure liquid metals, the theoretical numbers being obtained
from Kr ——[n (t) f/ )n t)r] '. Agreement is good, al-
though the bulk compressibility Kz is generally overes-
timated by the structural expansion, as has been observed
by other workers. ' An alternative route to the compressi-
bility sum-rule result using the Percus-Yevick hard-sphere
reference system
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0.16—

0.12

C
0.08

(

0.04

Al
of the predictions of the Ginzburg-Landau theory of Mon
and Stroud, which leads to an area which is a universal
constant independent of material.

(ii) The effective hard-sphere packing fraction g for all
liquid metals is roughly a constant (equal to 0.45) at melt-
ing T:Tm

(iii) The gradient energy coefficient K, of dimensions
(Hartree-Bohr ) must be given at melting by the relevant
energy and length scales of the problem, namely, k&Tm
and the effective hard-sphere diameter o. related to g by
(vr/6)o n =g.

0.00—
0.0 0.4

rl/n iiq

0.8
Combining (ii) and (iii) leads to the relation

K' cc (k~ T )ni (3.19)

FIG. 1. Density dependence of (nongradient) free-

energy —density functional: structural expansion results [Eq.
(3.1)] for Na and Al, and Ginzburg-Landau form (GL) (see Ref.
5). 1/6

ni, melting (3.20)

and using (i) in conjunction with Eqs. (3.16) and (3.17)
(and n„-0) gives

1/2

Stroud using a Ginzburg-Landau extrapolation procedure.
As may be seen, the former leads to an area under the
curve which is larger by a factor of about 5 than the latter.
Both behave very similarly near the liquid density; this is
because the Ginzburg-Landau theory has parameters
which are guaranteed (by construction) to have the correct
liquid-state compressibility, which is quite well repro-
duced by our structural expansion. However, the
Ginzburg-Landau result deviates strongly from the
structural expansion at lower densities. While our calcula-
tion is more microscopic, it is difficult to say which is
more correct at lower densities. We note also that, al-

though Na and Al are quite different in their properties as
uniform liquid metals (their compressibilities differ by a
factor of 8, for example), the free-energy curves, as ob-
tained in the present work, have remarkably similar
shapes. We exploit this similarity below in obtaining a
simple scaling description of the surface properties of
liquid metals.

As far as our calculation of C(r;n) is concerned, sub-

stantial improvement may be possible. The approximation
used here probably overestimates the strength of the gra-
dient term in Al and Zn, most like1y by exaggerating the
contribution of the tail in the potential to this gradient. If
a better approximation were available it might lead to
more accurate surface tensions. ' (See note added in
proof. )

B. Scaling results

While the theory presented above gives a good first-
principles account of the surface tension of monovalent
simple liquid metals, it seems useful to generalize the
underlying physics of our results to metals for which a de-
tailed calculation is unreliable at present, e.g., the
polyvalent metals. This simple generalization is based on
three observations:

(i) The total area under the curve of KzQ(n/nhq) vs

n/n~;q is roughly independent of material parameters, as is
shown in Fig. 1. This is a numerical confirmation of one

To test the predictions of this simple scaling form for &

(at melting) we fix the constant C by forcing (3.20) to fit
the observed surface tension for Na. The predictions
based on this value of C are shown in Fig. 2 and are seen
to be in remarkably good agreement with experiment for a
wide variety of metals.

The present scaling theory is not, of course, the first
empirical formula which attempts to relate the surface
tension of liquid metals to bulk properties. ' However, it
differs from previous versions because it can be derived,
via definite assumptions, from a density-functional theory
of the liquid-metal surface. The empirical content con-
sists of ad hoc estimates of the inputs to the density-
functional theory K' and the parameter A in Eq. (3.16).
The estimate of E' is based on the assumption that the
ion-ion pair potential [which determines C(r) and hence
K'] has a depth which scales as the melting temperature

o)(o
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FIG. 2. Comparison with experiment of empirical density-
functional scaling prediction for surface tension at melting [Eq.
(3.20)].
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and a range which scales as the hard-sphere diameter.
This is a reasonable assumption for most liquids, nonme-
tallic as well as metallic. Our assumption for the free-
energy density has actually been confirmed in the present
work by microscopic calculations for several liquid metals,
as illustrated for Na and Al in Fig. 1. It represents a kind
of "law of corresponding states" for liquid metals which
seems on the basis of our work to hold reasonably well for
metals near melting. Thus we regard the success of the
scaling estimates as evidence that the density-functional
theory is adequate for liquid metals, if only good estimates
of the input parameters are available.

At this point, as a prelude to Sec. IV, it may be useful
to contrast our approach with the better known electronic
density functionals in current use for calculating the sur-
face energies of solid metals. By choosing to perform
a classica1 ionic density-functional calculation for the sur-
face tension we have effectively traded the problem of
finding the ground-state energy and density profile for an
inhomogeneous electron gas with a surface for the prob-
lem of calculating the (finite-temperature) thermodynam-
ics of a classical system of ions (with their adiabatically
following electron screening cloud) with a surface.

While the classical approach may appear more difficult,
it results in several simplifications. First, the theory above
has as its central variable the thermodynamic average
singlet ion density n;(r). At a bulk surface n;(r) depends
only on the coordinate perpendicular to the liquid/vapor
interface [neglecting capillary waves, whose effects on
n;(r) should average out, and whose effects on the surface
tension are expected to be small for liquid metals]. By
contrast, in electron density-functional calculations for
solid-metal surfaces the electron density must have the
symmetry of the lattice parallel to the surface. This is a
somewhat delicate matter for most electron density-
functional calculations since they are frequently based on
a planar uniform background calculation to which one
then appends the effects of ion discreteness by low-order
perturbation theory (using homogeneous or inhomo-
geneous electron-gas response functions). The second
simplification follows trivially from the first: One need
not select a planar uniform background model for n;(r).
(The resulting electron profile can be calculated via linear
response —see Refs. 10 and 27.)

In the calculations above the discrete nature of the ions
might appear to have been eliminated by the thermo-
dynamic averaging implicit in the description of a classi-
cal liquid. This is not the case: Ionic discreteness gives
rise directly to the local structure of the fluid as embodied
in S(k) used in the local contribution to the free energy
(and in our case the choice of a hard-sphere reference sys-
tem) and in C(r) (used in the calculation of the gradient
coefficient), where both a hard-sphere and a screened
discrete ion-ion interaction contribution appear.

There are several points of similarity between the elec-
tronic and ionic density-functional approaches, however.
For example, on the basis of electron density-functional
calculation one might reasonably object to the use of a
gradient approximation above. The point to be made,
however, is simply that the regimes of validity for the
electronic and classical ionic gradient approximations may

not be the same for electrons and ions with the same den-
sity gradient. As a crude estimate we note that, neglecting
exchange-correlation effects, the gradient coefficient for
electrons is ' (in Hartree-Bohr )

1K,') ——

72nea 0

while for ions [Eq. (2.17b)]

=(k~T/12) I dr r C(r;n;;n, ) .

(3.21)

k~T Z-6
e /&0 (n;ao)

-0.3—O. S, alkalis; 0.6, Zn; 1.3, Al . (3.22)

Hence the question of the adequacy of the gradient ap-
proximation within a classical density-functional formal-
ism deserves further scrutiny. Since the arguments for
K leading to Eq. (3.19) seem to work well in the
phenomenological expression (3.20), we feel that the poor
results of the microscopic calculation above for the
polyvalents probably are not directly attributable to a
breakdown of the gradient approximation. (See note add-
ed in proof. )

IV. TYCHO-COMPONENT FORMALISM

In the previous sections we have discussed the surface
properties of liquid metals, treating them as effectively
one-component fluids —in effect, via a pseudoatom for-
malism in the sense discussed by Ziman. This approach
may be adequate for treating such quantities as the surface
tension and possibly the surface width, although the re-
sults obtained in Sec. III via an approximate version of
this formalism are not wholly satisfactory. One could, in
fact, obtain the electron density profile 5n, (z) by calculat-
ing the linear response of the electrons to the perturbation
Ze5n;, „(z). However, the calculation of quantities which
depend sensitively on the electronic and ionic profiles, e.g. ,
the electric dipole amplitude and layer thickness, may be
addressed only through a formalism in which the electron-
ic and ionic densities are both treated explicitly from the
outset. In this section we outline such a formalism. Our
approach bears some similarities to those of other workers,
in particular Evans and collaborators, O'Evelyn and Rice,
and others, but in view of various differences it seems
worthwhile to present our approach as a possible, relative-
ly simple alternative. Since numerical execution entails a
substantial calculation, it will be deferred to a planned
subsequent paper.

We consider an inhomogeneous liquid metal in which

Following the arguments leading to Eqs. (3.19) and (3.20)
we may take K to be

K —k~T, o' —[k~T /(e /ao)](n;ao)

at melting, assuming C(r) (1. Since n, =Zn; for valence
z
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the ions are subjected to an external potential 8;„,(x).
(The external potential is simply an artificial device to
generate the inhomogeneity. ) The Helmholtz free energy
of the system can be written H, g +H„=HO+ V, (4.&)

where n, (x) and n;,„(x') are the electronic and ionic den-
sity operators. Next we set

F=
klan T—lnTr;, „Tr,exp( H/—kii T),

where

H =H„+H„+H;;

(4.1) where

Ho H„——+ f n, (x)v&, (x x—')n;,„(x')dx dx',
V= f n, (x)vz, (x —x')[n; „(x')—n; „(x')]dxdx',

(4.9)

and
2

H„= g 2m

H„=g v~. , ( x; —R~),
i,a

p2 Z2 2
——X + ~ X

0 QPQ
J
R~ —R~'

]

(4.2)

(4.3)

+g W,„,(R ).

and n;,„(x) is some nonuniform reference ionic number
density which can be chosen in any convenient fashion. V
is the perturbation and represents the deviation of the ac-
tual ionic potential acting on the electrons in a given ionic
configuration from the "mean" potential corresponding to
n;,„(x). Ho is the Hamiltonian for an interacting electron
gas in the external potential corresponding to n;,„(x). The
free energy F' is then given by the coupling-constant in-
tegral

(4.4)
I

F'=F'(1)=F'(0)+ f dX, (4.10)

F= —k~Tln Tr; „exp( —H;;/k&T)

XTr, exp[ —(H„+H„)/k~ T] (4.5)

in which the trace over the electronic coordinates has the
following simple interpretation:

Tr, exp[ ) =exp( F'/kz T), — (4.6)

where F' is the electronic free energy corresponding to an
interacting electron gas moving in an external potential
defined by K„.+H„. Thus the calculation of the free en-
ergy of the inhomogeneous liquid metal is broken into two
separate problems: the first is to find the free energy of an
electron gas in an external potential defined by the ions in
a given configuration, and the second is to obtain the ionic
free energy given that of the electrons, which will then act
as an effective screening potential for the ions. The situa-
tion is analogous to that of a homogeneous liquid metal,
but complicated by the reduced symmetry associated with
the presence of the surface.

In order to calculate F' approximately, we must make
the same assumption that is needed in the theory of homo-
geneous liquid metals: The electron-ion interaction must
be assumed to be weak, so that a coupling-constant expan-
sion can be carried out. To this end we write

Here p; and P represent the momenta of the ith electron
and the ath ion, m and M are the electronic and ionic
masses, e is the electronic charge, Z is the ionic valence,

x; and R are the electronic and ionic coordinates, and v&,
is the bare electron-ion interaction, assumed to be
represented by an energy-independent local pseudopoten-
tial.

If we take the ions to be classical and make the adiabat-
ic approximation, the partition function in (4.1) can be
rearranged so that the electronic trace is taken first and in-
volves only that part of the Hamiltonian which depends
on electronic coordinates. Thus we obtain + f n, (x)v~, (x —x')n;, „(x')dx dx', (4.1 1)

where F~„,[n, ( x ) ] represents the free energy (kinetic, ex-
change, and correlation energy plus entropy term) of an
interacting electron gas of density n, (x), and n, (x) is the
electronic density corresponding to the external potential
produced by n;,„(x'). The terms in (4.10) can be comput-
ed by the standard methods used by Lang and Kohn for a
step-function ionic density and by Lu and Rice' for a
monotonically decreasing ionic density.

The second term in (4.10) cannot, of course, be evaluat-
ed exactly even for a homogeneous liquid metal, and cer-
tainly not for an inhomogeneous one. We use a version of
linear-response theory to get an approximate result. In ex-
plicit form the integral in (4.10) is

f dA, ( V)i, (4.12)

where Vis given by (4.9) and ( )i denotes an average cal-
culated with respect to a Hamiltonian Ho+A, V. %'riting

1 1f dA( V)x= f dA(n, (x))iv~, (x —x')

X5n;,„(x')d x d x', (4.13)

where F'(A, ) is the free energy corresponding to the Hamil-
tonian Ho+A, V. F'(0) is the Helmholtz free energy corre-
sponding to the Hamiltonian Ho and may be written (us-
ing the Hohenberg-Kohn-Sham-Mermin theorems for an
interacting electron gas in an external potential)

F'(0) =Fp„,[n, ( x )]
2

+ —,
' f n, (x) n, (x')dxdx'

/

x —x'/

H, i
—f n, (x)v„(x—x')n,.„(x')dxdx', (4.7)

where 5 (nx')=n;, „(x') n;,„(x'), w—e can formally write
(n, ( x ) )x to first order in A, V:
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(n, (x))~=n, (x)+A. f dx "dx"'IX„[x,x";n, (x)]u~, (x"—x'")5n;,„(x"')I, (4.14)

where we have used the explicit definition of V and X„[x,x;n, (x)] represents the density response function of a nonuni-
form electron gas of unperturbed density n, (x ) T. he form (4.14) follows at once from the definition of the response func-
tion, as given, for example (for a uniform system), in Pines and Nozieres. Carrying out the coupling-constant integral
gives finally to lowest order,

F'=Fk„,[n, (x)]+—, f n, (x)V„(x—x')n, (x')dx dx'+ f n, (x)uz, (x —x')n;, „(x')dx dx'

f 5n;,„(x)V„,[x,x';n, (x )]5n;,„(x')d x d x',

where

V„,(x, x', n, )= f dx "dx"'uz, (x —x")uz, (x' —x"')X„(x",x"';n, )

(4.15)

(4.16)

V,ff( [R I ) =F'+ —,
'

«~«'
~

R R
+gW, „,(R ),

(4.17)

which can be decomposed into one-body and two-body
terms using Eqs. (4.15), (4.16), and the relation
5n;,„(x)=n;,„(x) n;,„(x) It—is easily .found that

V ff([R I)—2 g W ff(R R ')+ Q Weff(R )
a+a'

(4.18)

plus terms which are independent of ionic position. The
pair potential W,'ff(R, R ) takes the form

is the screening contribution to the effective ion-ion in-
teraction. The factor of —,

' comes from the coupling-
constant integration, and the result (4.15) is nothing more
than the analog for nonuniform systems of the usual
structural expansion for liquid metals in a particular ionic
configuration. %'e note also that (4.15) is fully applicable
to solid metals with a surface, provided that the ions are
then arranged in a suitable lattice. The extra difficulty as-
sociated with the liquid state is the need to average over
ionic configurations. Both solid and liquid will require
calculating (or approximating) the difficult nontransla-
tionally invariant response function X„. ( Chakravarty
et al. and Rose and Dobson have successfully used
such response functions for molecular hydrogen and
discrete-ion corrections to the planar uniform background
model of metal surfaces, respectively. Our approach bears
a close resemblance to recent work by Foiles and
Ashcroft who use standard electron density-functional
methods to calculate the n, corresponding to an ion pro-
file n, and use the inhomogeneous response functions
X„[n,(x)] to calculate discrete-ion corrections; they then
use a liquid-state variational principle to find the optimal
n;(x ).)

Given I'" for a particular ionic configuration, the
remainder of the calculation is a liquid-state problem, i.e.,
it involves determining the arrangement of the ions, given
the forces they sense. The effective ionic potential energy
1s

Z2 2

W,'ff'(R, R ) = + V„„[R,R;n, (x)],
)R —R.

(4.19)

where V,,„ is defined in (4.16). The one-body term can be
written (after some rearrangements)

W,'ff'(R )= W,„,(R )+ W„,(R )+ Wp, i(R ),
W,«(R~) = f d x [ V„,(R, x;n, )n; „(x )

+u~, (R —x)n, (x)],

(4.20)

(4.21)

W~„(R«) = V„,[R~,R;n, (x)] . (4.22)

Each of the terms in (4.20) has a relatively simple physi-
cal meaning: 8' „, is the external potential acting on the
ions and 8,« is an effective one-body attractive potential
which arises indirectly from an interaction between ions
attempting to escape the liquid metal and the electrons
and other ions left behind. It tends to keep the ions in the
liquid phase and will presumably (although this could only
be confirmed by detailed calculation) behave rather like a
soft wall of finite height for the ions. The last term, 8'p
is a self-interaction term which arises from the anisotropy
of the screening cloud around an ion in the surface region.
(In a uniform system W~& would be position independent. )

The existence of such one-body potentials, tending to keep
ions from escaping from a liquid metal, is special to me-
tallic fluids: They do not occur in simple insulating
liquids such as Ar. They have been previously suggested
by D'Evelyn and Rice but are here proved to follow
naturally from an extension of the structural expansion to
liquid-metal surfaces.

Note that the treatment given above does not explicitly
treat the metal-insulator transition, i.e., the vapor limit is
not given correctly. We do not anticipate that this omis-
sion will have much quantitatiue importance in liquid met-
als since, as previously indicated, the properties of the sur-
face are most likely determined mostly by the denser
(liquid) phase far from the critical point.

V. SUMMARY AND CONCLUSIONS

We have presented above a brief analysis of the
density-functional theory for inhomogeneous classical
fluids generalized to a liquid metal. It was demonstrated
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that explicit reference to electronic degrees of freedom
could be eliminated, although the second electronic fiuid
constituent is implicit in the response functions which
occur in the formal expression for the free energy of the
inhomogeneous system.

The inhomogeneous contribution to the free energy was
described by a gradient approximation. This allowed the
nonuniform liquid metal to be studied by means of a set of
approximations widely used for uniform liquid metals.
With the use of a reasonable estimate of the gradient-term
coefficient based on a mean-spherical-like approximation
and a simple variational form for the ionic density profile,
the surface tension and surface width were calculated for a
number of simple metals.

Agreement with experiment for the surface tension ~ at
melting was very good for the alkalis. The less satisfacto-
ry results for Zn and Al served as motivation for a gen-
eral, approximate scaling form for the surface tension at
melting. The scaling theory agrees reasonably well with
experiment for a large variety of metals and is at least as
satisfactory as existing parametrizations of r in terms of
bulk liquid quantities.

It should be stressed that the only inputs to the full
theory of Sec. II are a parameter characterizing the range
of the electron-ion pseudopotential and the bulk liquid
density. The remarkable quality of the theoretical predic-
tions for the liquid alkalis suggest several things:

(i) Surface tension seems likely to be insensitive to possi-
ble oscillations ' of the ionic density profile in light of
our good results from the simple gradient theory (which
involves a monotonic profile) above.

(ii) Presence of a metal-insulator transition as one
traverses the liquid/vapor interface seems to have little ef-
fect on the energetics of the surface, at least at tempera-
tures where the coexisting phases are of very different den-
sities.

(iii) Density-functional formalism used here is probably
adequate to describe liquid-metal surfaces, any inaccura-
cies in the polyvalent metals arising from inadequately
known inputs rather than fundamental shortcomings of
the theory.

Finally, to improve upon the simple formalism em-

ployed above so as to permit explicit discussion of elec-
tronic properties of the surface, the usual linear-response
description of a uniform liquid metal was generalized to
allow for a nonuniform reference electron-ion system
about which the usual perturbation theory is used. A judi-
cious rewriting of the terms generated allowed us to isolate
both one- and two-body forces which are peculiar to
liquid-metal interfaces. The former may be responsible
for the "hard-wall"-like interactions discussed by
D'Evelyn and Rice.

Note added in proof D. St.roud and M. Grimson (un-

published) have recently recalculated the surface tensions
of liquid Al and Na, using the full density-functional for-
malism [Eqs. (2.16), (2.19), and (2.20)] rather than the gra-
dient approximation, and a slightly different prescription
for C(r) The. resulting surface tension for Al is in much
better agreement with experiment than that obtained
within the gradient approximation; the surface tension for
Na is reduced slightly below that predicted by the gradient
approximation, but is still within 20%%uo of experiment. In
both cases the predicted surface profile has weak ionic
density oscillations superimposed on a nearly steplike
background.
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