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Static and dynamic properties of a two-dimensional Wigner crystal in a strong magnetic field
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Making use of an ansatz wave function for the ground state of two-dimensional electrons, which

occupy only partially the lowest Landau level, we study theoretically the correlation energy, the
shear modulus, and collective modes. We find that the electron lattice is locally stable for
0& v&0.45, while the hole lattice is locally stable for 0.55 & v& 1, where v is the filling factor. The
melting temperature TM estimated from the shear modulus exhibits broad peaks around v=0.27 and
0.73.

I. INTRODUCTION

Two-dimensional electron systems formed in metal-
oxide —semiconductor field-effect transistors (MOSFET's)
and superlattices have been the subject of intense theoreti-
cal and experimental studies in the last five years. De-
pending on carrier density and magnetic field these sys-
tems exhibit two-dimensional localization, quantization of
the Hall effect, and possibly a Wigner crystal' or charge-
density-wave state (CDW) at low temperatures. We shall
study in this paper the stability of the CDW state in the
extreme quantum limit, where the lowest Landau level
with a single-spin component is only partially occupied.
These electrons are interacting via Coulomb interaction,
though we assume that the average Coulomb energy per
electron is much smaller than the Landau energy spacing
(e l21«co, =eBlm). We sh—all make use of an ansatz
wave function for the ground state, which describes the
two-dimensional CDW state. This ansatz wave function
gives rise to an electron charge distribution function con-
sistent with that of the CDW state studied by Yoshioka
and Fukuyama (YF). Furthermore this ansatz wave
function yields the Coulomb correlation energy in excel-
lent agreement with the results obtained by Yoshioka and
Fukuyama and Yoshioka and Lee (YL) within the
Hartree-Fock approximation to the CDW state. The real
advantage of the present method lies in the ease by which
it enables us to study the lattice dynamics. We calculate
the shear modulus of the electron lattice. The shear
modulus is positive for the electron lattice for 0& v&0.45
but becomes negative for v~0.45, which implies that the
CDW state is locally stable only for 0&v&0.45. Qn the
other hand, for v& 1/2, the hole lattice constructed on the
filled Landau level is locally stable for 0.55 &v&1. We
find that the shear modulus thus found is larger than the
classical value for (0&v&0.35) and has a broad max-
imum around v=0.23, implying that this value is favor-
able for the crystal formation, if we assume that the CDW
melting is dictated by the dissociation of bound disloca-
tion pairs ' as in the classical lattice. We find in this way
the maximum melting temperature TM ——0.0062e /l with
1 =(eB) '~ for v=-0.3. Invoking the electron-hole sym-
metry proposed by YF, we have a similar peak in the
shear modulus and in T~ around v=0.7. On the other

hand, although our ansatz wave function yields commen-
suration energies at v= —,, —,', etc. , they are too small to be

physically relevant.
We also calculate the phonon spectrum in the long-

wavelength limit within the present model; the lower pho-
non mode exhibits the q dispersion as in the classical
lattice in a magnetic field.

II. ANSATZ WAVE FUNCTION

We shall consider a two-dimensional electron system
described by the following Hamiltonian:

2

PI= Q [p; eA(r;)] +—2 g

)& exp — [( r —R) —2i (x Y' —yX) ]4I'

1 =eB and R=(X, F) . (3)

Hereafter we shall use units of A'=c=1. Our ansatz wave
function for the ground state is a Slater determinant con-
structed by the wave functions (2) located at the regular
two-dimensional lattice points R&. We have

+(I r; I)=(X!) ' det
~
g- (r;)

~

where

where p; and r; are the two-dimensional momentum and
position vectors lying in the x-y plane. For later conveni-

ence we take the symmetric gauge for A= —,'B( —y, x,o),
where B is the strength of a magnetic field applied in the z
direction (normal to the two-dimensional plane).

The lowest-Landau-level wave function localized
around r =R is given by

g- ( r ) =(2~1 )
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m v3Rj-ao n + —, I2' 2
(5) E, =% e) (vie&, (7)

ao is the lattice constant and n and m are integers. If we
neglect the overlapping between two wave functions with
different A s, the single-electron density is given by

1p(r)= g ~ g (r)
~

=(2ml ) '+exp — (r —R;)R; 21

which is exactly found by YF (Ref. 2) and YL (Ref. 3) for
the CDW ground state within the Hartree-Pock approxi-
mation. The Coulomb energy for the ansatz state (4) is
evaluated as

as the wave functions tlj- (r ) do not form an orthonormal
R;

set. We expand Eq. (7) in terms of the n-electron correla-
tions as

Z, = V(IR, I)=-,' g V(R, —R, )

+ —, g' V, (R;,R, ,Rk)+
i,j,k

where the sums over i,j,k are carried out over different
lattice points only.

Since the overlapping between two single-electron wave
functions at different positions is small, we obtain in good
accuracy

2

(9)

2

V3(Rf R2 R3)= — exp( —X&z3 )Io(X&23 ) I 1 —exp[ —
~ (R j2+R 23+R3j 4iA '[—p3 )] I +c.c.

2l

where
+

X]$3 8 [R]p R]3 i (X~q Y~3 X]3Y]2 )], R J
=R; —RJ

(10)

A $23 is the area of the triangle with vertices at R], R2,
and R3, and Io(z) is the modified Bessel function. Hereaf-
ter we measure length of R; in units of I. We give the
derivation of Eqs. (9) and (10) in Appendix A. Since the
electron density n is related to v the filling factor of the
lowest Landau level and the lattice constant ao by

vn=
2ml

v3
2

Qo (12)

the overlapping integral between two wave functions at
the nearest neighbor is given by

p —2~/~3v —3.6276v=e (13)

Therefore for v&0.5, the overlapping integral gives rise to
a contribution of the order of 10 . Then, except for the
exchange contribution to the Coulomb energy, all other
contributions due to the Fermi statistics of the electron are
practically negligible for v(0.5. Even for 0.5 & v(1, the
inclusion of the lowest-order overlapping integrals will be
adequate for evaluating the correlation energy. However,
this is not so obvious in the case of the shear modulus.
Indeed the shear modulus can be expressed as a difference
of two large terms. Therefore the small modification in
the potential of the order of 10 produces a significant
effect. Therefore we believe that our results for the shear
modulus around v=0.5 are still qualitatively correct but
may not be reliable quantitatively. In this circumstance it
is of interest to note that V3 contains a commensuration

iU-' (14)

where U is the unitary operator changing R; into R; + u;.
We have

U=exp gu;
BRg

(15)

Substituting Eq. (15) in Eq. (14), we obtain

T —
2 CO+ g E+pBg 8/ 7

~ a P

l

energy proportional to cos(A &&3/l ) =cos(~/v) for the
smallest triangle R],R2,R3, which favors the triangular lat-
tice when v= —,', —,', etc. However, the coefficient of the
commensuration energy at v= —,

'
is so small (10 ) that

we do not think this energy is physically relevant. There-
fore for all values of v (i.e., 0 & v & 1), the Coulomb energy
of the system is given by the first term of Eq. (8) within a
few percent accuracy; the effect of the strong magnetic
field is almost completely incorporated in V(R) as modifi-
cation of the Coulomb potential.

In order to consider the lattice dynamics we need the ki-
netic energy. This can be obtained from the following
consideration. We shall first replace the lattice positions
R; to R;+u;, where the u s are small displacements. In
general u s depend on time. Then the necessary kinetic
energy is calculated as
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H, tr = T + —, g V(R; —RJ + u; —uJ ),
l+J

(17)

where V(R) is the first term in Eq. (8).

III. CORRELATION ENERGY

First let us calculate the correlation energy of the sys-
tem, which is given by

2

NU„, = —, g V(R; —R~)= g V(R;),
2l

where X is the total electron number.
The potential V(R) is shown in Fig. 1 together with the

Coulomb potential. For R &2.7, V(R) &R ', the diver-
gence of the Coulomb potential at the origin is smoothed
out due to the delocalization of the electron in the magnet-
ic field. For R~2.7, V(R) is somewhat larger than the
Coulomb potential. In the figure we have indicated the R
value for the nearest neighbor for several v's. For R ~~1
(i.e., R/1 && I in the ordinary unit), V(R) is approximated
as

V)(R) =—(1+R + —,R + —,R + . ) . (19)
R

where co, =eB/m and e ~ is the antisymmetric tensor.
Therefore the lattice dynamics of the electron lattice is
described by the effective Hamiltonian

The first term in Eq. (19) gives rise to a divergent con-
tribution in Eq. (18). However, this divergence can be
eliminated by the Madelung sum as done by Bonsall and
Maradudin" for the classical electron system. The nearest
lattice points lie always in the region V(R) &R ' except
near v= 1; the correlation energy in a magnetic field is al-
ways larger than the classical value

eU""'= —0 782 133 v'cor l

(p(r)p(r ')) =n (1 —e ' ' ' ' ~~) .

This liquid state gives

(21)

The sum (18) is carried out numerically, and shown in Fig.
2 together with the classical result. First of all we note
that our correlation energy is in excellent agreement with
a recent result by YL (Ref. 3) for v &0.5. The discrepancy
between our results and YL's is always less than one per-
cent. We should point out that in order to get this agree-
ment the inclusion of the Coulomb exchange term is
essential near v=0.5, although the exchange term becomes
less than 10 for v(0.4. Therefore our ansatz wave
function reproduces the result of the mean-field calcula-
tion of the CDW state. Second, when v=1, the com-
pletely filled Landau state can be considered as a liquid
state. In this limit, though p(r) is uniform, the two-
particle correlation function is given by

0.8-

0.6-

which is extremely close to our correlation energy at v=1.
Actually within our numerical error at v=1, which is a
few percent, the correlation energy of the electron lattice is
identical to Eq. (22). However, this is not so surprising, if
we consider the fact that the overlapping integrals between
the nearest-neighbor wave functions are still quite small
(only a few percent) even at v= l. In the absence of the
overlapping integral, the lattice should be the preferred
state. Furthermore for v ~ 0.5, we can obtain a state with

0.0

-0.2-

oI

CP

—0.4-

I I I
I l I I

6
R

—0.6-

0.0 0.5 10

FIG. 1. Potential V(R) is compared with the Coulomb poten-
tial R ' (dashed curve). In the region of interest V(R) is larger
than R '. Fractional numbers on the horizontal axis indicate
the nearest-neighbor distance of the triangular lattice for the
corresponding filling factor.

FIG. 2. Correlation energy per electron is shown as function
of the filling factor. e, h, and c on the curves indicate the elec-
tron lattice, the hole lattice, and the classical result, respectively.
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U,",„(v)= U„,(1—v) — (vr/2)'~ (2v 1—),
2l

(23)

where the second term comes from the Coulomb exchange
energy between the holes and the underlying electron
liquid. The derivation of Eq. (23) is given in Appendix B.
We exhibit the correlation energy for the hole lattice thus
constructed for —, & v& I in Fig. 2. Indeed it is clear that
the hole lattice has the lower correlation energy than the
electron lattice for v ~ —,'. Furthermore the correlation en-

ergy of the electron lattice has a different slope from that
of the hole lattice at v= —, for increasing v implying that
the transition should be of the first order within the
present model. Finally we have compared the liquid-state
energy referred by Laughlin at v= —, , with the electron
lattice energy. We find that the correlation energy of the
electron lattice appears to be lower than that of the liquid
state. Therefore we believe that, if there is any possibility
for the liquid state rather than the electron lattice, it
should be limited in the vicinity of v= —, .

IV. SHEAR MODULUS

We shall now consider the shear modulus of the elec-
tron lattice (and the hole lattice for v & —,

' ). In this paper
we limit our analysis to the harmonic approximation for
simplicity, though in general the anharmonic terms would
be rather important in the Coulomb system. ' Expand-
ing the second term in Eq. (16) in powers of u;, we obtain

X(u; —uj )(uf —u, )+ .

a lower correlation energy by assuming that the ground
state is described by the completely filled Landau level
plus a hole lattice with the hole density (1—v) as proposed
by YF. Then the correlation energy of v & 0.5 is given by

where the R sum extends over the two-dimensional lattice.
The constants Cp and C ~ are evaluated numerically as
function of v. In Fig. 3 we show the shear modulus
C, =(e /I)C~ and the coefficient in the longitudinal mode
C~ =(e /I)/(Co+ C& ) normalized by their classical values
(C,o ——0.09775v' e /l and C&o ———5C, O). We note that C,
has a broad peak around v=0.23, while C~ has a flatter
peak around v=0.28. The origin of this broad peak be-
comes clear from Fig. 4, where we plot
+, = —,'(3RV'+R V") as function of R. [C~ is expressed
as the lattice sum of @,(R).] Compared with the case of
the Coulomb potential, the second derivative of V has a
broad structure near A=5. For v= —,

' the nearest lattice
point lies in the vicinity of the peak of the above function
and this nearest-neighbor contribution controls the shear
modulus. Furthermore the shear modulus becomes nega-
tive for v~0.45, implying that the electron lattice is un-
stable for v ~ 0.45. The point where the shear modulus be-
comes negative may change if we include V3, etc. , or the
anharmonic corrections. However, we believe that the
general tendency that the electron lattice becomes unstable
near v= —,

' has general validity. Since the shear modulus
of the hole lattice is symmetrical to that of the electron
lattice, the hole lattice becomes locally stable for
0.55 & v( I.

If we assume that in the extreme quantum limit the
melting of the electron lattice is dictated by the
Kosterlitz-Thouless mechanism, ' we can calculate the
melting temperature by

2

TM (4~) 'nao——C, =(2m.~3) ' C) .
l

(2g)

The predicted TM is shown in Fig. 5, together with that of
the classical theory and the mean-field result of Fukuya-
ma, Platzman, and Anderson. " We note that T~ has two
broad maxima around v=0.27 and 0.73 and that TM van-
ishes in the small region near v= —,, where the electron

where we kept only the quadratic terms. We shall recast
the quadratic terms in u; as

5V= (2m. ) J d k 4 ~(k)u-u~ -,2l k

where the Fourier transform of u; is defined by

I d~k
ug=

(2n. )

(25)

and the k integral extends over the two-dimensional Bril-
louin zone. @ ~(k) is given by

@ ~( k )= g [1—cos( k.R)]B 8&V(R)
0.5

+Co k k~+C, k o p+O(k ),

(27)

FICs. 3. Normalized shear modulus and a normalized term in
the modulus of compression are shown as function of the filling
factor. C, for the electron lattice becomes negative for v&0.48,
implying instability of the electron lattice.
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O
V- I/R

the phonon modes in the electron lattice. The kinetic en-
ergy T in Eq. (16) is rewritten in terms of uk as

toe 2 a P
2(2n. )'

The equation of motion is then given by

+C k~(k u-)+Cik ugLcoco uj =
C k k

(30)

which yields

2~n~=+cue e C& +Co
1/2

k (31)

R/g

FIG. 4. Function N, s, which appears in t pthe ex ression of the
shear mo u us are s wd 1 shown as function of the distance R. 4, cor-

n R 1&0475.responding to V is larger than that for R when / &
However for R/I&0. 475, N, for V decreases sharply as R de-
creases.

Therefore, as in the classical theory, pr the honon has the

~

k
~

dispersion. The other mode with co—=co, can be
constructe, i we in ru, 'f '

t oduce a single-electron wave unc-
tion for the n = 1 Landau level, as in the present limit t is
corresponds to the local excitation.

0.5—

0.0
I

0,5

FICx. 5. Melting temperature obtainedained assuming the
Kosterlitz-Thouless mechanism is shown fo~ ~ for the electron lattice

v 0.5) and the hole lattice (0.5 & v & 1). C on the curve indi-
cates the melting temperature for the classica y
indicates that for mean-field theory.

and the hole lattice are both unstable. We have alsolatticean t e oe a i
a roxim ationanalyzed the square lattice with the same app

find that the square lattice always has higher
does al-correlation energy1 t' ergy than the triangular lattice

ess than 1% atthough the difference in energies becomes less t an o a
v= —,. It is notewo yrth that the melting temperature of
the quantum limit is substantially larger than that of the

broad eak. It is of interest to note that the field-
d endent correction to the classica i inepen e
small v is of the same order of magnitude and of tof the same
sign as that ue o e ah d t th nharmonic corrections in the clas-
sical limit ca cu ate y1 1 d b Fisher. This indicates clearly the
importance ort of the anharmonic corrections to C~.

We shall conclude this section with the consideration o

V. CONCLUDING REMARKS

theStarting wi an a'th ansatz wave function descri ing
~ ~ ~

electron lattice (or the hole lattice) in a strong magnetic
fieldwes owt a iswh h t th' ave function gives the corre ation
energy identica to a1 th t for the CDW state within the

ore t at themean-field approximation. We show furthermore t at t e
d th hole lattice are locally stable for

0 & v & 0.45 and 0.55 & v & 1, respectively. Making use o
the shear modulus of the electron lattice (and the hole la-
tice us e) th determined, we estimate the me ting temperature
T which has broad peaks at v=0.27 and 0.
lieve that the detection of the phonon mode wi pwill rovide a
definitive evidence for the two-dimensio 'g'

nal Wi ner lattice
in the extreme quantum limit.

Wh iform electric field is applied, for example, in
the x direction, the electron lattice slides uni orrn y in

o„=—e v/A' o«(1—v)/A' depending on whether the
underlying attice is e e1

'
th lectron lattice or the hole; there

is no quantization o ef the Hall effect within the present
~ ~

model. Therefore in order to account for the quantization
of the Hall constant' at the fractional filling it is essential
to introduce the relaxation process p

'
ys' ossibl due to the

impurity scattering.
Note a e in pX dd d '

proof. (1) After submission of this paper,
D Phil Platzman drew our attention to an unpu is eI. 1 a
work by H. Fukuyama, P. M. Platzman, and
derson, who intro uced d the same ansatz function as ours
an ma ead d similar analysis of the commensurability ener-

(2) In li ht of a recent paper by Yoshioka et a. [gy. n ig
h' ka B. I. Halperin, and P. A. Lee, Phys. Rs. Rev. Lett.

ltd50, 1219 (1983)], we believe that for v=
3 the c

liquid proposed by Laughlin has lower energy than the
t 1 However whether the correlated liquid

has lower energy for v= —, appears to be undecide .
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APPENDIX A: POTENTIAL ENERGY OF THE ELECTRON LATTICE

We shall evaluate Eq. (7) as follows:

2 — - - 2

V, R, ,Rj + ' V, Ri, Rj,R, +.
f +j 6 i,j,k

(Al)

and

(vie)=1 ——,
' QS,j+—,

' QS,j„—-.
i,j,k

(A2)

where

T)c&p
V2(R;, R )= I [ i li (r, )

i i 1t/-„(r2)
~

f-*(—r()(t(*- (r2)p (r()p- (r2)]
ri —r2 I J l J J

d r]d r2 . exp — [(r(—R;) +(r2 —Rj) ](2+i )
i r, r2i 21

—exp — I(r1 —R ) +( 2
—R ) +( 1

—R') +(r2 —R )
4I

+ 21 [(x, —x, )( Y, —Y ) —(y, —y, )(X;—X, )]I

—(R/I) /81 [
1 (g /i)2](1 e

—(R/I) /4) w1th R R R
2l i J

d )id2 2 2

V3(R1 Rj Rk)= —J [ ~
q- (r1)

~

'1t/*- (r2)p"- (r3)11/- (r2)11- (r3)R, R Rk RI, R.

(A3)

—1tt*- (r()g*- (r2)g"- (r3)g (r()g (r2)(t/- (r3)]+c.c
J k k

~
d r(d r2d r3

(2vrl )
~
r( —r2

~

exp — [2(r1—R;) +(r2 —R ) +(r3 —R~) ] + (r2 —Rl )
4I

+(I 3 Rj) +21[(x2—x3)( Yj —Yk) —(y2 —y3)(X, —Xk)]

—exp — {(r,—R;) +(r2 —R ) +(r3 —Rk) +(r1 —R )
4I

+(r2 —Rk) +(r3 —R;)

+2i[(x1 —x3)Yi+(x2 —x1)Yz+(x3 —x2) Yk

(yl y3»; —(y2 yl )Xj (y3 —y2»k] I +c c

1 -2 -2 -2
2l'

exp( —X"k )Io (X"I,) 1 —exp — (R "+R -k +R k 4iA "k)—V ~J 4)2 lJ J l fJ (A4) .
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where

X&J'k = [R('J' 'R&'k i (X&j Y(k —X&'k Y&'J' ) ]8I'

and A,Jk is the area of the triangle formed by R;, RJ, and Rk. Similarly,

S~i='I d r&d rzg* (r~)g*- (rz)g- (rz)f- (r, )=exp — R;.
21

(A6)

~/Jk = I dr Idrzdr3$- ( r& )1i*- ( rz)ti*- ( r3)p- ( r& )p- ( rz)1i- ( r3) =exp — (R,"+R .„+R,. —4', „)
J k k

and combining these we obtain

(A7)

E, = —, g Vz(R;, Rq)+ —, g' V3(R;,RJ,Rk)+
f+J i J,k

1 —QS,, + QSJ
i~j ij k

—= —, g V(R; —RJ. )+ —, Q V3(R;,RJ,Rp),
i,j,k

(A8)

where

e Vz(R;, RJ)
V(R; —RJ ) =-

lJ

(A9)

V3 ( R;,RJ, Rk )-=e V3 ( R;,Rl, Rk )

This gives Eqs. (9) and (10) of the text.

(A10)

APPENDIX 8: CORRELATION ENERGY OF THE HOLE LATTICE (for v & 2 )

First let us note that the electron density of the completely filled n=0 Landau level is uniform and n =(2ml ) ', the
density correlation is classical-plasma-like. This is shown by evaluating

(p(r )p(r ') ) =g(r, r )g(r ', r ') —
~
g(r, r ')

~

',
where

(81)

g(r, r)=(Pt(r)g(r)) = I dke '" "' /~ =n
n. i

(82)

g(r, r ') = &qt(r)y(r '))

dk exp [(x —k—) +(x' —k) +i(x+x')(y —y')]/2&

=nexp —[(r —r ') +2i(x +x')(y —y')]/4&' . (83)

Putting them together we have

(p(r)p(r')) =n (1—e '' ' ' / ) .

This is deduced recently by Laughlin, who used a different argument. From this the correlation energy of the filled
n =0 Landau level (i.e., the case v= 1) is calculated as

(& 1) f e
—( ~ —~ ') /zl (~/2)1/z

Now in the presence of the hole lattice in addition to the filled n =0 Landau level we have
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—(r —R ) /21
g(r, r) =n 1 —g e (86)

g(r, r ') = n exp —
I ( r —r ') +i[(x +x')(y —y') —(y +y')(x —x')] I /2&

—+exp —[(r —R; )'+ ( r ' —R; )'+ 2i [(y —y')X; —(x —x') &; ] I
/4&' (87)

where the second terms in (86) and (87) are due to the hole lattice. In writing the first term of (87), we have changed the
gauge to the symmetric one to be consistent with the localized Landau wave functions. This yields

(p(r)p(r ')) =n 1 —pe
—(r' —R. ) /21

1 — 8

exp —I(r —r ') +i [(x +x')(y —y') —(y +y')(x —x')]] /2l

+exp —I(r —R;) +(r ' —R;) +2i[(y —y')X; —(x —x')F~]] /4l (88)

Then the correlation energy for the hole lattice is calculated easily as
2 2 2 I 2

U„", (v) = I [p(r)p(r ') —(1 2v)n ]—= U„„(1—v) — (~/2)'~ (2v —1) . (89)
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