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Electron spectroscopies for Ce compounds in the impurity model
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We present a method for calculating the core-level x-ray photoemission (XPS), the 3d~4f x-ray

absorption (XAS), the valence photoemission, and the bremsstrahlung isochromat spectra in a slight-

ly modified Anderson impurity model of a Ce compound at zero temperature. Both the spin and or-

bital degeneracies of the f level are included and the Coulomb interaction between the f electrons is

taken into account. The spectra are expressed in terms of a resolvent operator. A many-electron

basis set is introduced, and the resolvent is obtained from a matrix inversion. The particular form of
the Anderson model allows us to find a small but sufficiently complete basis set, if the degeneracy

Nf of the f level is large. In particular, we consider the limit Nf ~ ao, and show that the method is

exact for the XPS, XAS, and valence photoemission spectra in this limit. It is also demonstrated

that for Nf &6, the method provides accurate spectra. Analytical results are obtained for the

valence photoemission spectrum p, (e). The spectrum has a sharp rise close to the Fermi energy eF,
which goes over to a "Kondo peak" in the spin-fluctuation limit. An exact relation between p„(eF)
and the f-level occupancy nf is shown to be satisfied to within 10%%uo for Nf &6. We discuss how

core-level XPS spectra can be used to estimate the f-level occupancy nf and the coupling b, between

the f level and the conduction states. We find that the values of nf and Is obtained from core-level

XPS are basically consistent with the other spectroscopies and the static, T=O susceptibility. It is,

therefore, possible to describe these experiments in the Anderson model, using essentially the same

set of parameters for all the experiments. Typically, we find nf & 0.7 and 6-0.1 eV.

I. INTRODUCTION

The aim of this paper is to present a simple but accurate
method for calculating the core and valence photoemis-
sion, the 3d ~4f x-ray absorption, and the bremsstrahlung
isochromat spectra of Ce compounds. These systems have
many unusual properties due to the presence of a 4f elec-
tron which shows both localized and itinerant
behaviour. ' Much of the discussion has therefore
focused on the properties of the 4f level, in particular its
occupancy nf and coupling 6 to the conduction states.

There have been numerous studies of thermodynamic
and transport properties, ' such as the lattice parameter,
the susceptibility, the specific heat, the resistivity, and the
quasielastic linewidth in neutron scattering. From these
experiments, sometimes referred to as "low-energy" or
"slow" experiments, it has been concluded that 6-0.01
eV and that, depending on the system, nf can take any
value between 0 and 1.' Such experiments, however,
give fairly indirect information about nI and 6 and a
quantitative evaluation of these properties is difficult.

In particular, in the last few years, there have been

many electron-spectroscopy measurements, so-called
"high-energy" experiments, such as core level x-ray-
photoemission (XPS), ' valence-photoemission, '

x-ray-absorption (XAS), ' ' and bremsstrahlung iso-
chromat (BIS) spectroscopy. ' These electron spectro-
scopies also give rather indirect information about nf and

However, there are many indications from these exper-

iments that 6 is substantially larger than 0.01 eV and that

nf is never close to zero. Large values of nf have also
been deduced from Compton scattering' and positron-
annihilation' experiments.

In this paper we present a theory at T =0 for the elec-
tron spectroscopies mentioned above. We discuss the gen-
eral properties of the spectra and to what extent quantita-
tive results for nI and b, can be obtained. We find values
of 5 which are typically I order of magnitude larger than
those deduced from the low-energy experiments. For nf
we obtain values larger than about 0.7. In view of this
large discrepancy to the results obtained from the low-

energy experiments, we study the T =0 susceptibility data
and the lattice-parameter results. We find that the suscep-
tibility data are consistent with the new values of nf and 6
and that the lattice-parameter data are not necessarily in
conflict with these new values.

Much of the theoretical discussion of Ce compounds
has been based on the Anderson (single-impurity) model'
where one considers the f level on one atom and its in-
teraction with the conduction states. Effects due to the
(indirect) interaction between f levels on different atoms
are neglected. While this interaction is obviously crucial
for certain properties, for instance, magnetic ordering, the
model seems to describe other properties successfully.
Physical effects neglected in the model can be partly ac-
counted for by the use of renormalized parameters. Since
the renormalization may be different for different experi-
ments the model gains credibility and usefulness if it can
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X &(~ E,(N)+—E„(N —1)),
where

I Po) is the ground state,
I
E„(N —1)) are the ex-

cited states (final states) in the presence of a core hole and
Ec(N), and E„(N —1) are the corresponding energies.
The annihilation operator for the core level is i', . To
evaluate this expression we write the initial ground state of
Fig. 1 for nonzero 6 as

I
bc&=co If'&+ci If '&+c21f'&, (1.2)

with obvious notations. It is usually assumed that the
coupling between the states is much smaller than the
f ' f energy sep—aration so that cz-0. In the same spir-
it, one may assume that each final state

I
E„(N —1) ) is a

Ji

f 2 4

no core hole core hole

FlG. 1. Schematic representation of the energies of different
conf.gurations of a Ce impurity without and with a core hole.
Configurations are labeled according to the number of f elec-
trons. Typical energy differences (Refs. 7—10, 24, and 25) are
indicated (in eV).

describe different experiments with the same parameters.
In this paper we therefore develop a theory for several ex-
periments, and indicate that the Anderson model with
essentially unchanged parameters can describe these exper-
iments. A more detailed comparison with experiment is
presented elsewhere.

Since the coupling 6 between the f level and the con-
duction states is weak, it is useful to consider the states
when 6=0. This is shown schematically in Fig. 1, where
for this discussion we have replaced the conduction band
by a single (degenerate) level. Although this is an over-
simplification, some important features of the core spec-
troscopies can be illustrated. The levels of Fig. 1 are clas-
sified according to the number of f electrons. The
creation of a core hole leads to a dramatic reordering in
energy of the configurations due to the strong Coulomb
interaction between the core hole and an f electron (see
Fig. 1). It is crucial to include this interaction in the
model.

We now use Fig. 1 to discuss core-level XPS since this
spectroscopy is particularly useful for the determination
of nf and A. In the sudden approximation the XPS
current is directly related to the core spectral function

p, (&)=g I
&E (N —1)

I @. I 4 & I

'

pure f configuration, i.e., the final states are
I f ),

I f '),
and

I f ). If cq ——0 only the first two states would couple
to

I Po) and the corresponding peaks in the spectrum
would have the weights

I
co I

and
I
c i I; we could there-

fore read off the value of nf from the weight of the f '

peak of the core spectrum. For most Ce compounds, how-
ever, the core spectrum also shows a shoulder due to final
states of mainly f character. ' This is only possible if
there is a mixing of the f ' and f configurations in the
initial and/or final states so that the f -like final state
couples to the initial state. A mixing of the final-state
configuration means that calculations are needed to deter-
mine to what extent nf can be obtained from a core spec-
trum. The weight of the f shoulder provides a measure
of this mixing from which one can deduce the size of A.
While b, is large enough to couple the f ' and f configu-
rations the calculations show that the mixing of the final
f and f ' configurations, which have a larger energy
separation, is fairly small. The weight of the f peak
therefore provides a semiquantitative measure of

I
co

I
=1 nf and —quantitative estimates can be obtained

from the calculations. We have used these ideas extensive-
ly to estimate nf and 6 for many La and Ce compounds. '

As emphasized above, it is important to include the in-
teraction between a core hole and the f level. There have
been many calculations of the core spectrum for
models including the attraction of a core hole on a valence
level. Usually, however, the valence 1evel was assumed
to be nondegenerate and the interaction between the
valence electrons was therefore neglected. The calculation
of the core spectrum is then equivalent to solving a time-
dependent one-particle problem. For a Ce compound the
large degeneracy Nf of the f level is important, and to
treat the f shoulder in the XPS core spectrum, for in-
stance, one at least needs to take the spin degeneracy
(Nf =2) into account. Because of the strong Coulomb in-
teraction between the f electrons, correlation then becomes
very important and the calculation of the core spectrum is
a true many-body problem. Recently, Oh and Doniach
proposed a Careen's-function decoupling technique for cal-
culating the core spectrum of a spin-degenerate model tak-
ing correlation effects into account. Their decoupling
scheme provides an approximate description in the limit
of a small coupling 6, but from their calculations they in-
ferred that to describe Ce compounds one cannot use a
very small A. It turns out that for the interesting parame-
ters their scheme breaks down, shown by the presence of
energy regions with negatiue spectral weight.

An important progress in the treatment of the Anderson
model, was the realization by Ramakrishnan ' and Ander-
son ' that for the calculation of the thermodynamic prop-
erties there is a small parameter 1/Xf, where Xf is the de-
generacy of the f level. We show that similar ideas can be
applied to the spectroscopies. The calculation of the core
and valence photoemission spectra is therefore greatly
simplified if Nf is increased from 2 (spin degeneracy) to
14 (spin and orbital degeneracy), although, as indicated
above, the step of Xf from 1 to 2 is a severe complication.

For the spectroscopies considered here, the measured
quantity can be related to an expectation value of the
resolvent operator [z Eo(N)+H]—
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(1.3)

The core spectral function for instance, is given by

p, (e)= Irng(e i—0+ )/m.

if T =1it, . We now introduce a set of many-electron basis
functions li & and assume that the set is approximately
complete. Inserting the unit operator 1=g li &(i

l
on

both sides of [z —Eo(N)+H] ' in (1.3) gives

g«)=g &Col & li& i E N +H J ii
I

& lko& .
1

l,J

(1.4)

We now have to calculate (i
l
[z Eo(N)+H—] l j& and to

invert the corresponding matrix. To calculate (j
l

&
l p&

we need the ground state
l P& which is calculated varia

tionally in terms of some basis set I l
v& I.

In general, the formulation (1.4) would require a very
large basis set to be accurate. Bemuse of the particular
form of the Anderson model a "small" set is sufficient if
Xf is large. The limit Nf ~ oo, Nf A=const is of particu-
lar interest since the degeneracy, Nf =14, of the f level is
large. In this limit, we obtain the exact core and valence
photoemission spectra as well as the 3d~4f XAS spectra
for the Anderson model. We also find that for finite

Xf)6 our method gives quite accurate results. This for-
mulation also has other advantages. The spectrum
Img (e i 0+ ) /—mis no. n-negative for all energies. The
method gives a variational estimate of the threshold, e,h,
where Img(e iO+)/m—=O for e&e,h. Even a fairly small
basis set can therefore lead to a rather good estimate of
e,h. Above e,h there are of course no unphysical poles.
This is in contrast to Green's-function decoupling tech-
niques where it is often hard to find approximations
which can avoid unphysical poles for the whole range of
parameters. Method (1.4) gives results which are relative-

ly easy to interpret. For instance, we can neglect basis
states with a definite physical meaning in the calculation
of

l Po& (initial-state effects) or in the inversion of the
resolvent operator (final-state effects). By studying the ef-
fects on the spectrum we can trace the origin of the struc-
tures in the spectrum.

While the calculation of the core spectrum requires a
matrix inversion, we obtain analytical results for the
3d~4f XAS and valence photoemission spectra. The
valence spectrum p„(e) is particularly interesting since we
obtain a Kondo-type peak at the Fermi energy ez. For
Nf )6 the theory fulfils an exact relation between p„(ez)
and nf to within 10%. Kondo-type effects in Ce have
been discussed earlier by Allen and Martin.

In Sec. II we define the model and perform a transfor-
mation which is useful for the later calculations. A simple
calculation of the ground state for an infinite f-f Coulomb
interaction U is given in Sec. III and it is shown that this
calculation becomes exact for Xf~ oo, where Xf is the de-
generacy of the f level. A calculation which is more accu-
rate for a finite Xf is presented in Appendix B, where U

also is allowed to be finite. Some qualitative aspects of the
core-level spectrum are discussed in Sec. IV. In particular
it is shown that our method gives the exact core spectrum
for X~~ m. In Appendix 0 we give an analytical solu-
tion for the case when double occupancy of the f level is
neglected, and in Appendix E we show in detail how to
calculate the core spectrum when double occupancy is al-
lowed. The calculation of the 3d~4f XAS spectrum is
described in Sec. V. In Sec. VI we show how the valence
photoemission spectrum is calculated and discuss some
qualitative aspects of the results. In Appendix F we per-
form a simple calculation of the valence spectrum for a
magnetic compound. In Sec. VII the method for perform-
ing the BIS calculations is presented. We also consider the
combined photoemission and BIS spectra with emphasis
on the variation of the number of peaks and their widths
when the parameters- are varied. In Sec. VIII we discuss
the static T =0 susceptibility and in Sec. IX the deter-
mination of the f occupancy from lattice-parameter data.
In Sec. X we apply the theory to CeNi2 and show how nf
and 6 can be deduced from the experimental data. Some
aspects of this are also discussed in Sec. IV and VII.
Some of these results have been briefly described earlier.

II. MODEL

k, a

k, m, o.

m, o.

(Vk Q fk +H. c.)+ U g' n n~
m, m'

I
CT, CT

where ek describes the conduction states, ef is the energy
of the f level, and e, describes a core level. The f level
has an n-fold orbital degeneracy (m) in addition to the
spin degeneracy (0.). In most examples we use n =7,
which leads to the total degeneracy X~ ——2n =14. This is
appropriate for an f level if spin-orbit splitting is neglect-
ed. In Appendix A we discuss the effects of taking the
spin-orbit splitting into account. The hopping between the
f level and the conduction states is described by Vk and
the Coulomb interaction between the f electrons is given
by U. In addition to the original Anderson model there is
a term containing Uf, which describes the interaction be-
tween a core hole and the f electrons. Multiplet effects
are entirely neglected, since U is m independent and there
are no exchange integrals. Multiplet effects are observed
in the spectroscopies for which there are important final
states with mainly f character. For the core spec-
troscopies there are additional effects due to the multiplet
splitting of configurations containing a core hole and one
or two f electrons. The Coulomb interaction between the

f electrons and the conduction electrons is not explicitly
taken into account, but is assumed to be implicitly includ-
ed as a renormalization of ef and U.

We shall basically treat the Vk as adjustable parame-
ters. For the following derivation, however, we need to

As discussed in the Introduction, we use the (single-
impurity) Anderson model, '

H=geknk~+[ef Uf, (1 —n, )]g —n +E,n,
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consider the m dependence. Following Bringer and Lust-
feld, we assume

g Vk Vk 5(E —&k)

a e(eF

(3.1)

=g
~

VI,
~

5(e —ek)5 =—
~

V(e)
~

5
k

This result would, for instance, follow if we assumed that
the conduction electrons were in free-electron states. Then

I
~ m~& = V(~) ' g Vk 5(&—&k)

I
k ~& .

k
(2.3)

States with different m values are orthogonal due to Eq.
(2.2). The Hamiltonian can now be rewritten as

VI, —Y3 (k),
where Y3 (k) is a spherical harmonic with l =3 and the
constant-energy surfaces in k space are spheres. The as-
sumption (2.2) is, however, not limited to free-electron
states. It is based on the rapid variation of the phase of
Vk~ with k, which means that the k sum in (2.2) is small
unless I=m'. A more general discussion of Eq. (2.2) was
given by Bringer and Lustfeld. The Fermi energy eF is
set equal to zero and the bottom of the band is located at
—8. We also introduce an upper cutoff 8' of the band,
although this is not necessary. The coupling 6 can now be
defined in terms of

~
V(e)

~

. One can, for instance, use
the maximum value of m.

~

V(e)
~

or an average of
m.

~

V(e)
~

over the occupied band. It is useful to intro-
duce new one-particle states,

f v

(3.2)

with one f electron and one hole below eF. We can form
other states, i.e.,

gcAA" I
0&

of this type. However, if these states are orthogonal to
~

e& (gc„=0), they do not couple to
~

0& via H and they
do not enter the ground state calculation. The states (3.2)
couple to two sets of states,

g WzA',.I

o &,
Qxg

(3.3)

with one conduction electron E ( & eF), one hole e, and
states

(3.4)

where all the conduction states below the Fermi energy are
occupied and the f level is empty. In (3.1) the core level is
occupied. The Fermi energy eF will in the following be set
equal to zero. The rest of the states are obtained by re-

peatedly letting H act on
~

0&. Thus we introduce a set of
states

v=1

V e „+H.c. de+ U n np

with two f electrons and two conduction holes. States
(3.4) play an important role in the spectroscopies where a
core hole is created. Finally we introduce states

+e,n, +Ho . (2.4)
&PzA.AA". I

o &

XI
(3.5)

We have introduced a combined index v=(m, o) for the
orbital and spin degeneracies since these degeneracies are
equivalent when the model assumption (2.2) is used. Thus
ev refers to a conduction state and v to a f state. The
term Ho,

Ho=+ Jag, f, de, (2.5)

contains the remaining linear combinations of states
~

ko.
&

orthogonal to the states
~

e, v& defined in Eq. (2.3). These
states,

~
e, a&, do not couple to the f level and lead to a

constant-energy shift which is of no importance. The
Hamiltonian (2.4) conserves the number of electrons,

J w,A,4~+4.0. , (2.6)

corresponding to a given value of v.

III. GROUND STATE

We calculate the ground state of (2A) variationally us-

ing Brillouin-Wigner perturbation theory as a guide to
which basis states to include. We first introduce a state

l 07 & g EV 6V V IE V

with one f electron, one conduction electron, and two
holes. These states couple to states (3.3), and in addition
states (3.6) couple to (3.4). The states (3.4) and (3.5) are
limited to e & e' as the basis functions otherwise would be
linearly dependent. A variational calculation of the

ground state using the basis functions
~

0 & and
~

e & leads
to the same results as first-order Brillouin-Wigner pertur-
bation theory. ' We therefore refer to such a calculation
as a first-order treatment. A solution which also includes
the states ~Ee& is called a second-order calculation, al-
though it also includes terms beyond second-order
Brillouin-Wigner perturbation theory. Here we show how
the first-order calculation is performed when double occu-
pancy of the f level [states (3.4)] is neglected. In Appen-
dix B we perform a second-order calculation including
double occupancy.
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For the first-order ground state
f
Po") we use the an-

satz

I(l'o &=~ f0&+ f a(e) le&de (3.7)

where the integral over e is limited to the states below
eF ——0. We define

bE=Eo')(N) —(0
f
H

l
o) =—Eo()(N) —Eo, (3.8)

where Eo"(N) is the ground-state energy. Thus b,E is the
lowering of the energy when the impurity is introduced.
Minimization of AE gives the secular equations

bE = +N/ f [ V(e) ]'a (e)de,

(bE —eI+e)a (e)=QN~V(e),
where we have used

(efH f0)=QNf V( E) . '

Solving (3.9) and (3.10) we obtain

b.E=NI f de,l
V(e) l'

AE —6'y+ E

nI=A f f
a(e')

f
de= C

1+C '

where

f
V(e) l'

(dE ef+e)2—
and

A =(1+C) ' =+1 ni . —
If V(e) = V is a constant within
fbE ef f

«8, we—obtain

AE —eg
DE=Kg V ln

(3.9)

(3.10)

(3.1 1)

(3.12)

(3.13)

(3.14)

(3.15)

the band and

(3.16)

C=N/V (3.17)
l
bE

Due to the variational nature of the calculation bE & e/.
In the spin-fluctuation limit n~-l, the formulas can be
further simplified, as described in Appendix C.

In the model (2.1) the degeneracy N~ of the f level is 14.
If spin-orbit splitting is taken into account and only the
lower of the two spin-orbit-split levels is considered we ob-
tain X~——6. In both cases X~ is large and it is interesting
to study the limit X~—+ po. Since 1VI enters Eqs.
(3.12)—(3.17) in the combination N/ f

V(e)
f

it is useful
to consider the limit

N~~oo, N/ f

V(e)
f

=const, (3.18)

since in this limit the first-order solution stays constant
and the exact solution converges. We now apply the
Hamiltonian to the first-order ground state (3.7) assuming
that double occupancy is suppressed ( U = oo ). This leads
to
H fy( )) E( )(N) fy( ))

+A f f [V(E)]'a(e) fE,e)de dE,
(3.19)

(E elH le)=[V«)]', (3.21)

which goes to zero for X~~ ~, awhile the matrix element
between

f
0) and

f
e) [Eq. (3.11)] remains finite. Thus

l
0) and

f
e) form a subspace which does not couple to

any other state in this limit. This is related to the observa-
tion that there are NI ways of going from

f
0) to a state

g„P,„f
0) (1 & v &Ny), while there is only one way of go

ing from i){)„g,„f
0) to it)g„g, f

0). Similarly, the states
f
E,e),

f
E,e, e', 1), and

f
E,e,e';2) form a subspace

without coupling to other states in the limit N/~ oo (if
double occupancy is neglected).

For finite N/ all these higher states contribute to the ex-
act hE. However, each time we take a higher subspace of
the types (3.3) and (3.6) into account, the corresponding
contribution is one order higher in 1/N/. Thus for
N/ f

V(e)
f

fixed states (3.3) and (3.6) give a contribution
of the order N/ '. As pointed out before we define the or-
der of the calculation in terms of the basis states. Thus a
first-order calculation includes the states (3.1), (3.2), and
(3.4) if double occupancy is not suppressed. A second-
order calculation also includes state (3.4) and a third-order
calculation the states (3.5) and (3.6). The first- and
second-order calculations lead to errors in b.E of the order
I /Ng, while the errors in the third-order calculation are of
the order 1/NI for U= oo. If the states (3.5) are neglected
in the third-order calculation, the errors remain of -the or-
der 1/NI, but the calculation is simplified substantially.
If double occupancy cannot be neglected some additional
states have to be included to avoid errors of the order
1/NI

To test the accuracy of the ground-state calculation we
have first applied the theory to a nondegenerate system
(N/ 1) where we ——can obtain the exact result. For

f
V(e)

l
we have used a semielliptical form symmetric

around eF ——0,

(3.22)77
f

V(e)
f

—2V2(g2 e2))~i/g2

We define
b =n max, [ f

V(e)
l

]=2V2/g .
In Fig. 2 we show results for b,E [Eq. (3.8)] as a function
of e/. The figure shows the first-order result (3.12), the
second-order result obtained by using the states
(3.1)—(3.3), and the third-order result based on the states
(3.1)—(3.3), (3.5) and (3.6). Since the expansion parameter
I/N/=1 is not small, we do not expect the first-order re-
sult to be particularly accurate, except for eI &&b, where

where the E integral is limited to the states above eF ——0.
Since

l
P'o") was obtained by diagonalizing H in a sub-

space of all possible states, we recover this state. Howev-
er, H can also connect the states

f
e) to the states

f
E,e )

outside the subspace and we obtain the second term in Eq.
(3.19). The norm of this term is

B' ' 0 Bl~' f f l
V(E)

f la(e) f'de dE& f f
V(E) f'dE .

(3.20)
Thus in the hmit (3.18) the norm of the second state in
(3.19) goes to zero and the state (3.7) is the exact ground
state. ' The total space of states splits up in disconnect-
ed subspaces in the limit (3.18). We have
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0.0 (4.1)

- 0.5
where

(4.2)

0 1 2 3 4 5

FIG. 2. Energy b,F. [Eq. (3.8)] as a function of ef for a nonde-

generate system. The density of states was given by Eq. (3.22)
with B =3 eV and 6=1.5 eV. First-, second-, and third-order
calculations are compared with the exact result.

and z =e—iy. In the theoretical discussion y is an infini-
tesimal positive quantity, while it is finite in the numerical
work, to simplify the calculation and to describe Lorentzi-
an life-time broadening. As indicated in the Introduction,
we introduce a basis set I ~

i ) ], consisting of some of the
states (3.1)—(3.6) with the core level empty. We can then
obtain an approximate expression for g, (z) by assuming
that these basis states form a complete set of states

6/ef provides a small parameter. The figure shows, how-
ever, that the second-order result is fairly accurate over
the whole range. The lower limit, ef ———1, corresponds to
an occupancy nf ——0.74. In Fig. 3 we show AE and nf as
a function of Nf for a fixed value of Nfh. The figure il-
lustrates how the first-order theory becomes increasingly
accurate as Nf is increased. For Nf ——14 the difference in
AE between the first- and third-order calculations is 0.03,
and the difference in nf between the first- and second-
order calculations is 0.007.

(4.3)

and invert the matrix (i
~
[z Ep(N)+—H]

~ j ). Because of
the operators g, and ttj, in (4.2), the final-state Hamiltoni-
an H (n, =0) enters the problem where we set n, =0 in Eq.
(2.1). An important property of this approach becomes
obvious if we transform to new states

~

n ), which diago-
nalize H(n, =0) in the space I ~

i ) ]. Our approximate
core spectrum can then be written as

p, (e') =& I (e.(N —I) 14, 1@p& I

'

IV. XPS CORE SPECTRUM X o( e ep(N) +e„(—N —1)) . (4.4)

In the sudden approximation the core-level photoemis-
sion current is directly related to the core spectrum

This expression differs from the exact one [Eq. (1.1)] by
the appearance of approximate states,

~

Np ) and

~

e„(N —1)), and energies, ep(N) and F.„(N —1), due to
the use of a finite basis set.

It is now obvious that (4.4) is positive for all energies in-
dependently of the quality of the basis set. Furthermore,
(4.4) is zero above the threshold

-15—

0.75—
&f8, =15

c) =-1Q

9.70—

I

10

FICx. 3. Energy b.E [Eq. (3.8)] and the f occupancy nf for a
semielliptical density of states [Eq. (3.22)] as a function of the
degeneracy Xf for a fixed value of %f6=1.5 eV. Figure shows
results of the first- (dashed-dotted curve), second- (dashed
curve), and third- (solid curve) order calculations. For Xf——1

the crosses show the exact results. Parameters are e~ ———1 eV
and B=3 eV. Observe the vertical scale.

~,„=ep(N) —~p(N —1) .

The error in e,q depends on the completeness of the basis
set and the degree of cancellation of errors in
cp(N) —Ep(N —1 ). 'Owing to the variational principle the
description of the threshold should put moderate demands
on the basis set. For the same reason one may expect that
the positions of the peaks in the spectrum are reasonably
well reproduced and that the appearance of unphysical
peaks is unlikely. This is in contrast to Green s-function
decoupling techniques where it often is hard to suppress
unphysical poles over the whole parameter range. This
formulation is convenient to use for a discussion of the
limit (3.18) (Nf —woo). We showed in Sec. III that our
method leads to the correct ground state

~
Pp) in this lim-

it. Since the exact expression for the spectral density
and expression (4.4) are identical in form, the proof that
(4.4) is exact for Nf —+ ac just requires that we show that

~

e„(N —1 ) ) and e„(N —1) are exact eigenstates and

eigenenergies, respectively. It is not necessary to find all
the eigenstates. To calculate (1.1) we only need the ones
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(
1 6

V v gXAS(Z)5vv'
z +ED(N) H- Z +kE +E —ef + Uf, + (Nf 1)I—( —z bE——e, +2' 2—Uf, + U)

where I is defined in Eq. (D7). The minus sign enters because the resolvent operator in this case contains H—. We can
now express the other matrix elements of [z+Ec(N) H] —' in terms of gx~s(z) using the same technique as for the core
spectrum (Appendix E). We define

a (e)[ V(e)]*
QN —& z + b,E +e, —2' +2U~., —U +e

and obtain the spectrum

=12 2
0

~

a(~) i'yNfI(»= —~'X
l
~- I'Im gXAS«)[1+(Nf —1)~ «)]'+(Nf —1) f dE

v
—~ z +AE +e, —2' +2 Uf, —U +e

(5.6)

(5.7)

In Fig. 8 we show some typical XAS spectra for different
values of nf. The spectra show two peaks corresponding
to f ' and f final states. To be able to compare the XAS
and XPS spectra, we arrange the energy axis in both cases
so that the peak corresponding to the lowest final state is
to the right. Since in the 3d~4f XAS process an f elec-
tron is added to the valence system, we expect the weight
of the f ' peak to vary with w(f ), the weight of the f
configuration in the initial state. The figure shows that
there is such a relation, but that the weight of the f ' peak
is substantially smaller than w(f ). This is illustrated
more quantitatively in Fig. 7 which is discussed in Sec
VII.

VI. VALENCE PHOTOEMISSION

Photoemission from the valence band has often been
used to study the position and width of the f level in Ce
compounds. ' ' We therefore focus on the emission
from the f level and describe the photoemission process by

(6.1)

where E is the energy of a scattering state. In the sudden
approximation the photoemission current is given by

j(E )-—Imp Pp Ttg „T ~.)-
V E i 0+ Eo (N—) co +H— — (6.2)

Thus we need to calculate the Green's function

I~' ~ =(00 0,, z i~I ~0. 00) (6.3)

0.10

0.20

Since the ground state is nonmagnetic, g ((z) is indepen-
dent of v. We show explicitly a calculation correct to
lowest order in 1/Nf. We use the first-order ground state
(3.7) and obtain

0.31

0.43

0.55

l(„~ y,"')= f dna(E)y, .i
0) .

Nf

We introduce the final-state basis function

This function couples to

(6.4)

(6.5)

0.69

0.79

10 B 6 4 2 0
c(eV)

Fl&. g. 3d ~4f XAS spectrum as a function of the f weight
w(fo) in the ground state Spectra are. normalized to the height
of the larger peak and the f' peaks are lined up. We have used
the parameters [Eq. (4.10)] eo ———1 22, &=2 79, &=0 41i
U=6.4, and ef —Uf, ———11.9. Lorentzian broadening of 1.8 eV
(FWHM) has been introduced and all energies are in eV.

and

Nf —1,~„
(6.6)

i
e, e', v;2) =g„g,„g, i

0) .

To avoid overcompleteness in the subspace considered,
(6.7) is limited to e) e'. We need the matrix elements

(e,e', v;1
~

H
i
e",v) =QNf —1V(e')5(e —e"), (6.8)
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(~,~'v;2
~

H
j
~",v) = V(~')n(~ —~") —V(~)g~' ~") .

(6.9)

H(e, ~') =(z hE ——e)5(e —e'), (6.10)

H(«, ~~e2) = (z —~E —&—e'+ &f @(e—e ~
)&(e' —eq),

(6.11)

Using arguments of the types (3.19), (3.20), and (4.6),
one can see that for U = oo it is sufficient to use the basis
states (6.5) and (6.6) to obtain the exact spectrum in the
limit (3.18), Nf~ao. This follows since both the state

~
e,e', v;2) and states of the type P~ g, g,

~

0) couple to
the states (6.5) and (6.6) with the strength V, which goes to
zero in the limit Xf~ oo. To calculate the Green's func-
tion (6.3) we have to invert H =z —Eo(N)+H in the sub-
space specified above. Using the basis functions (6.5) and
(6.6) we obtain the matrix elements

where

1,(z)= f ~
v(~) ~' lE,

z —E.—1 (z —Ey —6)
(6.20}

and y(z) is defined in Eq. (E7). The Green's function (6.3)
is then given by

g~(z)= f de f de'a(e)* G~(e, e')a(e'},
1Vf

(6.21)

Nfl (ef bE) =—b,E, —

where a (e) now should be obtained from a second-order
ground-state calculation including states (3.3).

We discuss in more detail the structure of the lowest-
order result (6.14)—(6.16). We first observe that
Img(e —i0+) is nonzero for —B & e &0. In addition g(e)
has a pole at E=Ef bE. —This can be seen from the fact
that

H(ee', e")=QNf 1V(e—')5(e —e"), (6.12) which follows from (3.12). The strength of this pole is

with obvious notation. Since (6.11) is diagonal it is con-
venient to use Eq. (D5), which yields

(e,v
~

[z —Eo(N)+H] '
i
e', v)

1 — Nf I (z)
Bz z =e —AE

J

= 1 —Elf ) (6.22)

and

=g (z —AE +ef —e)5(e—e'),

1
g(z) =

z Ef NfI(Z)

(6.13)

(6.14)

which follows from Eqs. (3.14) and (3.15). Inserting this
result into Eq. (6.16) yields

=1p, (e)= —ImNfg ~(E i 0+ )—

(1 nf) Nf V(e—)
~

b,E ef &e'&0 (6—.23)
(E+b,E —ef )

2

(6.15)

In (6.14) we have anticipated the more accurate result
(6.19) below and used the prefactor Nf in front of I (z) in-
stead of the factor (Ny —1} which would result from Eqs.
(6.11), (6.12), and (D5). The additional term I (z), which
is of the order 1/Nf, is due to the basis functions (6.7).
Equation (6.13) provides the only part of H ' we need,
since the basis function

~
e,e', v;1) do not couple to

1t'„~ $0 ') [Eq. (6.4)]. Thus we obtain

g (z} f de
~
+(+)

~

g(z +E++f +) ~ (6 16)

For finite Nf we can find a more accurate solution by
keeping the basis functions (6.7) and introducing the func-
tions

~
E,e,e', v; I ) = g pF„p, „g,„~ 0), (6.17)

QNf —1,~„
I
E e ~' v» =AA, A"- I

0 & . (6.18)

Then we have to invert the matrix

[G ~(e,e')]

=[z bE e Nfl 2(z —hE—+E—f —e)]5(e——e')

V(e) V(e')
z —AE+ Ef —E —E —

7 (z —AE —E—E)'

1=—Im
7T

1 e( —e)
e —i 0+ ef I'( ef i 0+ )— ——

(6.24)
where e(x) is the unit step function, and

1(z)= f z —e
(6.25)

now involves an integral over a/I energies in the band,
while the integral in (6.15) defining I (z) is limited to ener-

where we have used (3.10) and (3.15). For e & b,E —ef the
continuum of Img (z) also contributes to Img ~(z).

Equation (6.23) describes a sharp rise in the spectrum
close to eF. The origin of this structure is the function
Nf I (z) in Eq. (6.14), which results from the interaction
between states (6.5) and (6.6). Out of these basis functions
we can form linear combinations of the type g,„~ $0),
which are identical to the ground state except for a con-
duction hole at e. These states contribute weight at the
energy e, and they have a finite overlap,
(1 nf)a(e)l+Nf—, to g„~ $0) [Eq. (6.4)]. It is instructive
to compare (6.23) which is exact for Nf = ao with the ex-
act result for a nondegenerate model, Xf——1. In the latter
case the imaginary part of the Green's function g ~(z) can
be calculated from an expression similar to g (z) defined in
(6.14)

p, (e)=—Img~ ~ (e i 0 )—Nf ——1
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gies below the Fermi energy ez ——0. The other important
difference to the exact result for NI ——ac is that no energy
integration as in (6.16) occurs in (6.24). For the compar-
ison of these exact results for Xf——1 and Nf ——oo we have
to distinguish the cases ef & ez and ef & ez. For simplicity
we assume a broad band (B»Nib, ) with V(e)=const
(b, =m V ). Then the spectral function (6.24) for N~ ——1 is
a I.orentzian of half-width 6 centered at ef which is cut
off above the Fermi energy ez ——0. For ef & e~ the spec-
tral density (6.24) therefore is rising with energy as one ap-
proaches the Fermi energy from below. This rise is just
the onset of the "affinity peak" which lies above EF For.

pf »6 the results for Ny ——1 [(6.24)] and Ni = oo [(6.16)]
agree to leading order in V . This is no surprise as in this
case perturbation theory in V works independently of the
value of N~. When e~ lies below the Fermi energy, the
Nf ——1 result leads to an "ionization" peak at ef and the
spectral density at e+ is decreasing. This is in strong con-
trast to the NI = ac result [(6.23)] which always shows an
increase in spectral weight when the Fermi energy is ap-
proached from below. If we would extrapolate the
N~= ao expression [(6.23)] to energies above eF, p, (e)
would diverge at e=e~ —hE. [We will see in the follow-
ing section that the HIS spectral function, which presents
the "natural" continuation of p„(e) above eF actually has a
peak at eF hE ]Th—e beh. avior of ImNIg ~ (e i 0+ ) a—s a
function of ei is therefore very different from the Ni =1
case except for ef »4. As ef approaches the Fermi ener-

gy from above and moves below it, a remnant of an
(Ni ——1)-like affinity peak is pinned above the Fermi ener-

gy at ey hE (see als—o Sec. VII) and the onset of this peak
shows up in p„(e) [(6.23)]. The weight of this peak, which
cannot be explained in a "one-particle picture, " decreases
like 1 —nf when ef moves further below ez and ef —AE
moves closer to eF. In the spin-fluctuation limit
(eI (& Nyb, ), a "normal"—ionization peak at ei with a
width mN~V occurs in p, .(e) (for B &&

~ e& ~
) and the rela-

tive weight of the rise at eF becomes extremely small. The
drastic increase of p, (F) when e approaches eF in the
spin-fluctuation limit, has been discussed in connection
with the formation of local moments (Ni ——2). In the
symmetric case (2@I+U =0) the spectral function of the
local one-particle Careen's function has a peak directly at
the Fermi energy for a symmetric band as can be deduced
from the particle-hole symmetry of the problem and the
generalized Friedel sum rule (FSR) discussed below. This
peak is usually called the "Kondo" peak. A universal ex-
pression for the shape of p, (e) near e~ in the spin-
fluctuation limit including the continuum part resulting
from Img is given in Appendix C.

The increase of p„(e~) with Ni as well as the accuracy
of result (6.23) for finite N~ can be discussed in terms of
the exact Fermi-liquid relation between p„(eF) and nI,
which follows from particle-number conservation ("gen-
eralized FSR"). We have

(6.26)

where it again has been assumed that the band is broad

and that V(e) is constant (b, =m V ). In this limit result
(6.23) takes the form

2p„(eF)= nI,f
(6.27)

where we have used Eqs. (3.13) and (3.17). Expanding the
sin function in (6.26) we can see that expressions (6.26)
and (6.27) are identical for N~= ac, as they should. In
Fig. 9 we show Eqs. (6.26) and (6.27) as a function of NI
for a mixed-valence system (nI ——0.8) and a system in the
spin-fluctuation regime.

For Ni &6, the result [(6.27)] deviates less than 10%
from the exact result even in the spin-fluctuation limit,
and for Nf ——14 the deviation is less than 2%%uo. Figure 9
also illustrates how p, (eF) grows with N& in the limit
X~b, =const. For n~ ——0.99 the Xy = ao result for p„(ez) is
about a factor m /4=2. 5 larger than the Ni ——2 result. In
Fig. 10 we compare the analytical result (6.16), and the
more accurate result (6.21) for Ay=6. The similarity be-
tween the curves further supports the conclusion that Eq.
(6.16) is quite accurate for Ni & 6. In Fig. 11 we show the
quantities ImI (e—i 0+), ReI (e i 0 —), and e —ei.
which enter

Img (E i 0+—)
Nilml (e i 0+—)

[E Ei —N—i ReI (E i 0+ )]—+ [ImI (e 0i+—)]
(6.28)

n) = 0.99

n)= 0.8

I I

2 6
N

10 14
f

FIG. 9. %"eight p„(e~) of the valence spectrum at the Fermi
energy as a function of the degeneracy NI. The exact result
[solid curve, Eq. (6.26)] is compared with the lowest-order result
[dashed curve, (6.27)]. To make the results more universal we
have multiplied them by NyA. Figure shows results for both the
mixed-valence (n~ ——0.8) and spin-fluctuation regimes (ny ——0.99).

The figure also shows Img(e —iO+) and
~
a(e)

~

which
enter (6.16). The figure illustrates how the sharp cutoff in
ImI (e—i 0 ) leads to a logarithmic singularity in
ReI (e i 0"+) —and a pole in g (e i 0+) —In addi. tion there
is a split-off state slightly below the bottom of the band
and a large contribution to Img(e —iO+) just above the
bottom of the band. This leads to the peak at —2. 1 eV in
Fig. 11. Such a peak at the bottom of the band is to be ex-
pected if the density of states goes to zero fairly rapidly
and Nfh is not small compared with ef+B but ef is
within the band.
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Ntb, =14
we focus on the process where the incoming electron falls
into an f orbital. This process is described by the operator

T= g~AA;„. (7.1)

We assume that the initial state, with a fast incoming elec-
tron, can be written as

WE„I do& . (7.2)

The probability for observing a photon with energy co is
then

I(co)-—
l
co„l

c{eV)
FICy. 10. Valence photoemission spectrum in the first-

(dashed curve) and second- {solid curve) order treatments. %"e
have used the parameters [Eq. (3.22)] B=2, Ei = —1, and
N~5=1.4. Lorentzian broadening of 0.5 eV {F%'HM) was in-
troduced. All energies are in eV.

We therefore study the Green's function

1r' ~ =(PD P., z ~~~ H 4,' 00),

(7.3)

(7.4)

VII. BREMSSTRAHLUNCz ISOCHROMAT
SPECTROSCOPY

which is related to I(co),

I(co)=—
l

co
l

Img~(E co i 0+—) . —1
(7.5)

BIS, or inverse photoemission, is complementary to
valence photoemission since it gives information about the
unoccupied states. In particular, BIS has been used to
determine the energy of the f configuration, which pro-
vides an estimate of U. '

In BIS, electrons with a large energy make transitions
into lower-lying unoccupied states in a radiative process
and the energy of the emitted photon is measured. Here

With this definition Img~(E i 0+)——=0 for a&0, while
Img ~(e—iO+), introduced for valence photoemission, is
zero for e&0. These definitions allow us to easily corn-
pare the BIS and valence photoemission spectra.

In the calculation of the ground state
l Po & we take dou-

ble occupancy of the f level into account (see Appendix
B), but neglect the second-order state [Eq. (3.3)]. The
latter states have a small weight and would complicate the
calculation.

The choice of basis states for the inversion of the opera-
tor [z+Eo(N) H] is more dif—ficult than for valence
photoemission. The weight,

(NgA. )Im I g ~(e i 0+)d—e,

c{eV )

FICx. 11. Quantities Re I (e i 0+), Iml (e——i 0+) [Eq. (6.15)],
e—ei, l

a (e) l, and Img(e —i0+) [Eq. (6.14)]. Same parameters
as in Fig. 10 are used.

of the valence spectrum is nI, while the corresponding
weight for the BIS spectrum is N~ —nI. An exact theory
should, nevertheless, give

Img ~ (0+ i 0 )=+I—mg ~ (0 i 0+)—
Even in the limit X~—+~, this requires that the BIS
theory is correct to order 1/Ny, since the weight of the
BIS spectrum is of the order X&. Thus lowest-order basis
functions are not sufficient in the BIS calculation. A sys-
tematic inclusion of all contributions of the order I/N~
does, however, not seem worth the effort at the present
stage. The choice of basis states below and the first-order
ground state give, nevertheless, a continuous connection
between the two spectra for N~= oo, at least if f states
are suppressed. For any finite XI, there is a discontinuity
at z =0, but this defect is usually not detectable for a real-
istic broadening of the spectrum. We use the basis states
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I
v& =q„'I 0&,

g ~X@,.Io&,
Nf —1 „~

I

E v& =PEv
I

o&

2 @'A@,. I
0&,

Nf —1

2 CX O" IO&
Nf —1 P~„

I
E,~, v;3& =A'AA, „Io&,

(7.6)

(7 7)

(7.8)

(7.9)

(7.10)

(7.11)

Although BIS and XAS (Sec. V) are formally very similar,
our larger demand on the accuracy of the HIS calculation
requires a larger basis set [(7.6)—(7.11)] and therefore a

and invert the corresponding matrix. This approach
yields

N
g~(z)= g g a G(j~(z)aj,

i =0 j=O

where

(7.12)

ao=
a;=2[w;(Nf 1)IN—f]' a(e;) .

The matrix G ~(z) is obtained by inverting

separate treatment. Using a similar technique as used for
the other spectroscopies (see, e.g. , Appendix E), we calcu-
late the matrix elements of

[z+Ep(N) H]——:[G (z)]

(G )pp z+ b,E———Ef —pp(z),

(G )p —— QNf 1V—(E;)[1+—pi(z, e; )]~w;, 1 &i &N

V(e';) V(ej)
(G )ij ——z+AE 2' —U+e—1+2'Y( —z —bE+ef —e;)5ij+(Nf —1) [pi(z, e;)—pi(z, e )]pw w

E'
1 j

1(i j(N .

(7.13)

(7.14)

(7.15)

We have discretized the occupied part of the conduction band ( —B,O) in N points, e;, as in Appendix E, and introduced
the weight factors w; [see the text after Eq. (E3)]. We have also defined the function

p„(z,e) = f 00

dE .
(z+bE E —ef+e)"(z+—b,E E+NfI (——z bE+E+ef)— (7.16)

Since pp(z, e) is independent of e, we use the notation
pp(z). The functions I (z) and y(z) are defined in Eqs.
(6.15) and (E.7), respectively.

A typical spectrum is shown in Fig. 12. There is one
peak at -ef bE due to a tra—nsition to an f ' final state,
and another peak at -2@~+U —AE corresponding to an
f final state. The f peak is mainly due to matrix ele-
ment (7.15). This element contains an imaginary part
21my-2n. V, which describes how an f state can decay
through the tunneling of either of the two f electrons into
a conduction state. We observe the difference from the
valence photoemission spectrum. Since the hole created in
the photoemission process can be filled in Ny ways, the
corresponding imaginary part of the ionization peak at ef(« NfrrV ) is Nfm V . Th—e f peak in the BIS spec-
trum shows a tailing towards higher energies. The reason
is that the final state contains two f electrons and one hole
in the conduction band. This hole is likely to be close to
the Fermi energy, but can also be located further down,
which corresponds to the high-energy tail of the f peak.
Because of this tailing, the f peak appears broader than
one would expect from the imaginary part of Eq. (7.15).
This is in particular the case if the f occupancy is small.

To study the f ' peak in inore detail, we assume U = oo,
which allows us to obtain an analytical solution. This
yields

where

Imp ( e i 0+ ) =—0 for e & ef b,E . — (7.19)

The determination of the strength of the pole at z =E in
Eq. (7.18) is quite analogous to the calculation in Eq.
(6.22). We then obtain

Impp(e i 0+)=(—1 nf)m
I
V(e) I—, 0(e &ef b.E

(7.20)

This leads to a small broadening of the f ' peak, in partic-
ular if n~ -1. For N~~ ao and 0 & e & ej —hE we can ex-
pand the imaginary part of (7.17) as

(1—nf )
ImNfg (e i 0+ )—=- , Nf I

v(e) I'.
(e+ b,E —ef )'

(7.21)

where pp(z) is defined in Eq. (7.16). We can rewrite the
integrand of Eq. (7.16) for n =0 as

I
v(E) I'

z+bE E+NfI ( z bE+E+Ef)
(1—nf) I

V(E)
I +P(z E), (7.18)—

z —E

1
g (z) =(1—nf )

z +b.E —ef —pp(z)
(7.17)

This joins smoothly to the valence photoemission spec-
trum, Eq. (6.23), at e=O, as it should. For a finite value
of Nf, Eq. (7.17) has a pole at a slightly negative e and
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Nf h =1.1
N) =14
cf = l.0

II

I I
I
I
I
I
I

t I
I

Corr

1 I I I I I I 1 I I I I ditional contribution to the width, in particular if nf is
small. In the spin fluctuation limit ef && Nf—b, and for a
large U the relative weights of the three peaks are as fol-
lows: The ionization peak near ef has the weight nf -1,
the weight of the f ' peak (Kondo peak) at Ef bE=—O is
(1 nf—)Nf and the f peak near 2ef+U b.E—has a
weight n~(NF 1)=—Nf —1. Therefore even for nf =0.9
and Nf ——14 the weight of the f ' peak is larger than the
weight of the ionization peak: Even if there is a small
chance, 1 n—f, to find the f level empty, there are Nf dif-
ferent ways to put in the extra electron. From this argu-
ment it can also be inferred that only a fraction —I /Nf of
the f' peak is seen in photoemission. Almost all its
weight lies on the BIS side for large degeneracy Nf. To
show this fact in a figure like Fig. 13, we would have to
chose a broadening smaller than ef —b.E. Since this f'
peak then would be extremely high and narrow, an ex-
treme spin-fluctuation case is not included in Fig. 13.

x5

-4 -2 0 2 4 6 8 )0
e (eV)

FIG. 13. Combined photoemission and HIS spectra with a
Lorentzian broadening (0.6 eV FWHM). Figure shows the spec-
trum with correlation taken into account (solid curve) and in the
HF approximation (dashed curve). In the latter case, the effec-
tive level has been placed so that the unbroadened interacting
and noninteracting curves have the same weight below e~ in
each panel. Observe that the left, lower, interacting curve has
been multiplied by a factor of 5. Parameters are U= 6 eV,
Nfl= 1. 1 eV, Nf =14, co= —1.22 eV, and B=2.79 eV [Eq.
(4.10)]. Equation (4.10) has been slightly modified above eF so
that V(e) is never smaller than O. l times its maximum value.
Arrows show the positions of the f level.

VIII. STATIC T =0 SUSCEPTIBILITY

Ce compounds often have a large susceptibility, which,
however, varies strongly between different compounds. '

The large susceptibility is ascribed to the f electrons, and
it has been assumed to imply a small value of A. Below
we analyze the static T =0 susceptibility in the impurity
model. For the susceptibility it is important to take the
spin-orbit coupling into account to describe the coupling
to the external magnetic field a. The Hamiltonian (2.1) is
therefore replaced by

2 jv
+ g Q (e' —g pgmK)n

k, o V=1 m= —j
photoemission f peak (see the lower spectrum). (Com-
pare to the discussion in Sec. VI.) The HF spectrum has,
of course, only one peak, unless 6 is much larger than the
values used here (no split-off states). It is also interesting
to compare the widths of the peaks. While the HF peak
has a half-width -6, the peak widths in the correlated
spectrum are quite different for the different peaks and
they can also depend on the value of nf. The shape of the
lower peak in the photoemission spectrum depends on the
large quantity Nfb„while the higher peak (the onset of the
BISf ' peak) grows on the energy scale ef bE. The BIS—
f ' peak tends to have a half-width (1 nf )b, [Eq. (17.20)]-
and the BIS f peak obtains a half-width 26 due to tun-
neling into the conduction states. For the latter peak the
tailing towards higher energies can give an important ad-

+ g g (Ik" 0 Wk +H. c.»
V=1 k, m, Cr

(8.1)

where jI ———, and j2 ———', are the two spin-orbit-split f lev-
els, and e„are the corresponding energies. Lande's g fac-
tor is given by g„and pz is the Bohr magneton. The hop-

ping parameters Vj,
" can be expressed in the parameter

introduced earlier, Vk, by using the relations ' between
the states

~
jm ) and

~
l, o ). We assume that double occu-

pancy of the f level can be neglected and the Coulomb in-
teraction is therefore not shown explicitly in (8.1).

To obtain the susceptibility, we calculate the total ener-

gy at T =0 and differentiate twice with respect to the
external magnetic field a.. Performing a variational calcu-
lation as in Sec. III, we obtain

(8.2)

where y is defined in Eq. (E7). This leads to the suscepti-
bilit

G„"(b,E)= f de
V(&)

I

'(2j.+1)
[b,E e,+e+ y( b.E——e)]"—gg' j„(j +1)G3(bE)

2 2 vX= —3Pg
(8.4)

(8.3)

bE(a)= g f de
AE (~ ) ev+ g,p~—m a +ek +y[ bE (a. ) —E]—

where

Gi(b,E) For the discussion, we now work to lowest order in 1/Xf
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trons did not contribute to the cohesion. We cWe can then esti-
mate the f-electron-induced contraction as

B(b,E)
a —ao ———

Ba
BE
Ba

(9.3)

We relate B E/B V to the experimental bulk modulus and
use Eqs. (9.1) and (9.2). For V(a) we assume a power
dependence on a,

V(&)=(bio«) Vo . (9.4)

U
'

th bulk modulus of a-Ce we obtain the resultssing e
in Fi . 15 where we have expressed ia —ao„shown in ig. w
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arameters 4=0.06have used the bulk modulus of a-Ce and the parameters 4=
eV, A=2 eV, and = eU= 5 V together with the band structure
[(3.22)].
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FICx. 16. 3d core-level XPS, the 31~4f~4 XAS, and the BIS
N' To simulate the 3d spin-orbit splitting wespectra or Ce i2. o si

S and XAShave superimpose wod t theoretical curves for the XPS an
'b he multiplets in the BIS spectrum wespectra, and to descri e t e m

d theoretical curves with different values ohave superimpose e
)

' 0.19 (XPS), 0.23 (XAS), and 0.25 (BIS). eDensi-Value of w( is
arametersf E . (4.10) was used with the parame

ep ———1.995 eV, 8=2.005 eV, and 6=0.13 eV. We used t e p-
eV e = —1.3 eV (XPS), —1.2 eV (XAS),

—1.2 eV (BIS). Values 5.5 and 6.1 eV were use or iand —. e
value 5.3 eV was usedthe XPS and XAS spectra and the average value

for the BIS calculation.
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3d spin-orbit splitting, which is not included in the model.
An inelastic background has also been added to the calcu-
lated spectrum. For

~

V(e)
~

we use model (4.10), with
Ep = —1.995 eV and B=2.005 eV, which gives a small
density of conduction states at ez as is observed experi-
mentally. The value of V (or b ) was adjusted so that the
experimental weight of the 3d5/2f peak was reproduced,
and ef(nf) was varied until the weight of the 3d3/2f peak
agreed with experiment. The 3d3/2f and 3d5/2f peaks
overlap and cannot easily be used to estimate 5 and nf.
The experimental f ' peaks appear broader than the calcu-
lated ones because the configuration with a 3d hole and a

f electron has several lines. These multiplet effects are not
included in model (2.1).

Figure 16 also shows the 3d~4f XAS spectrum. The
experimental spectrum deviates from the simple 4:6 ratio
for the weights of the 3d3/p and 3d~/2 parts because of the
effects of intermediate coupling. We have therefore su-

perimposed two calculated spectra and adjusted the rela-
tive weight of the 3d3/2 and 3d&/z parts of the spectra to
fit the experiment. This is less important since we are in-

terested in the relative weights of the f ' and f peaks. We
have also added a weak background as indicated. The f
peak clearly shows a multiplet structure not included in
model (2.1). To describe the f ' fpeak s-eparation, we

have increased U slightly from 5.5 eV (XPS) to 6.1 eV
(XAS). This difference could be due to the different
weighting of the multiplet lines in the two spectroscopies.
We have also changed ef slightly to reduce the f occupan-

cy by 0.04, which gives a better agreement with the experi-
mental weights for the f ' and f peaks. The other param-
eters are unchanged. To describe lifetime broadening and
instrumental resolution a Lorentzian broadening (1.8 eV,
FWHM) was introduced for both the XAS and XPS spec-
tra. Finally, Fig. 16 shows the BIS. The f multiplet
splitting leads to a substantial broadening of the f peak,
which makes a comparison of the experimental and
theoretical peak weights and shapes more difficult. We
have therefore added calculations using different values of
U. Since the energy of the f peak grows linearly with U,
this procedure allows us to simulate the multiplet split-
ting. We used the same separations between the different

f lines and the same relative intensities as Lang et al. '

used for y-Ce, while the f' fenergy separ-ation and the
relative weights of the f ' and f peaks are determined by
the calculation. The experimental spectrum seems to have
a fairly constant background extending down to ez. Such

a constant background is also observed for many systems
with no f peaks close to eF, and we therefore assume that
it is due to transitions into low-lying conduction states.
Since such transitions are not included in the theory, a
constant background has been added to the calculated
curve. We have also introduced Gaussian broadening
describing the instrumental resolution and energy-
dependent Lorentzian broadening, 2I (e) =0.50
+0.2(e —E~) eV, where e is the energy of the state con-
sidered. We expect lifetime effects to give a broadening
which grows linearly with E—EF for small E—EF. Th'is is

probably at least an important contribution to the energy-
dependent part of I (e), which is the same as the one used

by Lang et aI 'T. he f ' peak also appears broader because
of the 4f spin-orbit splitting, which is not included in the
theory but simulated by I (e=O) which is nonzero. These
two effects, however, may not fully justify the I (e) used

and there is a need for further study of the peak widths.
Both the broadening and the background lead to substan-
tial uncertainties in the comparison of the experimental
and theoretical peak weights, and the BIS estimates of nf
appear less reliable than those obtained from XPS and
XAS. The empirical broadening 2I (e), described above,
has been introduced to minimize this uncertainty.

We have also applied the theory of Sec. VIII and calcu-
lated the susceptibility of CeNiz using the 6 obtained from
XPS. The results are shown in Fig. 17. Since double oc-
cupancy is not included in the susceptibility calculation,
we show the results as a function of w(f ) rather than

nf ——w(f ')+2tU(f ), where tU(f") is the weight of the f"
configuration in the initial state. Comparison with the ex-
perimental susceptibility gives us an estimate of tU(f ).
This estimate is compared with the results from the XPS,
XAS, and BIS spectra in Table I. Results ' for some
other systems are also shown. All spectroscopies give
similar estimates even if the BIS result sometimes can be
about 0.2 larger than the other ones. In all cases, however,
w(f ) is much smaller than 1, while CeNiz, CeNi&, and
often CeRu2 had traditionally been assumed to have
w(f )=1 (nf =0). To obtain an accurate description of
the peak separations, we had to use slightly different
values of U for the BIS (5.3 eV), XPS (5.5 eV), and XAS
(6.1 eV) spectra of CeNi2. We expect U to be somewhat
larger in the presence of a core hole (XPS and XAS) than
without a core hole (BIS). The apparent variation of U is,
however, probably also due to multiplet splitting and other
effects not included in the model. Our values of U for

TABLE I. f-level hybridization 6 and the weight w(f ) of the f configuration in the initial state, as

deduced for the XPS, the 3d XAS, the BIS, and the static T =0 susceptibility Q'). The density of states

of Ref. 23 %as used and an average 4 defined in Ref. 23 is shown since V(e) has strong variations in

several cases.

CeRu2
CePd3
CeNi2
CeNi5

5„(eV)
XPS

0.10
0.11
0.10
0.09

XPS

0.21
0.13
0.19
0.24

w(f )

3d XAS

0.18
0.23
0.22

BIS

0.45
0.08
0.25
0.42

0.26
0.22
0.30
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l.5

CeNi2

05—

I i I I I I I

0.0 0.2 0.4 0.6 0.8 l.0
w(f')

FIG. 17. Second-order [(8.3)] susceptibility g as a function of
w(fo). We have used the parameters of Fig. 16 and the spin-
orbit splitting he~ ——0.25 eV. Susceptibility is given in units of
10 ' emu/mole and experimental result 0.83)& 10 emu/mole
was taken from Ref. 43.

CeNiz are fairly close to the value of 5 eV obtained for Ce
by Herbst et al. in an ab initio calculation, while for
CePds (U =7.5 eV) and CeRuz (U=7 eV) somewhat
larger values were required to describe the core spectra.
Our values of U~, for CeNiz (10.3 eV), CeNi5 (10.7 eV),
CeRuz (10.8 eV), and CePdz (11.0 eV), which only enter
the XPS and XAS calculations, are close to the result 10.3
eV obtained by Herbst and Wilkins for Ce. Our values
for 6 are about an order of magnitude smaller than those
obtained by Oh and Doniach. The reason is that the
weight of the f peak depends on (Xy —1)b, [see Eqs. (E6)
and (B3) and the discussion above Eq. (4.10)] since there
are (N~ 1) ways of g—oing from the f ' to the f configu-
ration. Since Oh and Doniach used X~ ——2 while we use
N~ ——14 one would expect their values to be about 13 times
larger than ours.

the peaks and the large background pose particular prob-
lems in this respect. On the other hand, XPS has a larger
surface sensitivity and may measure slightly different
properties. It would be useful to extend the theory to
(2p —+Sd) XAS, where the peaks have a fairly large energy
separation, so that the mixing of the final states should be
rather small. In terms of Fig. 7, 2p XAS may therefore be
similar to XPS, but it is less surface sensitive. To make
the treatment of 2p XAS meaningful, one should, howev-
er, extend the model used here.

In the Introduction we mentioned the possibility that
the parameters in the Anderson model may be renorrnal-
ized, for instance, due to electron-phonon coupling in a
different way for "low-" and "high-" energy experiments.
In addition to the (high-energy) spectroscopies, we have
therefore also studied the static T =0 susceptibility. For
the mixed-valence Ce compounds we have investigated, we
find that the susceptibility data are essentially consistent
with the values of nI and b, obtained from the spectro-
scopies. In a forthcoming paper, we show that for
values of b and nI in the range of Table I, one should ex-
pect the electron-phonon coupling to lead to a similar re-
normalization of e~ for both the calculation of the suscep-
tibility and the valence photoemission spectrum, unless the
coupling constant is very large. In Sec. IX we also dis-
cussed the lattice-parameter data and showed that these
data are not necessarily in conflict with the values of nI
deduced here. It would be interesting to see if our values
of n~ and 6 can be also reconciled with other low-energy
experiments. For instance, the quasielastic linewidth in
neutron scattering depends on both n~ and 6, and the
study of this linewidth may provide further insight in the
choice of parameters for the Anderson model.
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XI. CONCLUDING REMARKS

We have presented a simple method for calculating the
expectation value of a resolvent operator [Eq. (1.3)] for a
generalized impurity Anderson model. The results are
quite accurate for X~) 6, as indicated by Figs. 3, 5, 9, and
10. %'e have shown how this method can be used to cal-
culate the core-level XPS, the 3d~4f XAS, the valence
photoemission, and the HIS spectra. Our approach can be
extended to the two-impurity problem but is not well suit-
ed for a lattice of f levels. The core-level XPS spectra
provide a useful method for estimating the hybridization
6 between the f state and the conduction states. We can
furthermore use the XPS, XAS, and BIS spectra to esti-
rnate n~. This is summarized in Fig. 7. XPS is particular-
ly favorable since the weight of the 3d3/zf peak is closely
related to tu(f ). For 3d~4f XAS and BIS we have to
rely more on the calculations to estimate nI, and it is
harder to determine the weight of the experimental peaks
because of the larger overlap. In BIS the broadening of

APPENDIX A

In our basic Hamiltonian (2.1) we neglect the spin-orbit
splitting of the f level. Below we discuss how the results
are influenced by this approximation. We assume that the
spin-orbit splitting is b,e~ (6@~~0). Then there are two
levels at e~(j = —', ) and ej +b,eyj(=—,) with the degenera-
cies X~~ ——6 and %~2——8, respectively. To lowest order the
energy is now given by [compare Eq. (3.12)]

bE=Ny) f dei v(~)i '
—B QE cy+

+XIzf de .
o

(A 1)—& AE —e& —Ae&+e

In Fig. 18 we show numerical results for b.E and ny ob-
tained from a second-order calculation. The values of ny
are particularly interesting since 1 —nI largely determines
the weight of the f peak in the core spectrum. The solid
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T T

6—=eI —AE =Bexp:—50
7T&y

Ny )5

in the limit —e~ )&N~&h/m, where n~ - 1. If the j =
2

level is included, similar arguments yield

5 =[1+8/(5+ b,ef )] f' f '5o . (A3)

The reason for the importance of the j= —,'level is the log-
arithmic behavior of bE [Eqs. (Al) and (3.16)]. Thus this
contribution of the j= —,

'
level to AE is of the order

0.50

0,25

0.0
0 1

FIG. 18. Occupancy nf and the energy lowering bE [Eq.
(3.8)] as a function of ef. Solid curves show the results with the
spin-orbit splitting included and the dashed and dashed-dotted
curves have been calculated without spin-orbit splitting with

Xf= 14 and 6, respectively. The curve n7/2/ny shows the occu-
pancy of the higher (j =

z ) of the two spin-orbit-split levels di-

vided by the total occupancy of the f level. Curve b'E=ef is
also shown in the upper half of the figure. We have used the pa-
rameters [Eq. (3.22)] V=0.6, 8=6 (6=0.12), and hef=0. 25
with all energies in eV.

curves show the results when the spin-orbit splitting is
taken into account. Since we expect this splitting to be of
little importance for b,ef «

~

bE —ef ~, we have also per-
formed a calculation with Ae~ ——0, which amounts to us-
ing the formalism of Sec. III with N~ ——Ny ] +NI2 ——14.
The figure illustrates that the range of validity for this
simplification is fairly large. For nI close to one, the
neglect of spin-orbit splitting, however, leads to an un-
derestimate of nI.

For
~

b.E —ef
~

&& b,ef, one might expect the j= —,
' lev-

el to become unimportant. To test this assumption we
have also applied the theory of Sec. III with N&

——N~ ]
——6.

Figure 1 8 illustrates that this approximation actually is
poor for all values of e~. For simplicity we discuss the
failure of the N~ ——6 theory in terms of the first-order
theory, although the second-order correction is of impor-
tance for Ny ——6 and ny —1 . We introduce a quantity
5—:Ef —bE and obtain [see Appendix C and Eq. (C6)]

Nf p(b Irr)ln[(5+ be )/8],
which is normally important even if Aef ))5.

In the limit —e~ ))VIA/~ we obtain

1 nf 77—5I(Nf )b, ),
so that the additional factor

[1+8/(5+ bEf )]

in Fig. (A3) is crucial. This explains why the Nf =6 cal-
culation is poor even when 5 « hey.

The relative occupancy of the j= —, and —, levels is also
of interest, since the j= —, and —', initial states lead to dif-
ferent multiplet structure and therefore different line
shapes in the spectra. Figure 18 shows n (j= —, ) Inf,
where n (j= —', ) is the occupancy of the j = —', level. For
6 && 4E'I, the occupancy of the j = —, level is very small.
This can be understood from the spin-orbit-split version of
Eqs. (3.13)—(3.14). In the limit —ef »Nfb, /vr, we find
5 « he) and

8 5 1
(A5)

6 hef+5 I+b,ef/8
This result shows that although the j= —,

'
level strongly in-

fluences the total-f occupancy via 5, the occupancy of the
j= —, level itself is small in this limit. In the opposite lim-
it, 6 » Ae~, the occupancy is determined by the degenera-
cy and we obtain n (j = —, )Inf =—„——0.57. For ef ——2 this
limit is almost reached. For Ce compounds Ny &

-NI2,
and the special case Ny &

——N~z is of interest. In this case it
is straightforward to solve Eq. (A3) so that the spin-
fluctuation limit can be treated analytically.

We now consider the effects of the spin-orbit splitting
on the valence photoemission spectrum. Proceeding as in
Sec. VI we derive the first-order result

p„(e)=A' J de'
i

v(e')
i

'
2 + g (z b.E +ef —e'), —

(b E —e.f +e') (bE —ef —b,ef +E')'

g(e)= ( )
z Ef Nf, I (z) —Nf I (z+bEf)

where z=e i 0+ and I is —defined in Eq. (6.15). In Fig.
19 we show results for both b,@=0.25 eV (solid curve) and
b.Ef =0 eV (dashed curve). The solid curve has a sharp
rise at eF and a shoulder about Ae~ below eF The rise is
due to the logarithmic singularity in Nf ~ReI (z), and the
shoulder is caused by the singularity in Nf 2ReI (z + be).

j
For Ae~ ——0.25 eV we obtain e~ —hE =0.05 eV, while
A@I ——0 leads to ey —AE =0.12 eV. When spin-orbit split-
ting is included, most of the contribution to the e integral
in (A6) is therefore obtained for very small e'. This ex-
plains why the introduction of spin-orbit splitting yields
somewhat more weight in the neighborhood of eF. The
figure, however, illustrates that spin-orbit splitting has a
fairly small effect on the valence photoemission spectrum.
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APPENDIX 8

In Sec. III we performed a first-order ground-state calculation. Here we take double occupancy into account and ex-
tend the calculation to second order. The ground state is written as

0 B' ' 0 0
f Po) =A

f
0)+f a(e)

f
e)de+ f f b(E, e)

f
E,e)de dE+ f f c(e,e')

f
e, e')dE' de, (81)

where we only allow states
f
e,e') with e & e' since

f
e, e') =

f

e', e). Minimization of the total energy yields a set of equa-
tions analogous to Eqs. (3.9) and (3.10). Since, however,

f
e, e') can couple to both

f
e) and

f

e'),

&e, e'
f
H

f

e")=V'Nf 1[V(e—)&(e' —e")+V(e')&(e —e")],
we obtain an integral equation. To solve this equation one has to invert a matrix. Thus we define

8(e,e') = b,E —ef +e—f dE (Nf —1)f— „de"f
V(E)

f f
V(e")

f

'
AE —E+e —B 5E —2' —U+e+e"

V(e) [ V( e') ]*
5E —2ef —U+ e+ e'

(82)

(83)

and obtain
0

a(e)=+Nf f 8 '(e, e')V(e')de',
0 0

bE=Nf f f [V(e)]*8 '(e, e')V(e')de' de .

(84)

It is now straightforward to express b (E,e) and c(e,e') in terms of a(e),

b (E,e) = [V(E)]*a (e)/(bE E+e), —

QNf —1[V(e)a(e')+ V(e')a(e)]
c (E,E)='

AE —2ef —U+ e+ e'

For the normalization constant 3 we obtain
0 B' 0 0 ('

1+f fa(e)
f

de+ f f fb(E, e)
f

de dE+ f de f de' fc(e, e')
f

—1/2
(88)

APPENDIX C

In this appendix we discuss in more detail the ground-
state properties and the valence photoemission spectrum
for a V(e) which is constant within the band. Here we re-

strict ourselves to the limit Nf ~ oo (Nfl=const), where
first-order theory leads to the exact results. As discussed
in Sec. III, one obtains for AE the transcendental equation

5gf =025

g gf -000

Nf 6 ef —hEAE= ln B +of —AE
(Cl)

and the occupancy of the f level is given by
nf =C/(C+1), with

NfbC= (C2)
1 1

&f —~E ef —AE +B
We introduce the (positive) energy 5—:ef b,E and assume—
that the width 8 of the occupied part of the band is much
larger than 5. Then one obtains

T

Nf b, = 1.68

CL

and

Nfb5= exp
m (ef —5)

Nfb
(C3)

I

-2
I I

-3 -1 0
s (eV)

FIG. 19. Valence photoemission spectrum with (solid curve)
and without (dashed curve) spin-orbit splitting. Parameters are
[Eq. (3.22)j 5=0.12 eV, 8=6 eV, and ef = —2 eV. We have
used a constant V(e)—= V and introduced a 0.1-eV (FWHM)
Lorentzian broadening.

with

nf Nf 6
1 —nf m6

(C4)

~jy
Ef =Qf + ln

7T f
(C5)

From these equations it follows that nf is a function of
one (dimensionless) variable ef /Nf b, . This scaling
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Nf 5 ref6= exp +0 (C6)

In the spin-fluctuation limit, ef ~~ —XfA/~, where the
exponent is very large and negative, 5 (when divided by
ks) is called the Kondo tempe-rature. In this limit the f
level occupancy is very close to 1,

behavior was first discussed by Haldane and Jefferson
using the "poor-man's scaling" technique. Note that this
scaling behavior only holds when the bandwidth is suffi-
ciently large (B &&5). For 5«Nfh/a, i.e., 1 n—f «nf
the solution of (C3) is trivial

1 —nf -exp (C7)

Note that this result is very different in form from the ex-
act result for Nf =1, which is given as 1 n—f 5/77

~
ef

if nf is close to 1.
In Sec. VI we discussed in detail the sharp rise of the

valence spectral function p„(e) when e approaches the Fer-
mi energy from below. %'e show here that the continuum
contribution starting below e~ —6 does not alter this pic-
ture, which arises from the discussion of "pole contribu-
tion" (6.23) only. The complete expression for p, (e) for
constant V(e) reads

Xf6 1 —nf 6(e' e 5)N—fb, /—vr
p„(e)=6(—e)(i —nf), +,-, , de'

(e—5) —s (e' —5) [e+5—e' —ef Re—I (e+5 e'—)] +(Nfb, )

In the spin-fluctuation limit we can use (C6), (C7), and the expression for ReI for constant V(e) to obtain

5 6( —e —5) o 1 1p„(e)=6( —e)(1 nf )— 2+
(e —5) '+' (e —5) e e' —1 e+ 5 e'—

If we measure all energies in units of 5, i.e., e=x5, we see that the term (e —e )/Nf 6 in the integrand is of order 5/Nf 6
and can therefore be neglected in the extreme spin-fluctuation limit for ~x

~

of order 1. On the energy scale 5 we then
obtain a universal shape for p, (e) near eF,

2

p„(x5)=6( —x) 1 +6(—x —1)
0 dx

x —1 +x (x 1) [ln(x x )] +m,
(C10)

This is shown in Fig. 20. The other characteristic feature of p, (e) in the spin-fluctuation limit is the "normal" ionization
peak at

ef —'Ef +ReI ( ef ) —ef + (Nf 6/77)ln[Nf 6 /( tref ) ]
for gf «8. The width of the nearly Lorentzian ionization peak is Nfh. The value of p„(e) at the maximum is small-
er than the value at the Fermi energy,

p„(ef )/p, (eF)= I/~ (Cl 1)

APPENDIX D

The general approach for calculating the core spectrum
was described in Sec. IV. We now consider the case when
U= ao, so that double occupancy can be neglected and we
can consider a first-order calculation. In this case an
analytical solution can be obtained.

This limit is of practical interest for La compounds
where the f configuration has negligible weight, w(f ), in
the initial state, and is less important in the final states
than for Ce compounds. The spectrum does, however,
change when double occupancy is allowed, as is illustrated
in Fig. 21. For the values of U considered, w(f ) is very
small ( & 10 ), and the variation of the spectrum with U
is due to the interaction between the final f ' and f con-
figurations. For U=4 these configurations are degenerate
and the interaction between them leads to final states with
f ' character over a larger energy range. Since states with
f ' character can couple to the initial state, the spectrum is
indirectly influenced by the presence of the f configura-

&.0

0.8—

0.2—

FICs. 20. Universal curve [(C10)]. Solid curve shows the pole
contribution 1/(x —1) and the dashed curve shows the integral.
Latter curve has a very broad maximum at about x = —5.



28 ELECTRON SPECTROSCOPIES FOR Ce COMPOUNDS IN THE. . . 4337

tion. In the same way we expect an influence on the Ce
spectrum if the f configuration is taken into account.
Nevertheless, the figure illustrates that the neglect of the
f2 configuration for La compounds (and probably the
neglect of the f3 configuration for Ce compounds) should
not be too serious, although it will change the values of
the parameters deduced somewhat.

We need the matrix elements of z Eo(—N)+H between
the states ~0)=g, )0) and

~
e) =1t,

~
e) [Eqs. (3.1) and

(3.2)], where we suppress the tilde in the following:

(0
~
[z —Ep(N)+HJ

~

0) =z —bE

(e
i [z —Ep(N)+H] i

0) =V'Ny V(e),

(Dl)

(D2)

0 1 2 3 I 5 6

FIG. 21. Core-level spectrum as a function of U for La com-
pounds. Solid curve shows the results when double occupancy is
suppressed {U = Do ) and the dashed and dashed-dotted curves
show the spectra for more realistic cases with U=4 and 6 eV,
respectively. We have used the parameters [Eq. (3.22)] E~=5
eV, Uy, ——9 eV, 8=6 eV, 6=0. 1 eV, and X~ ——14.

(6
~
[z Ep(N)+H—] I

e') =(z —bE+~g UI, ~)6—(e ~') .

(D3)

The inversion of this matrix is closely related to the calcu-
lation of the valence density of states of the nondegenerate
model and we can use the same technique. We write the
matrix element (D1)—(D3) in the form

[z —Eo(N)+H]oo Ho,

H)p [z —Ep(N) +H] i i

—1

goo(z) go&(z}

gio(z) gii(z) (D4)

where H», Hp&, and H» are block matrices and the index
1 refers to the states

~

e). Equation (D4) also defines the
Careen's functions goo, g&p, gpi, and gii. It is now very
convenient to use the formula

gpp(z) = I [z —Ep(N)+H]pp

—Hoi[z —Eo(N}+Hlii 'Hiol

p, (e)= Im goo(z) 1 —fa(e')f(e', z)de'
7T

+f z —AE +eg —Ufc —&

2

(Dl 1)

(D7)

The major difference from the calculation of the valence
density of states of a nondegenerate Anderson model' is
the limitation of the integral (D7) to states below eF =0.
Simple matrix algebra yields

go.(~)= —f(~,z)g~(z),

g„(z)= (z bE +ej —U~, —e) '6(e —e')—

+f (E,z)g pp(z)f(e',z),
where

f(e,z)=QNgV(e)l(z bE+eg —Ug, —e) . —

(D8)

Performing the sum in Eq. (4.3) we obtain the core spec-
trum,

since [z —Ep(N)+H]» is diagonal, so that the inversion
in (D5) is trivial. We shall repeatedly use a similar tech-
nique later to invert matrices which would otherwise be
too large for a numerical treatment. We obtain

g (z}= [z —bE NII (z bE+—eI —U~, )] '—, (D6)

where

This expression can be shown to be identical to the result
we have obtained earlier in the nondegenerate "filled-
band" model,

Ug,
p, (e)=-

@—U),

2

(1—ng)lmgoo(z} . (D12)

The assumption that XI is large allows us to neglect the
conduction states above the Fermi energy (filled-band
model). If in addition we assume U~oc, only the states

~

0) and
~
e) are needed. The present problem can then

be mapped onto a nondegenerate filled-band model with
the interaction QNI V(e) This justif. ication for the
filled-band model was not given in the earlier derivation,
and the model was only applied to the case when e~ is far
above the Fermi energy in the initial state.

APPENDIX E

We now describe in detail the calculation of the
second-order core spectrum including double occupancy.
In contrast to the ca1culation in Appendix D this calcula-
tion requires a numerical inversion of a matrix.

The basis functions used are defined in Eqs. (3.1)—(3.4).
The ground-state calculation in this space was described in
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Appendix B. To obtain core spectrum (4.3), we have to in-
vert the matrix (i

~

z —Eo(N) +H
i j ) where

i
i ) and

i j )
are the basis functions (3.1)—(3.4) with a core hole, which
is not explicitly shown. Most of the relevant matrix ele-
ments have been given in Eqs. (3.11), (3.21), and (82).
Following the notation in Eq. (81) the Hamiltonian ma-
trix is written in the block form as follows:

Gpp Go.

G.o G

r

Hop Hp,

H, p H„ (E2)

where

Thus we proceed in a way similar to Eq. (D5) and calcu-
late

Hpp Hpa 0

Ha p Haa Hab Hac
—1 —1H„=H„—H,bHbb Hb, —H„H,, H„. (E3)

0 Hba Hbb 0

0 H, 0 Hcc

(El)

where 0, a, b, and c refer to the states 0),
~

e),
~

Ee),
and

~

ee'), respectively. All the elements in matrix (El)
are block matrices except for the c number Hpp. Matrix
(El) is too large to be readily inverted numerically. For
instance, matrix Hbb has a double-continuum index Ee.

I

Hpp ——z —AE,

To invert this matrix we discretize the energy mesh and
introduce X equidistant points e; in the energy range
( —B,O) with an energy step b,e. We define weight factors
w; according to some integration method. Simpson's
method, for instance, gives the values b,e/3, 2hz/3, and
4hz/3 for the w s. %'ith the use of the index 0 for the
function

i
0) and i =1, . . . , N for the functions

i e;), the
matrix elements in (E2) and (E3) are given by

(E4)

Ho; QNf [ V——(e; )]*~co;,
H; = [z bE +ef —Uf—, —e; —(Nf —1 )I (z —b,E +2Ef 2Ufg + U——e; ) —y(z b,E —e; )]5;—

[ V(e; )]*V(e~)Qw; wj.—(Nf —1)
z —AF. +2' —2 Uf, + U —e; —ej.

(E5)

where I was defined in Eq. (D7) and

7(.)=f' i
V(E) i' dE.

p
(E7)

To obtain the remaining elements of the Green's function
we now use formulas of the type

t

According to Eq. (4.3) these Green's-function matrices are
multiplied by the coefficients a, b, and c in (81). Since b
and c are expressed in terms of a in Eqs. (86) and (87), we
do not need to explicitly calculate b and c or matrices (Eg)
and (E9). For instance, we define

Gba ———Hbb 'Hba G„,
—1 —1

Gbb Hbb +Hbb Hba aa Hab Hbb

b„;=+to„b (E,e—; )~io;,

(E9) and obtain

I

(E10)

Thus we introduce

w
~

V(E )
~

a(e;)~ia;(G„),)
(hE E+e;)(z—b.E+E e;)—— (El 1)

f
V(E) i'

o (b,E E+e;)(z AE—+E —c;)—
which can be expressed in terms of y [Eq. (E7)],

f; =—[y(z b,E —e; ) —y( —b,E e; ) ] .— —1

z

Similarly, we define

0
~

V(e)
~

'~ (e; )+ V(~) V(e; )a (e)
h; =A (Nf —1) w; dE—& (b,E 2' U+e+e; )(z b,E—+2ef—2Uf, + U E ——E;)——

(E12)

(E13)

(E14)

to take the coefficients c (e,e ) into account. Finally we define

ap ——2,
a; =Aa (e; )~io;, i = 1, . . . , N

and denote matrix (E2) by 6,&. , where indices i and j run from 0 to N. The spectrum is then given by

(E15)
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b(E, E) ~'
p, (E)=—Im g g k;G,Jkj+A f dE f dE

r =01=0

dEf dE ~C(E,E)
~

z —hE+2&f —2Ufc+ U —&—&
(E17)

where z =E i—0+, k; =(1 f; )a;——h;, and ho fo ————0.

APPENDIX F

eM n n (Fl)

Many Ce compounds have a magnetic ground state
while all the calculations in this paper were for a singlet
ground state. Since our basic Hamiltonian (2.1) cannot
have a magnetic ground state, we must go beyond the
impurity model to discuss the magnetic Ce compounds.
An accurate treatment of the Anderson lattice model is,
however, not within scope of this paper. Instead we use a
mean-field-type approach and add an additional term

[
solid curve shows results for a magnetic ground state
where one n is larger than the others. The dashed curve
is for a nonmagnetic state where all n were kept equal.
The magnetic solution gave AE = —1.982 eV,
ef) ———1.979 eV, @f2———1.602 eV, and nf ——0.976. The
large occupancy is mainly due to the preferred level,
which is almost full (n„=0.949). The nonmagnetic state
has a higher energy (AF. = —1.85 eV) and a substantially
lower f occupancy (nf =0.72). To understand the large
difference in nf between the magnetic and nonmagnetic
states we apply formulas (A2)—(A4), although V(E) is not
sufficiently small in this example to make the formulas
very accurate. For the nonmagnetic solution we obtain

to (2.4). This term is supposed to describe a tendency for
the spins to order ferromagnetically. Whether the ground
state is ferromagnetic or not depends on the size of EM and

Xf ~

V(E)
~

. We assume that E~ is large enough to give a
ferromagnetic ground state with the state

~
v)

preferentially occupied. This leads to two effective levels,

&B
(nf )nonmag= xp

Xfh

and for the magnetic solution

~B
1 —(nf ),g-

we find

7TEf
exp

(F4)

Ef J
—Ef +E~(n ) (F2) (F5)

Ef2 Ef+E~ Q (ng——)I(Xg —1) .
V+V

(F3)

Magn

Nonmagn

N)5 =1.7
Nf=6

A
tl

I (

I

I

l

I

I

I

1

E (eV)

FIG. 22. Valence photoemission spectrum for a magnetic
(solid curve) and a nonmagnetic (dashed curve) initial state. We
used the parameters ef ———1.6 eV, A=6 eV, and e~ ———0.4 eV,
and assumed a constant V(e) =—V. Lorentzian broadening of 0.1

eV (F%'HM) was used.

We can now use the formalism of Appendix A and make
the identification Xf& ——1, Nf2 ——Xf —1, Aef ——@f2—sf~,
and Ef =Ef).

In Fig. 22 we show spectra calculated this way. The

Although the prefactors are quite different the decisive
difference is the appearance of Xfb, in the exponent of
(F4) but only 6 in (F5). Since Ef is negative the value of
the exponential function in (F5) is normally extremely
small. The reason is that the hopping between the f level
and the conduction states is governed by Xf6 for the non-
magnetic state where all the levels v are equally occupied,
and by 6 for the magnetic state, where one level v is
preferentially occupied. We can therefore not automati-
cally infer that 5 is small from the observation that nf —1

for a magnetic state.
Figure 22 shows that both the magnetic and nonmag-

netic states lead to a peak close to eF. The magnetic state
leads to a peak slightly below eF which is mainly due to a
structure in (Nf —1)I in Eq. (A7). This peak corresponds
to final states similar to the nonmagnetic state but with a
conduction electron close to eF removed. Since these final
states have higher energies than the magnetic ground state
the peak is located below eF. It is very important that this
structure is governed by (Xf—1)h and not b, . This is re-
lated to the fact that the final states are nonmagnetic.
There is a much weaker structure at Ez (not visible in the
figure) corresponding to a magnetic final state and deter-
mined by h. Since the stronger peak is related to the
strength of (Kf —1)b„we expect the weight close to E~ to
be comparable for the magnetic and the nonmagnetic
states. Actually there is even somewhat more weight at eF
for the magnetic state. The main reason is the small value
of ef I

—hE, which means that most of the contribution to
the E' integral in Eq. (A6) comes very close to E'=0. The
peak in g(E) [Eq. (A7)] is therefore spread out very little in
the e' integration.
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