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We present a method for calculating the core-level x-ray photoemission (XPS), the 3d —4f x-ray
absorption (XAS), the valence photoemission, and the bremsstrahlung isochromat spectra in a slight-
ly modified Anderson impurity model of a Ce compound at zero temperature. Both the spin and or-
bital degeneracies of the f level are included and the Coulomb interaction between the f electrons is
taken into account. The spectra are expressed in terms of a resolvent operator. A many-electron
basis set is introduced, and the resolvent is obtained from a matrix inversion. The particular form of
the Anderson model allows us to find a small but sufficiently complete basis set, if the degeneracy
Ny of the f level is large. In particular, we consider the limit Ny— o0, and show that the method is
exact for the XPS, XAS, and valence photoemission spectra in this limit. It is also demonstrated
that for N;>6, the method provides accurate spectra. Analytical results are obtained for the
valence photoemission spectrum p,(€). The spectrum has a sharp rise close to the Fermi energy €r,
which goes over to a “Kondo peak” in the spin-fluctuation limit. An exact relation between p,(€r)
and the f-level occupancy n, is shown to be satisfied to within 10% for N;>6. We discuss how
core-level XPS spectra can be used to estimate the f-level occupancy ny and the coupling A between
the f level and the conduction states. We find that the values of n, and A obtained from core-level
XPS are basically consistent with the other spectroscopies and the static, =0 susceptibility. It is,
therefore, possible to describe these experiments in the Anderson model, using essentially the same

15 OCTOBER 1983

set of parameters for all the experiments. Typically, we find ny>0.7 and A~0.1 eV.

I. INTRODUCTION

The aim of this paper is to present a simple but accurate
method for calculating the core and valence photoemis-
sion, the 3d —4f x-ray absorption, and the bremsstrahlung
isochromat spectra of Ce compounds. These systems have
many unusual properties due to the presence of a 4f elec-
tron which shows both localized and itinerant
behaviour.!~®> Much of the discussion has therefore
focused on the properties of the 4f level, in particular its
occupancy ny and coupling A to the conduction states.

There have been numerous studies of thermodynamic
and transport properties,! ~3 such as the lattice parameter,
the susceptibility, the specific heat, the resistivity, and the
quasielastic linewidth in neutron scattering. From these
experiments, sometimes referred to as “low-energy” or
“slow” experiments, it has been concluded that A~0.01
eV and that, depending on the system, ny can take any
value between 0 and 1.!=® Such experiments, however,
give fairly indirect information about ny and A and a
quantitative evaluation of these properties is difficult.

In particular, in the last few years, there have been
many electron-spectroscopy measurements, so-called
“high-energy” experiments, such as core level x-ray-
photoemission  (XPS),”~!° valence-photoemission,'®~ 13
x-ray-absorption (XAS),%!*!> and bremsstrahlung iso-
chromat (BIS) spectroscopy.!® These electron spectro-
scopies also give rather indirect information about ny and
A. However, there are many indications from these exper-
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iments that A is substantially larger than 0.01 eV and that
ny is never close to zero. Large values of ny have also
been deduced from Compton scattering'’ and positron-
annihilation'® experiments.

In this paper we present a theory at T =0 for the elec-
tron spectroscopies mentioned above. We discuss the gen-
eral properties of the spectra and to what extent quantita-
tive results for ny and A can be obtained. We find values
of A which are typically 1 order of magnitude larger than
those deduced from the low-energy experiments. For nj
we obtain values larger than about 0.7. In view of this
large discrepancy to the results obtained from the low-
energy experiments, we study the T' =0 susceptibility data
and the lattice-parameter results. We find that the suscep-
tibility data are consistent with the new values of n; and A
and that the lattice-parameter data are not necessarily in
conflict with these new values.

Much of the theoretical discussion of Ce compounds
has been based on the Anderson (single-impurity) model'’
where one considers the f level on one atom and its in-
teraction with the conduction states. Effects due to the
(indirect) interaction between f levels on different atoms
are neglected. While this interaction is obviously crucial
for certain properties, for instance, magnetic ordering, the
model seems to describe other properties successfully.
Physical effects neglected in the model can be partly ac-
counted for by the use of renormalized parameters. Since
the renormalization may be different for different experi-
ments the model gains credibility and usefulness if it can
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describe different experiments with the same parameters.
In this paper we therefore develop a theory for several ex-
periments, and indicate that the Anderson model with
essentially unchanged parameters can describe these exper-
iments. A more detailed comparison with experiment is
presented elsewhere.?0—23

Since the coupling A between the f level and the con-
duction states is weak, it is useful to consider the states
when A=0. This is shown schematically in Fig. 1, where
for this discussion we have replaced the conduction band
by a single (degenerate) level. Although this is an over-
simplification, some important features of the core spec-
troscopies can be illustrated. The levels of Fig. 1 are clas-
sified according to the number of f electrons. The
creation of a core hole leads to a dramatic reordering in
energy of the configurations due to the strong Coulomb
interaction between the core hole and an f electron (see
Fig. 1). It is crucial to include this interaction in the
model.

We now use Fig. 1 to discuss core-level XPS since this
spectroscopy is particularly useful for the determination
of ny and A. In the sudden approximation the XPS
current is directly related to the core spectral function

pe(€) =" | (EL(N =1 | ¥, | o) |

X8(e—EyN)+E,(N—1)), (1.1)
where | ¢,) is the ground state, | E,(N —1)) are the ex-
cited states (final states) in the presence of a core hole and
Ey(N), and E,(N —1) are the corresponding energies.
The annihilation operator for the core level is 3.. To
evaluate this expression we write the initial ground state of
Fig. 1 for nonzero A as

|¢0>=Co|f0>+6‘1 |f1>+C2 |f2> s

with obvious notations. It is usually assumed that the
coupling between the states is much smaller than the
f1—f?%energy separation so that ¢, ~0. In the same spir-
it, one may assume that each final state | E,(N —1)) is a

(1.2)

no core hole core hole

FIG. 1. Schematic representation of the energies of different
cont.gurations of a Ce impurity without and with a core hole.
Configurations are labeled according to the number of f elec-
trons. Typical energy differences (Refs. 7—10, 24, and 25) are
indicated (in eV).
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pure f configuration, i.e., the final states are | f°), | f ),
and | f?). If c;=0 only the first two states would couple
to |¢o) and the corresponding peaks in the spectrum
would have the weights |co |2 and |c, | % we could there-
fore read off the value of n, from the weight of the f!
peak of the core spectrum. For most Ce compounds, how-
ever, the core spectrum also shows a shoulder due to final
states of mainly f 2 character.”~!® This is only possible if
there is a mixing of the f! and f? configurations in the
initial and/or final states so that the f2-like final state
couples to the initial state. A mixing of the final-state
configuration means that calculations are needed to deter-
mine to what extent ny can be obtained from a core spec-
trum. The weight of the f 2 shoulder provides a measure
of this mixing from which one can deduce the size of A.
While A is large enough to couple the £ ! and f? configu-
rations the calculations show that the mixing of the final
f° and f! configurations, which have a larger energy
separation, is fairly small. The weight of the f° peak
therefore provides a semiquantitative measure of
lco|?=1—n r and quantitative estimates can be obtained
from the calculations. We have used these ideas extensive-
ly to estimate n; and A for many La and Ce compounds.?!

As emphasized above, it is important to include the in-
teraction between a core hole and the f level. There have
been many calculations?®?’ of the core spectrum for
models including the attraction of a core hole on a valence
level 28 Usually, however, the valence level was assumed
to be nondegenerate and the interaction between the
valence electrons was therefore neglected. The calculation
of the core spectrum is then equivalent to solving a time-
dependent one-particle problem.? For a Ce compound the
large degeneracy Ny of the f level is important, and to
treat the f? shoulder in the XPS core spectrum, for in-
stance, one at least needs to take the spin degeneracy
(Ny=2) into account. Because of the strong Coulomb in-
teraction between the f electrons, correlation then becomes
very important and the calculation of the core spectrum is
a true many-body problem. Recently, Oh and Doniach3°
proposed a Green’s-function decoupling technique for cal-
culating the core spectrum of a spin-degenerate model tak-
ing correlation effects into account. Their decoupling
scheme provides an approximate description in the limit
of a small coupling A, but from their calculations they in-
ferred that to describe Ce compounds one cannot use a
very small A. It turns out that for the interesting parame-
ters their scheme breaks down, shown by the presence of
energy regions with negative spectral weight.

An important progress in the treatment of the Anderson
model, was the realization by Ramakrishnan?®! and Ander-
son®! that for the calculation of the thermodynamic prop-
erties there is a small parameter 1/Ny, where N is the de-
generacy of the f level. We show that similar ideas can be
applied to the spectroscopies. The calculation of the core
and valence photoemission spectra is therefore greatly
simplified if Ny is increased from 2 (spin degeneracy) to
14 (spin and orbital degeneracy), although, as indicated
above, the step of Ny from 1 to 2 is a severe complication.

For the spectroscopies considered here, the measured
quantity can be related to an expectation value of the
resolvent operator [z —Eo(N)+H] ™!,
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¥ 1 also is allowed to be finite. Some qualitative aspects of the

gz )=<¢0 r z—EoN)+H T ¢0> . (1.3)  core-level spectrum are discussed in Sec. IV. In particular

it is shown that our method gives the exact core spectrum

The core spectral function for instance, is given by
pc(€)=Img(e—i0%)/m

if T=1,.. We now introduce a set of many-electron basis
functions |i) and assume that the set is approximately
complete. Inserting the unit operator 1=, |i){i| on
both sides of [z —Eo(N)+H]!in (1.3) gives

g@=3 (do| TT|i><i ,~><,- Farsy
L]

1
z—Eo(N)+H
(1.4)

We now have to calculate i |[z —Ey(N)+H]|j) and to
invert the corresponding matrix. To calculate (j | T |¢)
we need the ground state |¢) which is calculated varia-
tionally in terms of some basis set { | v)].

In general, the formulation (1.4) would require a very
large basis set to be accurate. Because of the particular
form of the Anderson model a “small” set is sufficient if
Ny is large. The limit Ny— o0, NyA=const is of particu-
lar interest since the degeneracy, Ny=14, of the f level is
large. In this limit, we obtain the exact core and valence
photoemission spectra as well as the 3d —4f XAS spectra
for the Anderson model. We also find that for finite
Ny >6 our method gives quite accurate results. This for-
mulation also has other advantages. The spectrum
Img(e—iO%)/m is non-negative for all energies. The
method gives a variational estimate of the threshold, €,
where Img (e—i0%)/m=0 for € > €. Even a fairly small
basis set can therefore lead to a rather good estimate of
€n. Above €y there are of course no unphysical poles.
This is in contrast to Green’s-function decoupling tech-
niques where it is often hard to find approximations
which can avoid unphysical poles for the whole range of
parameters. Method (1.4) gives results which are relative-
ly easy to interpret. For instance, we can neglect basis
states with a definite physical meaning in the calculation
of |¢o) (initial-state effects) or in the inversion of the
resolvent operator (final-state effects). By studying the ef-
fects on the spectrum we can trace the origin of the struc-
tures in the spectrum.

While the calculation of the core spectrum requires a
matrix inversion, we obtain analytical results for the
3d—4f XAS and valence® photoemission spectra. The
valence spectrum p,(€) is particularly interesting since we
obtain a Kondo-type peak at the Fermi energy €r. For
N¢ > 6 the theory fulfils an exact relation between p,(€f)
and ny to within 10%. Kondo-type effects in Ce have
been discussed earlier by Allen and Martin.*?

In Sec. II we define the model and perform a transfor-
mation which is useful for the later calculations. A simple
calculation of the ground state for an infinite f-f Coulomb
interaction U is given in Sec. III and it is shown that this
calculation becomes exact for Ny— «, where Ny is the de-
generacy of the f level. A calculation which is more accu-
rate for a finite N, is presented in Appendix B, where U

for Nr— . In Appendix D we give an analytical solu-
tion for the case when double occupancy of the f level is
neglected, and in Appendix E we show in detail how to
calculate the core spectrum when double occupancy is al-
lowed. The calculation of the 3d —4f XAS spectrum is
described in Sec. V. In Sec. VI we show how the valence
photoemission spectrum is calculated and discuss some
qualitative aspects of the results. In Appendix F we per-
form a simple calculation of the valence spectrum for a
magnetic compound. In Sec. VII the method for perform-
ing the BIS calculations is presented. We also consider the
combined photoemission and BIS spectra with emphasis
on the variation of the number of peaks and their widths
when the parameters. are varied. In Sec. VIII we discuss
the static 7' =0 susceptibility and in Sec. IX the deter-
mination of the f occupancy from lattice-parameter data.
In Sec. X we apply the theory to CeNi, and show how n,
and A can be deduced from the experimental data. Some
aspects of this are also discussed in Sec. IV and VII.
Some of these results have been briefly described earlier.*

II. MODEL

As discussed in the Introduction, we use the (single-
impurity) Anderson model,"®

szeknka+[€f—Ufc(1_nc)]2 Nypg+E€che
k,o

m,o

+ 2 (Vkm¢iza¢ka+H'c')+ U z' Bmelm'o’ >

k,m,o m,m’
o,0’

(2.1)

where €, describes the conduction states, €, is the energy
of the f level, and €, describes a core level. The f level
has an n-fold orbital degeneracy (m) in addition to the
spin degeneracy (o). In most examples we use n =7,
which leads to the total degeneracy Ny=2n =14. This is
appropriate for an f level if spin-orbit splitting is neglect-
ed. In Appendix A we discuss the effects of taking the
spin-orbit splitting into account. The hopping between the
f level and the conduction states is described by V;,, and
the Coulomb interaction between the f electrons is given
by U. In addition to the original Anderson model there is
a term containing Uy, which describes the interaction be-
tween a core hole and the f electrons. Multiplet effects
are entirely neglected, since U is m independent and there
are no exchange integrals. Multiplet effects are observed
in the spectroscopies for which there are important final
states with mainly f2 character. For the core spec-
troscopies there are additional effects due to the multiplet
splitting of configurations containing a core hole and one
or two f electrons. The Coulomb interaction between the
f electrons and the conduction electrons is not explicitly
taken into account, but is assumed to be implicitly includ-
ed as a renormalization of €5 and U.

We shall basically treat the Vj,, as adjustable parame-
ters. For the following derivation, however, we need to



4318

consider the m dependence. Following Bringer and Lust-
feld,*> we assume

E Vltm Vkm'8(€—6k)
k

=3 | Vi | 8(e—€x)8mm= | V(€) | pm . (2.2)
k

This result would, for instance, follow if we assumed that

the conduction electrons were in free-electron states. Then

Vkm -~ Y3m(k) »

where Y3,,(k) is a spherical harmonic with / =3 and the
constant-energy surfaces in K space are spheres. The as-
sumption (2.2) is, however, not limited to free-electron
states. It is based on the rapid variation of the phase of
Vim With k, which means that the k£ sum in (2.2) is small
unless m =m’. A more general discussion of Eq. (2.2) was
given by Bringer and Lustfeld.>> The Fermi energy €y is
set equal to zero and the bottom of the band is located at
—B. We also introduce an upper cutoff B’ of the band,
although this is not necessary. The coupling A can now be
defined in terms of | V'(e) | 2, One can, for instance, use
the maximum value of 7|V(e)|? or an average of
7| V(e)|? over the occupied band. It is useful to intro-
duce new one-particle states,

lema)=V(e) 'S Vindle—er) | k,0) . (2.3)
k

States with different m values are orthogonal due to Eq.
(2.2). The Hamiltonian can now be rewritten as

¥ t t
H=3 |[evlpadetle;—Usp1—n) Wy,
v=1

+ [V +Hclde+U 3 nyn,

v<p

+en.+H, . (2.4)

We have introduced a combined index v=(m,o) for the
orbital and spin degeneracies since these degeneracies are
equivalent when the model assumption (2.2) is used. Thus
ev refers to a conduction state and v to a f state. The
term H,

Ho=3 [eplpede, 2.5)

contains the remaining linear combinations of states | ko)
orthogonal to the states |€,v) defined in Eq. (2.3). These
states, | €,a), do not couple to the f level and lead to a

constant-energy shift which is of no importance. The
Hamiltonian (2.4) conserves the number of electrons,
[vlvede+vlp, , 2.6)

corresponding to a given value of v.

III. GROUND STATE

We calculate the ground state of (2.4) variationally® us-
ing Brillouin-Wigner perturbation theory as a guide to
which basis states to include. We first introduce a state
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N
10y =|TT T ¥ [H I ¢L,}¢Itvacuum>,

v=1 e<ep a €<e€p

(3.1)

where all the conduction states below the Fermi energy are
occupied and the f level is empty. In (3.1) the core level is
occupied. The Fermi energy € will in the following be set
equal to zero. The rest of the states are obtained by re-
peatedly letting H act on |0). Thus we introduce a set of
states

lE) ‘/—; zlpvd}evlo)

v

(3.2)

with one f electron and one hole below €x. We can form

other states, i.e.,

S c¥ive 0)

of this type. However, if these states are orthogonal to
|€) (3¢, =0), they do not couple to |0) via H and they
do not enter the ground state calculation. The states (3.2)
couple to two sets of states,
1 \
Ee)=—— 0), (3.3)
i \/N; ? 1[’Ev’/’ev |

with one conduction electron E (> e€r), one hole €, and
states

€€)= Wby, | 0) (3.4)
I N(Nf )2¢¢e¢¢e |
with two f electrons and two conduction holes. States

(3.4) play an important role in the spectroscopies where a
core hole is created. Finally we introduce states

|E,€»6’;1 >_T/_—~ 2¢Ev¢ev¢'v¢ev1 0) (3.5)
and
]E,e,e';Z) = ,————-——Nf ) E ¢Ev¢ev¢v¢ev IO)
v;&v

(3.6)

with one f electron, one conduction electron, and two
holes. These states couple to states (3.3), and in addition
states (3.6) couple to (3.4). The states (3.4) and (3.5) are
limited to € > €’ as the basis functions otherwise would be
linearly dependent. A variational calculation®® of the
ground state using the basis functions |0) and |€) leads
to the same results as first-order Brillouin-Wigner pertur-
bation theory.3!>> We therefore refer to such a calculation
as a first-order treatment. A solution which also includes
the states | E€) is called a second-order calculation, al-
though it also includes terms beyond second-order
Brillouin-Wigner perturbation theory. Here we show how
the first-order calculation is performed when double occu-
pancy of the f level [states (3.4)] is neglected. In Appen-
dix B we perform a second-order calculation including
double occupancy.
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For the first-order ground state |¢$’) we use the an-
36
satz

0
| VY =4 [|0)+f_3a(e)|e)de , (3.7)

where the integral over € is limited to the states below
€r=0. We define

AE=E{"(N)—(0|H |0)=E{"(N)—E} , (3.8)

where E{V(N) is the ground-state energy. Thus AE is the
lowering of the energy when the impurity is introduced.
Minimization of AE gives the secular equations

AE=V'N; [[V(©)]a(e)de, (3.9
(AE —€s+€)ale)=V'NsV(e), (3.10)

where we have used
(e|H |0)=V'N;V(e) .
Solving (3.9) and (3.10) we obtain’®3!

2
aE=N, [-VEOL"_4¢ (3.12)

AE—ef+e

(3.11)

C
np=A*f |a(e)|2de=m, (3.13)
where
Vie)|?
c=n, [— X" 4 (3.14)
ff(AE—€f+e)2 €
and
A=(14C)""*=yT—n, . (3.15)

If V(e)=V is a constant within the band and

| AE —€y | << B, we obtain

AE-—Ef

AE=~N;V?In , (3.16)

1
Due to the variational nature of the calculation AE <é€f.
In the spin-fluctuation limit ny~1, the formulas can be
further simplified, as described in Appendix C.

In the model (2.1) the degeneracy N of the f level is 14.
If spin-orbit splitting is taken into account and only the
lower of the two spin-orbit-split levels is considered we ob-
tain Ny=6. In both cases N is large and it is interesting
to study the limit Ny—oo. Since N, enters Egs.
(3.12)—(3.17) in the combination N, | ¥ (e) |? it is useful
to consider the limit

Nf— o, Ng|V(e)|*=const,

C=NV? (3.17

(3.18)

since in this limit the first-order solution stays constant
and the exact solution converges. We now apply the
Hamiltonian to the first-order ground state (3.7) assuming
that double occupancy is suppressed (U = oo ). This leads

to
H |45y =E{"(N)|4")

B’ 0
+4 [ |7, r®rate) | Eedde “:
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where the E integral is limited to the states above € =0.
Since | #5") was obtained by diagonalizing H in a sub-
space of all possible states, we recover this state. Howev-
er, H can also connect the states |€) to the states | E,e)
outside the subspace and we obtain the second term in Eq.
(3.19). The norm of this term is

B’ 0 5
a [ [, IvB 2ae) e |am < [ | viE) g

(3.20)
Thus in the limit (3.18) the norm of the second state in
(3.19) goes to zero and the state (3.7) is the exact ground
state.***” The total space of states splits up in disconnect-
ed subspaces in the limit (3.18). We have

(E,e|H |e)=[V(E)]*, (3.21)

which goes to zero for Ny— «, while the matrix element
between |0) and |€) [Eq. (3.11)] remains finite. Thus
|0) and |e€) form a subspace which does not couple to
any other state in this limit. This is related to the observa-
tion that there are N, ways of going from |0) to a state
¢:r,¢€v |0) (1<v< N ), while there is only one way of go-
ing from ¢I¢€V|O) to Yp,¥e, | 0). Similarly, the states
|E,€), |E,e€’;1), and |E,e€;2) form a subspace
without coupling to other states in the limit N r— oo (if
double occupancy is neglected).

For finite Ny all these higher states contribute to the ex-
act AE. However, each time we take a higher subspace of
the types (3.3) and (3.6) into account, the corresponding
contribution is one order higher in 1/N;. Thus for
Ny | V(e)|? fixed states (3.3) and (3.6) give a contribution
of the order N !. As pointed out before we define the or-
der of the calculation in terms of the basis states. Thus a
first-order calculation includes the states (3.1), (3.2), and
(3.4) if double occupancy is not suppressed. A second-
order calculation also includes state (3.4) and a third-order
calculation the states (3.5) and (3.6). The first- and
second-order calculations lead to errors in AE of the order
1/Ny, while the errors in the third-order calculation are of
the order 1/N f2 for U= . If the states (3.5) are neglected
in the third-order calculation, the errors remain of the or-
der 1/N }, but the calculation is simplified substantially.
If double occupancy cannot be neglected some additional
states have to be included to avoid errors of the order
1/Ny.

To test the accuracy of the ground-state calculation we
have first applied the theory to a nondegenerate system
(Np= 1) where we can obtain the exact result. For
| V(€)|? we have used a semielliptical form symmetric
around € =0,

7| V(e)|*=2VXB*—€*)!/2/B? .
We define

A=mmax] | V(e)|*]=2V*/B .
In Fig. 2 we show results for AE [Eq. (3.8)] as a function
of €f. The figure shows the first-order result (3.12), the
second-order result obtained by using the states
(3.1)—(3.3), and the third-order result based on the states
(3.1)—(3.3), (3.5) and (3.6). Since the expansion parameter
1/N;y=1 is not small, we do not expect the first-order re-
sult to be particularly accurate, except for €, >>A, where

(3.22)
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FIG. 2. Energy AE [Eq. (3.8)] as a function of €, for a nonde-
generate system. The density of states was given by Eq. (3.22)
with B=3 eV and A=1.5 eV. First-, second-, and third-order
calculations are compared with the exact result.

A /ey provides a small parameter. The figure shows, how-
ever, that the second-order result is fairly accurate over
the whole range. The lower limit, €, = — 1, corresponds to
an occupancy ny=0.74. In Fig. 3 we show AE and ny as
a function of N for a fixed value of N,A. The figure il-
lustrates how the first-order theory becomes increasingly
accurate as Ny is increased. For N;=14 the difference in
AE between the first- and third-order calculations is 0.03,
and the difference in ny between the first- and second-
order calculations is 0.007.

IV. XPS CORE SPECTRUM

In the sudden approximation the core-level photoemis-
sion current is directly related to the core spectrum

AE

FIG. 3. Energy AE [Eq. (3.8)] and the f occupancy ns for a
semielliptical density of states [Eq. (3.22)] as a function of the
degeneracy Ny for a fixed value of NyA=1.5 eV. Figure shows
results of the first- (dashed-dotted curve), second- (dashed
curve), and third- (solid curve) order calculations. For Ny=1
the crosses show the exact results. Parameters are e,=—1 eV
and B=3 eV. Observe the vertical scale.
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j(e)~pc(e—ﬁw)E;1; Img (z —fiw) , (4.1)
where
_ S S
gC(Z)—<¢0|ch—EO(N)+H¢C|¢0> (42)

and z =e—iy. In the theoretical discussion y is an infini-
tesimal positive quantity, while it is finite in the numerical
work, to simplify the calculation and to describe Lorentzi-
an life-time broadening. As indicated in the Introduction,
we introduce a basis set { | i)}, consisting of some of the
states (3.1)—(3.6) with the core level empty. We can then
obtain an approximate expression for g.(z) by assuming
that these basis states form a complete set of states>*

8:2)=3 (4o 01D (i NIGEATSS
L

1
z—EoN)+H
(4.3)

and invert the matrix (i | [z —Ey(N)+H]|j). Because of
the operators ¥, and ;bz in (4.2), the final-state Hamiltoni-
an H (n,=0) enters the problem where we set n, =0 in Eq.
(2.1). An important property of this approach becomes
obvious if we transform to new states | ), which diago-
nalize H(n,=0) in the space {|i)}. Our approximate
core spectrum can then be written as

pe)=3 | (€, (N —1)| ¢ | Do) |

X &(e—e€y(N)+€,(N—1)). (4.4)

This expression differs from the exact one [Eq. (1.1)] by
the appearance of approximate states, |®,) and
|€,(N —1)), and energies, €(N) and €,(N —1), due to
the use of a finite basis set.

It is now obvious that (4.4) is positive for all energies in-
dependently of the quality of the basis set. Furthermore,
(4.4) is zero above the threshold

en==6)(N)—€y(N—1). (4.5)

The error in €y depends on the completeness of the basis
set and the degree of cancellation of errors in
€o(N)—€o(N —1). Owing to the variational principle the
description of the threshold should put moderate demands
on the basis set. For the same reason one may expect that
the positions of the peaks in the spectrum are reasonably
well reproduced and that the appearance of unphysical
peaks is unlikely. This is in contrast to Green’s-function
decoupling techniques where it often is hard to suppress
unphysical poles over the whole parameter range. This
formulation is convenient to use for a discussion of the
limit (3.18) (Nyj— ). We showed in Sec. III that our
method leads to the correct ground state | ¢y) in this lim-
it.37 Since the exact expression for the spectral density
and expression (4.4) are identical in form, the proof that
(4.4) is exact for Ny— oo just requires that we show that
|€,(N —1)) and €,(N —1) are exact eigenstates and
eigenenergies, respectively. It is not necessary to find all
the eigenstates. To calculate (1.1) we only need the ones
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which exhaust the sum rule

S &N -1 ]9 |do)|*=1, (4.6)

since the remaining ones do not contribute to the sum in
Eq. (1.1). In the following we indicate the proof for the
J

&N =)=, [10)+ [ deayier|@+ [ de [ decucerizen ||,

where

|0 =4. | 0)
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case when double occupancy of the f level is allowed but
higher occupancies are suppressed. We proceed as in Sec.
IIT and diagonalize H (n.=0) in the space of the state
equivalent to (3.1), (3.2), and (3.4), but with the core level
empty. This leads to

(4.7)

(4.8)

and |€) and |EE’) are states with a core hole. In the following we suppress the tilde. We now apply H to

|€n(N—1)>,
H|€,(N —1))=¢€,(N—1)]|€,(N—1))

+4 fOB’dE[[V(E)]* [ffa dea,,(e)lE,e)—f—f_oB de f_EB de'c,(e,€ ) | E,e,€32) + ]E,e',e;Z))] ] .

Since the second term in (4.9) contains V(E) without a
factor V/Ny, we can show as in Sec. III that the norm of
the additional state goes to zero for Ny— . The states
| €,(N —1)) are therefore exact eigenstates.’’ Since they
are obtained in the same valence electron subspace as | ¢¢)
they exhaust the sum rule (4.6) and this approach there-
fore yields the exact spectrum in the limit (3.18), assuming
that more than double occupancy of the f level can be
neglected.>*%’

In Appendix D we obtain the analytic first-order spec-
trum for the case when double occupancy is suppressed.
This solution is of interest for La compounds. In Appen-
dix E we derive formulas for a second-order calculation of
the core spectrum when double occupancy is allowed.

Figure 4 shows the core spectrum for a nondegenerate

1
o) 5 10

FIG. 4. Core-level spectrum in the nondegenerate (Ny=1)
case. First- (dashed-dotted curve) and second- (dashed curve) or-
der treatments are compared with the exact spectrum. We have
used a semielliptical symmetric density of states [(3.22)], with
€,=0, A=1.5, B=3, and Uy, =9. All energies are given in eV.
A Lorentzian broadening of 1.8 eV (FWHM) was used.

(4.9)

|

system. The first-order solution gives peaks at about the
right energy but the weights are off by about a factor of 2.
This is consistent with the variational arguments below
Eq. (4.5) that even a rather poor basis set can give good
peak positions. Already the second-order solution, howev-
er also gives the weights of the peaks in fairly good agree-
ment with the exact solution.?’” Figure 5 shows results for
N;=6. In this case the difference between the first- and
second-order calculations is very small, indicating that al-
ready for Ny=6 the first-order solution is fairly accurate.
The figure also shows a calculation where double occupan-
cy has been suppressed in the initial state. Although the
double occupancy ( | ¢, |2) in the initial state for realistic
values of U and A is quite small ( <0.05), it strongly influ-
ences the f2 peak of the XPS core spectrum. To under-
stand this effect we consider the model in Fig. 1. The fi-

T T ﬁlf] lw

Pe

eleV)

FIG. 5. Core-level spectrum for Ny=6. First- (dashed curve)
and second- (solid curve) order treatments are compared with a
second-order calculation (dashed-dotted curve) where double oc-
cupancy is suppressed in the initial state. We have used the pa-
rameters €,=—1.1, Upr=10, U=6, B=3, and NjA=1.4 eV.
For these parameters the double occupancy is 0.02. Peaks are
labeled according to the number of f electrons in the correspond-
ing final states. A Lorentzian broadening of 1.8 eV (FWHM)
was used.
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FIG. 6. Core-level x-ray photoemission spectrum as a func-
tion of the coupling A between the f level and the conduction
states. Spectra are normalized to the height of the f! peak and
the f' peaks are lined up. A Lorentzian broadening of 1.8 eV
(FWHM) was introduced. Conduction band was described by
Eq. (4.10) with the parameters o= —1.22, B=2.79, U=6.4, and
€r— Uy = —11.8, where all energies are in eV. f° weight of the
initial state was kept at 0.2.

nal state corresponding to the f 2 peak is approximately
[f=cl|f ) +c3|f?). According to Eq. (1.1), the
weight of the f2 peak is p = |cjcl+cycl | 2. Since both
c1 and ¢, are small, the relative change of p is large if we
set ¢, =0. Figure 6 shows the core spectrum as function
of A. Following an earlier publication,?' we have used

7| V(e) |?=2VB*—(e—ey)*]'?/B?, (4.10)

where €p= —1.22 eV and B =2.79 eV, which may be used
to describe Ce compounds with transition elements. The
weight of the f2 peak depends strongly on A, and this
weight can therefore be used to estimate A for Ce com-
pounds. In Fig. 7 we show the weight of the f° peak as a
function of the probability, w (f %) ~1 —ny, of having no f
electron in the initial state. This figure will be discussed
in detail in Sec. VII. However, we note that even for a
fairly large value of A, the difference between w (f°) and
the weight of the f° peak is not very large. The XPS
spectrum therefore provides information about both A and
ns, and in another paper we have presented estimates of
these parameters for a large number of La and Ce com-
pounds.?!

V. X-RAY-ABSORPTION SPECTROSCOPY

XAS has been used to study the f occupancy.'*!> Nor-
mally the Ly edge is studied, which primarily involves a
2p—35d transition. Our present Hamiltonian (2.1) is less
suited to study this transition since it does not explicitly
take into account the Coulomb interaction between the d
electrons, on the one hand, and the core hole and f elec-
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FIG. 7. Intensity ratio I(f")/[I(f")+1(f?)] for the XAS
(dashed curve) and the BIS (dashed-dotted curve) spectra and
LGOI fO4+I(f)+I(fD)] for the XPS (solid curve) spec-
trum as a function of the f° weight w(f°) in the initial state. Pa-
rameters are A=0.12, Ny=14, ey=—1.22, and B=2.79 [Eq.
(4.10)]. We used U=6.4 and €,— U, =11.9 for the XPS and
XAS spectra and €7+ U =4 for the BIS spectrum, with all ener-
gies in eV,

trons, on the other. Recently, there have also been experi-
ments for the 3d —4f transition.’ The Hamiltonian (2.1)
is more appropriate for this process and below we present
a theoretical description.

We introduce the operator

T=3 W, i, (5.1)
to describe the excitation 3d —4f. In the limit (3.18) it is
convenient to consider ¥, | W, |*—const since the XAS
spectrum then converges. The x-ray-absorption spectrum
is given by

1 t 1
I(w)~ - Im<¢ T T Eg N —H T ¢> R (5.2)

where z=w—iy. The photon energy is @ and we have as
usual introduced a life-time broadening 2y. We develop a
theory which is correct’ in the limit (3.18) (Nf— o).
Double occupancy in the initial state is taken into account
and |[¢y) is therefore given by (Bl), except for the
second-order term | Ee), which is neglected. We intro-
duce states

lv)=yll0), (5.3)
1 fot
)= Vb, |0) (5.4)
| ev N = vév

where |0) now means a state with a core hole since the ~
in Eq. (4.8) is suppressed. These are the only states which
couple to the first-order ground state apart from states
with three f electrons, which are neglected here. As in
Sec. IV we can also show that these are the states needed
to obtain the correct result for N f—>oo.37 We can now
calculate the matrix elements of (z+Eq(N)—H)"! be-
tween |v) and |[v') using the fact that the Hamiltonian
(2.4) conserves the number of “v” electrons [Eq. (2.6)].
We obtain
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<v
where T is defined in Eq. (D7). The minus sign enters because the resolvent operator in this case contains —H. We can
now express the other matrix elements of [z +Ey(N)—H] ™" in terms of gxs(z) using the same technique as for the core

1
z+E(N)—H

80y
'V’> ZgXAS(z)SW'._ (55)

 Z4AE4e,—€p+Upe+(Ny— )T (—z —AE —e, +26,—2Up +U)

spectrum (Appendix E). We define

1 0 ae)Vier*
h(z)=—+— d .
(2) VN, S CZ+AE e, —2¢,+2Up—U+e (5.6)
and obtain the spectrum
1 0 lae) |*/Ny
I(z)=—4? W, |1 1 -1 2 —1 . .
@ T ; [ Wy [Im \gxas(@)[ 1+ Ny — Dh ()] +(Ny )f_B z+AE +€c—2€f+2Ufc_U+€d6 (5.7

In Fig. 8 we show some typical XAS spectra for different
values of ny. The spectra show two peaks corresponding
to f ! and f? final states. To be able to compare the XAS
and XPS spectra, we arrange the energy axis in both cases
so that the peak corresponding to the lowest final state is
to the right. Since in the 3d —4f XAS process an f elec-
tron is added to the valence system, we expect the weight
of the f! peak to vary with w(f°), the weight of the f°
configuration in the initial state. The figure shows that
there is such a relation, but that the weight of the f ! peak
is substantially smaller than w(f°). This is illustrated
more quantitatively in Fig. 7 which is discussed in Sec
VIIL

1
—i0t—Ey(N)—w+H

[l 2 069

L5 1

tT
Tl/}EVE"
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0.79
1 1 1 A1 1 1
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FIG. 8. 3d —4f XAS spectrum as a function of the f° weight
w(f° in the ground state. Spectra are normalized to the height
of the larger peak and the f? peaks are lined up. We have used
the parameters [Eq. (4.10)] €=—1.22, B=2.79, V=041,
U=6.4, and e,— Uy = —11.9. Lorentzian broadening of 1.8 eV
(FWHM) has been introduced and all energies are in eV.

Ve, T

VI. VALENCE PHOTOEMISSION

Photoemission from the valence band has often been
used to study the position and width of the f level in Ce
compounds.'®1*  We therefore focus on the emission
from the f level and describe the photoemission process by

T=3 WL i, , 6.1)

where E is the energy of a scattering state. In the sudden
approximation the photoemission current is given by

¢0> . (6.2)

Thus we need to calculate the Green’s function

1

| SR
B %) 63)

g<<z>=<¢o

Since the ground state is nonmagnetic, g <(z) is indepen-
dent of v. We show explicitly a calculation correct to
lowest order in 1/N;. We use the first-order ground state
(3.7) and obtain

¢v|¢él))=——‘/%v—7fdea(6)1/}w}0). (6.4)
We introduce the final-state basis function

l€v) =1 [0) . (6.5)
This function couples to

le,€,v;1) = -—‘/ﬁ vév Voberibes| 0 (6.6)
and

l€,€,v;2) =¥l stey |0) . 6.7)

To avoid overcompleteness in the subspace considered,
(6.7) is limited to € > €’. We need the matrix elements

(e,€,v;1|H |€",v)=V'N;—1V(€')d(e—€"), (6.8
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(,€Vv;2 |H |€',v)=VI(€')b(e—€")—V(e)de'—€") .
(6.9)

Using arguments of the types (3.19), (3.20), and (4.6),
one can see that for U = « it is sufficient to use the basis
states (6.5) and (6.6) to obtain the exact spectrum in the
limit (3.18), Ny— o.’” This follows since both the state
| €,€',v;2) and states of the type ¢Ev¢'w¢ev\ 0) couple to
the states (6.5) and (6.6) with the strength ¥V, which goes to
zero in the limit Ny— co. To calculate the Green’s func-
tion (6.3) we have to invert H =z — E4(N)+H in the sub-
space specified above. Using the basis functions (6.5) and
(6.6) we obtain the matrix elements

H(e,€)=(z —AE —e€)d(e—¢€') , (6.10)
H(e€'€16;)=(z —AE —€e—€ +€,)8(e—¢€))8(€' —¢,) ,

(6.11)

H(ee',e" )=V N;—1V(€')8(e—€") , (6.12)

with obvious notation. Since (6.11) is diagonal it is con-
venient to use Eq. (D5), which yields

(e,v|[z —Eo(N)+H]'|€,v)

=g(z —AE +€,—€)b(e—€'), (6.13)
where
g(z):——L——;“ (6.14)
z—€,—NsI(2)
and
Fz)= ffB J::#_e)el—zare. (6.15)

In (6.14) we have anticipated the more accurate result
(6.19) below and used the prefactor N, in front of ['(z) in-
stead of the factor (Ny—1) which would result from Egs.
(6.11), (6.12), and (DS5). The additional term I'(z), which
is of the order 1/Ny, is due to the basis functions (6.7).
Equation (6.13) provides the only part of H ~! we need,
since the basis function |e€,€,v;1) do not couple to
¥, | 65") [Eq. (6.4)]. Thus we obtain

A2
g<(2)="+ fde|a(e)|2g(z~—AE+ef—e). (6.16)
Ny
For finite Ny we can find a more accurate solution by

keeping the basis functions (6.7) and introducing the func-
tions

|E,e,€,v;1) = —‘7»]\,1_;—1 2V¢Evr¢elvv¢ev1 0), (617
| E,e,€',v;2) = ebe, | O) (6.18)
Then we have to invert the matrix
[G<(e,e)]!
=[z—AE —e—N;T,(z —AE +€;—€)18(e —€')
+ VieV(e') . (6.19)

z—AE+er—€—€ —y(z—AE —e—¢€')
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where
| Ve)|?
B z—e—~y(z—€r—¢)

and y(z) is defined in Eq. (E7). The Green’s function (6.3)
is then given by

de, (6.20)

P [

< ____ﬁ ’ % < ’ ’
ge@=4 [ de [ deaterG=(eeale), (6.21)
where a(€) now should be obtained from a second-order
ground-state calculation including states (3.3).

We discuss in more detail the structure of the lowest-
order result (6.14)—(6.16). We first observe that
Img(e—i0%) is nonzero for —B <€ <0. In addition g (€)
has a pole at e=€;—AE. This can be seen from the fact
that

N T(e,—AE)=—AE ,
which follows from (3.12). The strength of this pole is

1— (6.22)

—1
2y ) ]
z=ef—AE

az

=1—nf N

which follows from Eqgs. (3.14) and (3.15). Inserting this
result into Eq. (6.16) yields

pu(e)E%Imegﬂe—iOJ“)
(1—ns)*Ny | Vie) | ?
- LNy | 2' , AE—e;<e<0
(e+AE —¢p)

where we have used (3.10) and (3.15). For € < AE —€y the
continuum of Img (z) also contributes to Img <(z).

Equation (6.23) describes a sharp rise in the spectrum
close to €x. The origin of this structure is the function
N,I'(z) in Eq. (6.14), which results from the interaction
between states (6.5) and (6.6). Out of these basis functions
we can form linear combinations of the type v, |do),
which are identical to the ground state except for a con-
duction hole at €. These states contribute weight at the
energy € and they have a finite overlap,
(1—ng)a(e)/V/ Ny, to ¥, | ¢o) [Eq. (6.4)]. It is instructive
to compare (6.23) which is exact for Ny = oo with the ex-
act result for a nondegenerate model, Ny=1. In the latter
case the imaginary part of the Green’s function g <(z) can
be calculated from an expression similar to g (z) defined in
(6.14)

Np=1 1

(6.23)

Po (e)z;lmg§f=1(e—i0+)
1 1
=—Im O(—e)
T €—i0t—e,—T(e,—i0O")
(6.24)
where O(x) is the unit step function, and
B’ 2
ro= [ O, (6.25)
-B z—¢€

now involves an integral over all energies in the band,
while the integral in (6.15) defining I'(z) is limited to ener-
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gies below the Fermi energy €x=0. The other important
difference to the exact result for Ny= o is that no energy
integration as in (6.16) occurs in (6.24). For the compar-
ison of these exact results for Ny=1 and Ny= o we have
to distinguish the cases €, > € and €5 <€p. For simplicity
we assume a broad band (B >>NyA) with V(e)=const
(A=mV?. Then the spectral function (6.24) for N r=1Iis
a Lorentzian of half-width A centered at €, which is cut
off above the Fermi energy €;=0. For €;> € the spec-
tral density (6.24) therefore is rising with energy as one ap-
proaches the Fermi energy from below. This rise is just
the onset of the “affinity peak” which lies above €. For
€7 >>A the results for Ny=1 [(6.24)] and Ny= oo [(6.16)]
agree to leading order in V2. This is no surprise as in this
case perturbation theory in ¥ works independently of the
value of N s~ When €/ lies below the Fermi energy, the
Ny=1 result leads to an “ionization” peak at €, and the
spectral density at € is decreasing. This is in strong con-
trast to the Ny= oo result [(6.23)] which always shows an
increase in spectral weight when the Fermi energy is ap-
proached from below. If we would extrapolate the
Ny= o expression [(6.23)] to energies above €r, p,(€)
would diverge at e=€,—AE. [We will see in the follow-
ing section that the BIS spectral function, which presents
the “natural” continuation of p,(€) above € actually has a
peak at €z —AE.] The behavior of InN, g <(e—i0%) as a
function of €, is therefore very different from the Ny=1
case except for €, >>A. As €, approaches the Fermi ener-
gy from above and moves below it, a remnant of an
(Ng=1)-like affinity peak is pinned above the Fermi ener-
gy at €, — AE (see also Sec. VII) and the onset of this peak
shows up in p,(€) [(6.23)]. The weight of this peak, which
cannot be explained in a “one-particle picture,” decreases
like 1—ny when €, moves further below €, and €, —AE
moves closer to €r. In the spin-fluctuation limit
(€f << —NfA), a “normal” ionization peak at €, with a
width 7N ;V? occurs in p,(€) (for B >> | €/ |) and the rela-
tive weight of the rise at € becomes extremely small. The
drastic increase of p,(€) when € approaches e€r in the
spin-fluctuation limit, has been discussed in connection
with the formation of local moments (N;=2).® In the
symmetric case (2€;+ U =0) the spectral function of the
local one-particle Green’s function has a peak directly at
the Fermi energy for a symmetric band as can be deduced
from the particle-hole symmetry of the problem and the
generalized Friedel sum rule (FSR) discussed below. This
peak is usually called the “Kondo” peak. A universal ex-
pression for the shape of p,(€) near e in the spin-
fluctuation limit including the continuum part resulting
from Img is given in Appendix C.

The increase of p,(€r) with Ny as well as the accuracy
of result (6.23) for finite Ny can be discussed in terms of
the exact Fermi-liquid relation®® between p,(ez) and ny,
which follows from particle-number conservation (‘“‘gen-
eralized FSR”).*> We have

7Tnf
Ny

N
psxact( € y= _fsinZ

6.26
A ( )

’

where it again has been assumed that the band is broad
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and that V(e) is constant (A=xF?). In this limit result
(6.23) takes the form

s 2
polep)= nyr, (6.27)
NA

where we have used Eqgs. (3.13) and (3.17). Expanding the
sin function in (6.26) we can see that expressions (6.26)
and (6.27) are identical for Ny= w0, as they should. In
Fig. 9 we show Eqgs. (6.26) and (6.27) as a function of Ny
for a mixed-valence system (ny=0.8) and a system in the
spin-fluctuation regime.

For Nf>6, the result [(6.27)] deviates less than 10%
from the exact result even in the spin-fluctuation limit,
and for Ny=14 the deviation is less than 2%. Figure 9
also illustrates how p,(€r) grows with N, in the limit
NsA=const. For n;=0.99 the Ny= oo result for p,(€y) is
about a factor 7% /4~2.5 larger than the N;=2 result. In
Fig. 10 we compare the analytical result (6.16), and the
more accurate result (6.21) for Ny=6. The similarity be-
tween the curves further supports the conclusion that Eq.
(6.16) is quite accurate for Ny > 6. In Fig. 11 we show the
quantities ImI(e—i0%), Rel(e—i0%), and e—es
which enter

Img(e—iO%) N
N/ImT(e—i0")

- [€-€f—NfReI:(G—l'O+)]2+[Imi:(€—l'0+ )]? )
(6.28)

The figure also shows Img(e—i0%) and |a(e)|? which
enter (6.16). The figure illustrates how the sharp cutoff in
Im[(e—i0%) leads to a logarithmic singularity in
Rel(e—i0%) and a pole in g(e—i0*). In addition there
is a split-off state slightly below the bottom of the band
and a large contribution to Img(e—i0™") just above the
bottom of the band. This leads to the peak at —2.1 eV in
Fig. 11. Such a peak at the bottom of the band is to be ex-
pected if the density of states goes to zero fairly rapidly
and NfA is not small compared with €,4B but € is
within the band.

Nf A pv (EF)

2 6 N¢ 10 14

FIG. 9. Weight p,(€/) of the valence spectrum at the Fermi
energy as a function of the degeneracy N,. The exact result
[solid curve, Eq. (6.26)] is compared with the lowest-order result
[dashed curve, (6.27)]. To make the results more universal we
have multiplied them by N A. Figure shows results for both the
mixed-valence (ny=0.8) and spin-fluctuation regimes (n,=0.99).
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FIG. 10. Valence photoemission spectrum in the first-

(dashed curve) and second- (solid curve) order treatments. We
have used the parameters [Eq. (3.22)] B=2, €¢,=—1, and
NyA=1.4. Lorentzian broadening of 0.5 eV (FWHM) was in-
troduced. All energies are in eV.

VII. BREMSSTRAHLUNG ISOCHROMAT
SPECTROSCOPY

BIS, or inverse photoemission, is complementary to
valence photoemission since it gives information about the
unoccupied states. In particular, BIS has been used to
determine the energy of the f? configuration, which pro-
vides an estimate of U.!°

In BIS, electrons with a large energy make transitions
into lower-lying unoccupied states in a radiative process
and the energy of the emitted photon is measured. Here

la(g) 12
: N

-2 oA 0
eleV)
FIG. 11. Quantities Re T'(e—i0%), ImI'(e—i0%) [Eq. (6.15)],
€—¢€s, |a(e)|? and Img(e—i0%) [Eq. (6.14)]. Same parameters
as in Fig. 10 are used.
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we focus on the process where the incoming electron falls
into an f orbital. This process is described by the operator

T=3 oW, . 7.1)

We assume that the initial state, with a fast incoming elec-
tron, can be written as

v o) -

The probability for observing a photon with energy w is
then

(7.2)

I@)~ | a,|?
o

1 t
><Im< v > .
%o l/’"w—io‘r—EOW)—E+H'l’ %o
(7.3)
We therefore study the Green’s function
1
> () o+
&> @=(b [t W (%) 7.4
which is related to I (o),
I(a))=% | o, | *Img > (E —0—i0%) . (7.5)

With this definition Img>(e—i0%)=0 for € <0, while
Img <(e—i0%), introduced for valence photoemission, is
zero for € >0. These definitions allow us to easily com-
pare the BIS and valence photoemission spectra.

In the calculation of the ground state | ¢,) we take dou-
ble occupancy of the f level into account (see Appendix
B), but neglect the second-order state [Eq. (3.3)]. The
latter states have a small weight and would complicate the
calculation.

The choice of basis states for the inversion of the opera-
tor [z +Ey(N)—H] is more difficult than for valence
photoemission. The weight,

(Ny/mIm [ g<(e—i0*)de,

of the valence spectrum is ny, while the corresponding
weight for the BIS spectrum is Ny —nys. An exact theory
should, nevertheless, give

Img > (0t —i0")=Img <(0~—i0%) .

Even in the limit Ny;— 0, this requires that the BIS
theory is correct to order 1/Ny, since the weight of the
BIS spectrum is of the order Ny. Thus lowest-order basis
functions are not sufficient in the BIS calculation. A sys-
tematic inclusion of all contributions of the order 1/Ny
does, however, not seem worth the effort at the present
stage. The choice of basis states below and the first-order
ground state give, nevertheless, a continuous connection
between the two spectra for Ny= 0, at least if f 2 states
are suppressed. For any finite Ny, there is a discontinuity
at z =0, but this defect is usually not detectable for a real-
istic broadening of the spectrum. We use the basis states
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[v) :,/,1 [0), (7.6) separate treatment. Using a similar technique as used for
) the other spectroscopies (see, e.g., Appendix E), we calcu-
lev)=—a— 3 ¥iply., |0), (7.7)  late the matrix elements of
”TNf_l Vv [z +Eo(N)—H]=[G> ()]~}
|Ev) =95y [0) (7.8) and invert the corresponding matrix. This approach
1 tot yields
|E,e,v;1)=———— 3 Yr e, |0), (7.9)
V Nf— 1 Vy € N N s
|Eevi2)=——— 3 Wl [0),  (1.10) g7MI= 2 2 el Gy ey 712
VE6V;2) = e Wevter |00, . i=0j=
Nr=1 7z where
| E.ev3) =¢k e |0) (7.11)
aOZA ’
Although BIS and XAS (Sec. V) are formally very similar, —ATw (Ne—1)/N+1"2a (e
our larger demand on the accuracy of the BIS calculation ai [wi(Ny—1)/Ny ae) .
requires a larger basis set [(7.6)—(7.11)] and therefore a The matrix G >(z) is obtained by inverting
|
(G>)0'=z+AE —€;—p(2) , (7.13)
(G>)i'=—VN;—1V(&)[1+p1(z,6) WV w;, 1<i<N (7.14)
- Vie)Vi(e;)
(G>)j'=2z +AE—2¢; —U+€+20(—2 —AE +€,—€)8; +(Nyp— D)——"[p,(z,6;) —pu1(z,6) 1V ww;
i€
1<i,j<N . (7.15)

We have discretized the occupied part of the conduction band (—B,0) in N points, ¢;, as in Appendix E, and introduced
the weight factors w; [see the text after Eq. (E3)]. We have also defined the function

o | V(E)|?

Un(z,€)= fO

Since p(z,€) is independent of €, we use the notation
to(z). The functions I'(z) and y(z) are defined in Egs.
(6.15) and (E.7), respectively.

A typical spectrum is shown in Fig. 12. There is one
peak at ~€;—AE due to a transition to an f! final state,
and another peak at ~2e,+ U —AE corresponding to an
f? final state. The f2 peak is mainly due to matrix ele-
ment (7.15). This element contains an imaginary part
2Imy~27V?, which describes how an f? state can decay
through the tunneling of either of the two f electrons into
a conduction state. We observe the difference from the
valence photoemission spectrum. Since the hole created in
the photoemission process can be filled in Ny ways, the
corresponding imaginary part of the ionization peak at €/
(<< —NsmV? is NywV2 The f? peak in the BIS spec-
trum shows a tailing towards higher energies. The reason
is that the final state contains two f electrons and one hole
in the conduction band. This hole is likely to be close to
the Fermi energy, but can also be located further down,
which corresponds to the high-energy tail of the f? peak.
Because of this tailing, the f2? peak appears broader than
one would expect from the imaginary part of Eq. (7.15).
This is in particular the case if the f occupancy is small.

To study the f! peak in more detail, we assume U = o,
which allows us to obtain an analytical solution. This
yields

1
z+AE —ep—po(2)

g7 (z2)=(1—ny) , (7.17)

dE . (7.16)

(z+AE —E —€;+€)z +AE —E +N;T'(—z —AE +E +¢;)

-
where po(z) is defined in Eq. (7.16). We can rewrite the
integrand of Eq. (7.16) for n =0 as

|V(E)|?

z+AE —E +N;T(—z —AE +E +¢;)
_U=np) |V(E)|?
- z—FE

(7.18)

+p(z —E),

where

Imfi(e—i0t)=0 for e<e;—AE . (7.19)

The determination of the strength of the pole at z=E in
Eq. (7.18) is quite analogous to the calculation in Eq.
(6.22). We then obtain

Impo(e—i0t)=(1—np)m|V(e)|* O<e<er—AE .
(7.20)
This leads to a small broadening of the f! peak, in partic-

ular if ng~1. For Ny— o and O <€ <€y —AE we can ex-
pand the imaginary part of (7.17) as

(1—ns)?
YNy V(o]

1
—ImN;g>(e—i0t)=————FF——
T 8 (e4+AE —¢y)

(7.21)

This joins smoothly to the valence photoemission spec-
trum, Eq. (6.23), at €=0, as it should. For a finite value
of Ny, Eq. (7.17) has a pole at a slightly negative € and
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FIG. 12. BIS as a function of the f° weight w (£ in the ini-
tial state. Peaks are normalized to the height of the larger peak
and the energy zero is at €. We have used the parameters [Eq.
(4.10)] €g=—1.22, B=2.79, and €;+ U=4 eV and introduced a
Gaussian broadening of 0.65 eV (FWHM).

there is a discontinuous connection between the valence
photoemission and BIS spectra. This unphysical result is
due to a slightly inconsistent choice of basis states for the
final and initial states. This inconsistency is not very
aesthetic from a theoretical point of view and indicates the
problems one encounters in the attempt of a unified 1/N,
expansion for both g < and g> but this complication is,
however, normally not visible if realistic broadening is
taken into account. For instance, we used a constant
| V(e)|? with A=0.12 eV, Ny=14, B=2, and e, = — 1.6,
which leads to ny=0.85. In this case the pole of (7.17)
was less than 10~* eV below €r and had a weight smaller
than 0.01.

In Fig. 7 we show the weight of the f! peak as a func-
tion of w(f°), the weight of the f° configuration in the
initial state. Since in BIS an f electron is added to the sys-
tem, there is relation between these two quantities. We
now compare the XPS, XAS, and BIS results in Fig. 7.
To understand these results, we first consider the model of
Fig. 1 and for simplicity we write the ground state as

[do)=co|fO)4ci|f1). (7.22)
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If the hopping integral between | f°) and |f!) is nega-
tive, ¢o and c¢; have the same sign since |@y) is the
ground state. The f° peak in the XPS spectrum corre-
sponds to the final state

Oy =co | fOY+ellf),

where we have suppressed the occupation number of the
core level and assumed that the weight of f2 is negligible.
The weight of the f° peak is then [see Eq. (1.1)]

(7.23)

Po= ICOC(I)‘*'CIC} |%.

Since the final | £°) state is higher in energy than the fi-
nal |f!) state, ¢ and c] have different signs. It then fol-
lows that

Po< |co|i=w (). (7.24)

The coupling between the f° and f! configurations is
NyA <2 eV. This is much smaller than the energy separa-
tions between these configurations in the final state, ~11
eV. The coefficient c] is therefore small and ¢} is close to
1. This explains why po and |cq|?=w(f°) are similar.
We can use similar arguments for 3d —4f XAS, except
that the final f! and f? configurations now serve the same
purpose as f° and f! did for XPS. Since, however, the en-
ergy separation between the final f! and f? configurations
is smaller (~5 eV) the deviation between w(f°) and the
weight of the f! peak is larger. BIS is similar to XAS in
this respect, except that there is no core hole for BIS. The
final f? configuration is therefore higher in energy than
the f! configuration. This means that for the f!-like final
state,

I =ci D +esf?,
the coefficients ¢{ and cé have the same sign and the ma-
trix element, |(f'|¢)|do) |2 is larger than |cg|2
=w(fO).

We can now discuss both the “occupied” and “unoccu-
pied” parts of the valence spectrum. To illustrate the
strong correlation effects, we show in Fig. 14 both a spec-
trum with correlation effects included and spectrum in the
Hartree-Fock approximation. In the latter we have chosen
the position of the effective level

(7.25)

in such a way that the f occupancy becomes the same as
for the correlated spectrum. The correlated spectrum has
been obtained from Egs. (6.21) (€ <0) and (7.12)—(7.16)
(€>0). We have introduced a Lorentzian broadening of
0.6 eV full width at half-maximum (FWHM), as the peak
amplitudes otherwise differ so drastically that it is hard to
represent them in one figure.

The figure illustrates the variation in the number of
peaks with €;. For €, far above €f, the f level is empty
and there is only a BIS f! peak, which in this situation is
very similar to the Hartree-Fock (HF) peak. As €, is
moved down, the f level is partly occupied and the spec-
trum acquires a second peak, the BIS f? peak. This is il-
lustrated by the two uppermost curves in Fig. 13. If €/ is
moved even further down a third peak develops, the
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FIG. 13. Combined photoemission and BIS spectra with a
Lorentzian broadening (0.6 eV FWHM). Figure shows the spec-
trum with correlation taken into account (solid curve) and in the
HF approximation (dashed curve). In the latter case, the effec-
tive level has been placed so that the unbroadened interacting
and noninteracting curves have the same weight below €5 in
each panel. Observe that the left, lower, interacting curve has
been multiplied by a factor of 5. Parameters are U=6 eV,
NyA=1.1 eV, Ny=14, ¢g=—1.22 eV, and B=2.79 eV [Eq.
(4.10)]. Equation (4.10) has been slightly modified above €y so
that ¥ (€)? is never smaller than 0.1 times its maximum value.
Arrows show the positions of the f level.

photoemission f° peak (see the lower spectrum). (Com-
pare to the discussion in Sec. VI.) The HF spectrum has,
of course, only one peak, unless A is much larger than the
values used here (no split-off states). It is also interesting
to compare the widths of the peaks. While the HF peak
has a half-width ~A, the peak widths in the correlated
spectrum are quite different for the different peaks and
they can also depend on the value of ns. The shape of the
lower peak in the photoemission spectrum depends on the
large quantity NyA, while the higher peak (the onset of the
BIS f! peak) grows on the energy scale €s—AE. The BIS
f! peak tends to have a half-width (1 —ng)A [Eq. (17.20)]
and the BIS f? peak obtains a half-width 2A due to tun-
neling into the conduction states. For the latter peak the
tailing towards higher energies can give an important adj-

[Vie|?
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ditional contribution to the width, in particular if » £ is
small. In the spin fluctuation limit €; << —N,A and for a
large U the relative weights of the three peaks are as fol-
lows: The ionization peak near €, has the weight ny~1,
the weight of the f! peak (Kondo peak) at €, —AE~O0 is
(1—ng)Ny and the f? peak near 2e,+U —AE has a
weight ng(Np—1)~N;—1. Therefore even for ny=0.9
and N;=14 the weight of the f! peak is larger than the
weight of the ionization peak: Even if there is a small
chance, 1—ny, to find the f level empty, there are N, dif-
ferent ways to put in the extra electron. From this argu-
ment it can also be inferred that only a fraction ~1/N; of
the f! peak is seen in photoemission. Almost all its
weight lies on the BIS side for large degeneracy N;. To
show this fact in a figure like Fig. 13, we would have to
chose a broadening smaller than €, —AE. Since this f!
peak then would be extremely high and narrow, an ex-
treme spin-fluctuation case is not included in Fig. 13.

VIII. STATIC T =0 SUSCEPTIBILITY

Ce compounds often have a large susceptibility, which,
however, varies strongly between different compounds.! 3
The large susceptibility is ascribed to the f electrons, and
it has been assumed to imply a small value of A.* Below
we analyze the static T=0 susceptibility in the impurity
model. For the susceptibility it is important to take the
spin-orbit coupling into account to describe the coupling
to the external magnetic field k. The Hamiltonian (2.1) is
therefore replaced by

2 Jv
H= zeknka-+ z 2 (ey—8ypmK)nyy,
k,o

v=1 m=—jv

2
+ 2 2 (Vk’;olpim¢ka+H~C-) s

v=1 k,m,o

(8.1)

where j, == and j, =+ are the two spin-orbit-split f lev-
els, and €, are the corresponding energies. Landé’s g fac-
tor is given by g, and up is the Bohr magneton. The hop-

ping parameters Vj,,, can be expressed in the parameter
introduced earlier, V4,,, by using the relations*' between
the states | jm ) and |,0). We assume that double occu-
pancy of the f level can be neglected and the Coulomb in-
teraction is therefore not shown explicitly in (8.1).

To obtain the susceptibility, we calculate the total ener-
gy at T=0 and differentiate twice with respect to the
external magnetic field k. Performing a variational calcu-
lation as in Sec. III, we obtain

AE(K)=§," Jdeqmio—

where y is defined in Eq. (E7). This leads to the suscepti-
bility ]

S 82 jsi,+1DGIAE)
X=—Spp— ,

9 v
1~§V; 5iag) GTAE)

(8.3)

€,+&yupmu+e€x +y[ —AE(

K)—e] ’ (8.2)
lwhere
| Vie)|22j,+1)
GJ(AE)= | d 8.4
YAE)= [ “TAE (8.4)

—€,+€e+Y(—AE —e)]"

For the discussion, we now work to lowest order in 1/N,
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and drop the second-order term y. We also neglect the
j2=7 level for a moment, although this is not a good ap-
proximation (see Appendix A). If we further assume that
Ns|V(e)|? is constant and much smaller than B, where
— B is the bottom of the band, we obtain
i 2
X:%]g{l—ﬂ)gﬁtﬁi Yo
ji1+1 A l—ng

(8.5)

The susceptibility has been calculated to this accuracy by
several groups,’>3! and it can be written in different ways.
We have here preferred a form which shows explicitly the
dependence on ny and A since these are the parameters
which interest us in particular. Alternatively, one could
express (8.5) in terms of | e, —AE |, which is the Kondo
temperature for ny— 1. We write

ny
AE—¢/| (8.6)

X=15/101+Dgiuj
The expression for X obtained by Newns and Hewson*
could also be written in the form (8.5), except for the fac-
tor (1 ——nf)‘l.

Equation (8.5) indicates that if we know one of the
quantities ny and A, in addition to the experimental sus-
ceptibility, we can deduce the other one. For instance, one
can use

AL "

X 1—-n;
and insert the experimental value of X and an estimate of
ns to obtain a value of A. However, Eq. (8.7) illustrates
that A then depends very sensitively on n; and the method
is only useful if we know n, quite accurately. If we have
an estimate of A, it is much more favorable to use the sus-
ceptibility for an estimate of ny. For typical parameters,
an error in our value for A or X of a factor of 2 leads to an
error in the estimate of ny of less than 0.1.

For quantitative calculations it is important to include
spin-orbit splitting instead of using the simple formula
(8.5). In Fig. 14 we show some typical results. To obtain
an idea of the accuracy we consider both the first- and
second-order theories which give similar results. The
difference between the first- and second-order theories is,
however, somewhat larger if X is shown as a function of
€7. Also in the presence of spin-orbit splitting there is a
very strong dependence on ny, comparable to Eq. (8.5).
Equation (8.5) is, however, not very accurate when spin-
orbit splitting is included, as illustrated by the crossing of
the A=0.12- and the 0.03-eV curves.

IX. LATTICE-PARAMETER DATA

(8.7

The f occupancy in rare-earth compounds has often
been estimated from lattice-parameter data.! ™3 The lat-
tice parameters of hypothetical compounds with ny=1
and O are estimated and it is assumed that the lattice pa-
rameter varies linearly with ny. Knowing the lattice pa-
rameter of the real system one can then estimate the value
of ny. This method can be problematic both in terms of
estimating the lattice parameter of the hypothetic com-
pounds and the assumption of a linear dependence on ny.
We want to address the latter issue for Ce compounds.
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For Ce compounds we find a fairly large value for the
hybridization A so that the f level contributes to the
cohesion. Since the hopping matrix elements V(e) in-
crease when the lattice parameter is reduced the f contri-
bution to the cohesion grows. This corresponds to a con-
tractive force on the lattice due to the f electrons. This
force depends, however, on the f occupancy. If nj is
small, i.e., € is far above €, the force is small. The same
is normally true if 7y~ 1, since then typically €5 <<€p but
U +€7>>€p, so that hopping from the f! configuration
into both the £ and the f? configuration is small, and the
f contribution to cohesion is rather independent of ¥V (e).
The force due to the f electrons,

d(AE) dV(a) d(AE)
da =~ da v’

is therefore small. We have assumed that the hopping ma-
trix element V(e) [Eq. (2.2)] has a separable “a” depen-
dence V(e,a)=V(a)F(e). The contraction of the lattice
due to the f cohesion is largest for ny~0.5. This contri-
bution should be added to other effects, e.g., the contrac-
tion of the Ce ion when n ¢ is reduced, and it tends to give
a nonlinear dependence on ny. The neglect of this non-
linear dependence leads to an underestimate of n;.

To obtain a more quantitative estimate we have calcu-
lated d (AE)/dV. To determine the contraction, we write
the total energy of the system as

9.1

, °E )
E(a0)+7~éa—2(a —ag) +AE(ag)+ (a —ay) ,

A(AE)
da
(9.2)

where we have assumed that the energy and the lattice pa-
rameter would be E (ay) and ay, respectively, if the f elec-
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FIG. 14. Susceptibility X multiplied by A as a function of ng.
Spin-orbit splitting is taken into account. Figure compares the
first- (dashed curve) and second- (solid curve) order calculation
for A=0.12 and the result for A=0.12 (solid curve) and A =0.03
(dashed-dotted curve). Parameters are [Eq. (3.22)] B =3 eV and
Aef=0.25 eV. Double occupancy of the f level is neglected.
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trons did not contribute to the cohesion. We can then esti-
mate the f-electron-induced contraction as

~ 3(AE)

da

d’E

"™ 9.3)
a

a—apg=—

We relate 3°E /3V? to the experimental bulk modulus and
use Egs. (9.1) and (9.2). For V(a) we assume a power
dependence on a,

Via)=(ay/a)V, . (9.4)

Using the bulk modulus of a-Ce we obtain the results
shown in Fig. 15 where we have expressed (@ —ag)/ay in
terms of the power v in Eq. (9.4). According to arguments
from the linear muffin-tin method,*? one may expect the
hopping matrix element to vary with the power v=6.
However, the definition (2.2) of V(e) also involves the
density of states, which partly compensates for the varia-
tion of the hopping matrix element. This makes it hard to
give an accurate estimate of v, and we leave its value open.
Figure 15 shows, however, that (@ —ay)/ay may be of the
same order as the relative difference (0.1) between hy-
pothetical Ce metals with ny=0 and 1. The assumption
that a has a linear variation with ny may therefore lead to
a large error in the estimate of ny.

Even for w (f°) =0 there is a substantial f contribution
to the force. This is partly due to the f? configuration.
For instance, w(f°)=0.03 corresponds to €,=—15¢eV
for the parameters in Fig. 15. The energy separation be-
tween the f! and f? configurations is 3.5 eV and hopping
into the f? configuration starts to become important.

Finally, we note that the calculations in Fig. 15 are per-
formed for a nonmagnetic state where the hopping be-
tween the f° and f! configuration is determined by N FA.
The intersite interaction, not included in model (2.1), can
lead to a magnetic ground state where on each site one of

003
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{a-ap) ag'v!
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00 0.2 04 06 08 10
w (f°)

FIG. 15. Relative change (@ —ag)ag " of the lattice parameter
caused by the f contribution to the cohesion as a function of the
weight w (f° of the f° configuration in the initial state. Calcu-
lated result has been divided by the parameter v [Eq. (9.4)]. We
have used the bulk modulus of @-Ce and the parameters A=0.06
eV, B=2 eV, and U=5 eV together with the band structure
[(3.22)].
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the Ny f levels is preferentially occupied. In this case the
hopping between the f° and f! configurations is partly
determined by the much smaller quantity A [see Appendix
F and also Eq. (A1)], and the force due to the f cohesion
is reduced.

X. APPLICATIONS

We now apply the theory presented in the preceding sec-
tions to CeNi,, for which there are core-level XPS,?!
3d —4f XAS,%° BIS,”2 and static T =0 susceptibility*
data available. CeNi, is interesting since it has tradition-
ally been assumed to be an ny=0 compound.’ In Fig. 16
the 3d core spectrum is shown. We have superimposed
two theoretical spectra with the weights 0.4 and 0.6 and
the energy separation 18.6 eV to describe the effect of the

Intensity

300 € 880

FIG. 16. 3d core-level XPS, the 3d —4f XAS, and the BIS
spectra for CeNi,. To simulate the 3d spin-orbit splitting we
have superimposed two theoretical curves for the XPS and XAS
spectra, and to describe the f2 multiplets in the BIS spectrum we
have superimposed theoretical curves with different values of U.
Value of w(f9 is 0.19 (XPS), 0.23 (XAS), and 0.25 (BIS). Densi-
ty of states of Eq. (4.10) was used with the parameters
€o=—1.995 eV, B=2.005 eV, and A=0.13 eV. We used the pa-
rameters Uy, =10.3 eV, €,=—1.3 eV (XPS), —1.2 eV (XAS),
and —1.2 eV (BIS). Values 5.5 and 6.1 eV were used for U in
the XPS and XAS spectra and the average value 5.3 eV was used
for the BIS calculation.
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3d spin-orbit splitting, which is not included in the model.
An inelastic background has also been added to the calcu-
lated spectrum. For |V (€)|? we use model (4.10), with
€p=—1.995 eV and B=2.005 eV, which gives a small
density of conduction states at €r as is observed experi-
mentally. The value of V (or A) was adjusted so that the
experimental weight of the 3ds,,f 2 peak was reproduced,
and €;(ny) was varied until the weight of the 3ds,,/© peak
agreed with experiment. The 3d;,,f? and 3ds,,f° peaks
overlap and cannot easily be used to estimate A and ny.
The experimental f! peaks appear broader than the calcu-
lated ones because the configuration with a 3d hole and a
f electron has several lines. These multiplet effects are not
included in model (2.1).

Figure 16 also shows the 3d —4f XAS spectrum. The
experimental spectrum deviates from the simple 4:6 ratio
for the weights of the 3d3,, and 3ds,, parts because of the
effects of intermediate coupling.*® We have therefore su-
perimposed two calculated spectra and adjusted the rela-
tive weight of the 3ds,, and 3ds,, parts of the spectra to
fit the experiment. This is less important since we are in-
terested in the relative weights of the f! and f? peaks. We
have also added a weak background as indicated. The f?2
peak clearly shows a multiplet structure not included in
model (2.1). To describe the f!-f? peak separation, we
have increased U slightly from 5.5 eV (XPS) to 6.1 eV
(XAS). This difference could be due to the different
weighting of the multiplet lines in the two spectroscopies.
We have also changed €/ slightly to reduce the f occupan-
cy by 0.04, which gives a better agreement with the experi-
mental weights for the f! and f2 peaks. The other param-
eters are unchanged. To describe lifetime broadening and
instrumental resolution a Lorentzian broadening (1.8 eV,
FWHM) was introduced for both the XAS and XPS spec-
tra. Finally, Fig. 16 shows the BIS. The f? multiplet
splitting leads to a substantial broadening of the f? peak,
which makes a comparison of the experimental and
theoretical peak weights and shapes more difficult. We
have therefore added calculations using different values of
U. Since the energy of the f2 peak grows linearly with U,
this procedure allows us to simulate the multiplet split-
ting. We used the same separations between the different
£2 lines and the same relative intensities as Lang et al.'®
used for y-Ce, while the f1-f? energy separation and the
relative weights of the f! and f? peaks are determined by
the calculation. The experimental spectrum seems to have
a fairly constant background extending down to €z. Such
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a constant background is also observed for many systems
with no f peaks close to €r, and we therefore assume that
it is due to transitions into low-lying conduction states.
Since such transitions are not included in the theory, a
constant background has been added to the calculated

curve. We have also introduced Gaussian broadening
describing the instrumental resolution and energy-
dependent Lorentzian broadening, 2T'(€)=0.50

+0.2(e—eg) eV, where € is the energy of the state con-
sidered. We expect lifetime effects to give a broadening
which grows linearly with e —e for small € —ep. This is
probably at least an important contribution to the energy-
dependent part of I'(e), which is the same as the one used
by Lang et al.!® The f! peak also appears broader because
of the 4f spin-orbit splitting, which is not included in the
theory but simulated by I'(e ~0) which is nonzero. These
two effects, however, may not fully justify the I'(e) used
and there is a need for further study of the peak widths.
Both the broadening and the background lead to substan-
tial uncertainties in the comparison of the experimental
and theoretical peak weights, and the BIS estimates of ng
appear less reliable than those obtained from XPS and
XAS. The empirical broadening 2I'(e), described above,
has been introduced to minimize this uncertainty.

We have also applied the theory of Sec. VIII and calcu-
lated the susceptibility of CeNi, using the A obtained from
XPS. The results are shown in Fig. 17. Since double oc-
cupancy is not included in the susceptibility calculation,
we show the results as a function of w(f°) rather than
nf=w(fl)+2w(f2), where w (f") is the weight of the f”
configuration in the initial state. Comparison with the ex-
perimental susceptibility*> gives us an estimate of w (f°).
This estimate is compared with the results from the XPS,
XAS, and BIS spectra in Table I. Results?*»?? for some
other systems are also shown. All spectroscopies give
similar estimates even if the BIS result sometimes can be
about 0.2 larger than the other ones. In all cases, however,
w(f% is much smaller than 1, while CeNi,, CeNis, and
often CeRu, had traditionally been assumed to have
w(f%=1 (n;=0). To obtain an accurate description of
the peak separations, we had to use slightly different
values of U for the BIS (5.3 eV), XPS (5.5 eV), and XAS
(6.1 V) spectra of CeNi,. We expect U to be somewhat
larger in the presence of a core hole (XPS and XAS) than
without a core hole (BIS). The apparent variation of U is,
however, probably also due to multiplet splitting and other
effects not included in the model. Our values of U for

TABLE 1. f-level hybridization A and the weight w (f°) of the f° configuration in the initial state, as
deduced for the XPS, the 3d XAS, the BIS, and the static T =0 susceptibility (X). The density of states
of Ref. 23 as used and an average A defined in Ref. 23 is shown since V(€)? has strong variations in

several cases.

A, (V) w(f°
XPS XPS 3d XAS BIS X
CeRu, 0.10 0.21 0.45 0.26
CePd; 0.11 0.13 0.18 0.08 0.22
CeNi, 0.10 0.19 0.23 0.25 0.30
CeNis 0.09 0.24 0.22 0.42
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FIG. 17. Second-order [(8.3)] susceptibility ¥ as a function of
w(f%. We have used the parameters of Fig. 16 and the spin-
orbit splitting Ae,=0.25 eV. Susceptibility is given in units of
103 emu/mole and experimental result 0.83X 10~% emu/mole
was taken from Ref. 43.

CeNi, are fairly close to the value of 5 eV obtained for Ce
by Herbst et al.?* in an ab initio calculation, while for
CePd; (U=7.5 eV) and CeRu, (U=7 eV) somewhat
larger values were required to describe the core spectra.
Our values of Uy for CeNi, (10.3 eV), CeNis (10.7 eV),
CeRu, (10.8 eV), and CePd; (11.0 eV), which only enter
the XPS and XAS calculations, are close to the result 10.3
eV obtained by Herbst and Wilkins** for Ce. Our values
for A are about an order of magnitude smaller than those
obtained by Oh and Doniach.®® The reason is that the
weight of the f2 peak depends on (N r—1)A [see Eqgs. (E6)
and (B3) and the discussion above Eq. (4.10)] since there
are (Ny—1) ways of going from the f! to the f? configu-
ration. Since Oh and Doniach used Ny=2 while we use
N ;=14 one would expect their values to be about 13 times
larger than ours.

XI. CONCLUDING REMARKS

We have presented a simple method for calculating the
expectation value of a resolvent operator [Eq. (1.3)] for a
generalized impurity Anderson model. The results are
quite accurate for Ny > 6, as indicated by Figs. 3, 5, 9, and
10. We have shown how this method can be used to cal-
culate the core-level XPS, the 3d —4f XAS, the valence
photoemission, and the BIS spectra. Our approach can be
extended to the two-impurity problem but is not well suit-
ed for a lattice of f levels. The core-level XPS spectra
provide a useful method for estimating the hybridization
A between the f state and the conduction states. We can
furthermore use the XPS, XAS, and BIS spectra to esti-
mate ny. This is summarized in Fig. 7. XPS is partlcular-
ly favorable since the weight of the 3d; ,,f° peak is closely
related to w(f%. For 3d—4f XAS and BIS we have to
rely more on the calculations to estimate ng, and it is
harder to determine the weight of the experimental peaks
because of the larger overlap. In BIS the broadening of
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the peaks and the large background pose particular prob-
lems in this respect. On the other hand, XPS has a larger
surface sensitivity and may measure slightly different
properties. It would be useful to extend the theory to
(2p—5d) XAS, where the peaks have a fairly large energy
separation, so that the mixing of the final states should be
rather small. In terms of Fig. 7, 2p XAS may therefore be
similar to XPS, but it is less surface sensitive. To make
the treatment of 2p XAS meaningful, one should, howev-
er, extend the model used here.

In the Introduction we mentioned the possibility that
the parameters in the Anderson model may be renormal-
ized, for instance, due to electron-phonon coupling in a
different way for “low-" and “high-" energy experiments.
In addition to the (high-energy) spectroscopies, we have
therefore also studied the static 7'=0 susceptibility. For
the mixed-valence Ce compounds we have investigated, we
find that the susceptibility data are essentially consistent
with the values of ny and A obtamed from the spectro-
scopies. In a forthcoming paper,*® we show that for
values of A and ny in the range of Table I, one should ex-
pect the electron-phonon coupling to lead to a similar re-
normalization of €, for both the calculation of the suscep-
tibility and the valence photoemission spectrum, unless the
coupling constant is very large. In Sec. IX we also dis-
cussed the lattice-parameter data and showed that these
data are not necessarily in conflict with the values of n,
deduced here. It would be interesting to see if our values
of ny and A can be also reconciled with other low-energy
experiments. For instance, the quasielastic linewidth in
neutron scattering depends47 on both ny and A, and the
study of this linewidth may provide further insight in the
choice of parameters for the Anderson model.
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APPENDIX A

In our basic Hamiltonian (2.1) we neglect the spin-orbit
splitting of the f level. Below we discuss how the results
are influenced by this approximation. We assume that the
spin-orbit spllttmg is Aes (A€s>0). Then there are two
levels at €/(j = 2) and €r+Aes(j =) with the degenera-
cies Ny;=6 and Ny, =8, respectively. To lowest order the
energy is now given by [compare Eq. (3.12)]

0 Vie)|? de

AE:Nflf_ e te

Vie)|?
N l
+ fzf—B AE —es—Aes+e

de . (A1)

In Fig. 18 we show numerical results for AE and n; ob-
tained from a second-order calculation. The values of ns
are particularly mterestmg since 1—n largely determines
the weight of the f° peak in the core spectrum. The solid
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FIG. 18. Occupancy ny and the energy lowering AE [Eq.
(3.8)] as a function of €;. Solid curves show the results with the
spin-orbit splitting included and the dashed and dashed-dotted
curves have been calculated without spin-orbit splitting with
Ny=14 and 6, respectlvely The curve n,,,/ny shows the occu-
pancy of the higher (j = 7) of the two spin-orbit-split levels di-
vided by the total occupancy of the f level. Curve AE =¢; is
also shown in the upper half of the figure. We have used the pa-
rameters [Eq. (3.22)] ¥=0.6, B=6 (A=0.12), and Ae;=0.25
with all energies in eV.

curves show the results when the spin-orbit splitting is
taken into account. Since we expect this splitting to be of
little importance for Ae; << | AE —¢y |, we have also per-
formed a calculation with Ae;=0, which amounts to us-
ing the formalism of Sec. III with Ny=N;;+ Ny, =14.
The figure illustrates that the range of validity for this
simplification is fairly large. For ny close to one, the
neglect of spin-orbit splitting, however, leads to an un-
derestimate of ny.

For | AE —€f| << A€y, one might expect the j = L lev-
el to become unimportant. To test this assumption we
have also applied the theory of Sec. III with Ny=N;;=6.
Figure 18 illustrates that this approximation actually is
poor for all values of €;. For simplicity we discuss the
failure of the Ny=6 theory in terms of the first-order
theory, although the second-order correction is of impor-
tance for Ny=6 and ny~1. We introduce a quantity
d=¢€;—AE and obtain [see Appendix C and Eq. (C6)]
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5 AE~B A (A2)
=€r— = =
4 PN 1A 0
in the limit —e; >>NyiA/m, where ny=~1. If the j =1
level is included, similar arguments yield
8~[1+B/(5+Aep)] 72115, . (A3)

The reason for the importance of the j=+ level is the log-
arithmic behavior of AE [Egs. (A1) and ( 3 16)]. Thus this
contribution of the j =~ level to AE is of the order

Nfz(A/W)ln[(S—f"Aé‘f)/B] s

which is normally important even if Aes >>38.
In the limit —e; >>NsA /7 we obtain

1——nfz’lT(S/(Nf1A) ) (A4)

so that the additional factor
[14B/(5+Aep)] 72"

in Fig. (A3) is crucial. This explains why the Ny=6 cal-
culation is poor even when 8 << Ae;.

The relative occupancy of the j=3 and  levels is also
of interest, since the j== and + initial states lead to dif-
ferent multiplet structure and therefore different line
shapes in the spectra. Figure 18 shows n (j=7)/n £
where n(j =+) is the occupancy of the j=7 level. For
8 << A€y, the occupancy of the j =7 level is very small.
This can be understood from the spin-orbit-split version of

Egs. (3.13)—(3.14). In the limit —e;>>NyA/m, we find
8 << Aes and
n(j=1)
- 3 9 L (AS5)
n(j=7) 6 A€f+8 1+A€f/B

This result shows that although the j = < level strongly in-
ﬂuences the total-f occupancy via §, the occupancy of the
j =7 level itself is small in this limit. In the opposite lim-
it, 8 >>Ae€y, the occupancy is determmed by the degenera-
cy and we obtain n (j =—)/nf— 17 =0.57. For €;=2 this
limit is almost reached. For Ce compounds Ny ~Ny,,
and the special case Nyy= Ny, is of interest. In this case it
is straightforward to solve Eq. (A3) so that the spin-
fluctuation limit can be treated analytically.

We now consider the effects of the spin-orbit splitting
on the valence photoemission spectrum. Proceeding as in
Sec. VI we derive the first-order result

-
N N
’ ’ fl f2 ~ ’

pole)=A42[de | Vie)|? + (z—AE +€r—€'), (A6)

’ Jae | (AE —ep+€')?  (AE—€;—A€s+€')? £ 4

(e) 1 A7) )

gle)= = = > For Aef=0.25 eV we obtain €, —AE =0.05 eV, while
z _Ef_Nfll:(Z)“NfZF(z_ +Aey) . Aer=0 leads to €, —AE =0.12 eV. When spin-orbit split-
where z=€—i0" and I is defined in Eq. (6.15). In Fig.  ting is included, most of the contribution to the €’ integral

19 we show results for both Ae=0.25 eV (solid curve) and
Aef—O eV (dashed curve). The solid curve has a sharp
rise at €z and a shoulder about Aff below €. The rise is
due to the logarithmic singularity in N flRel"( z), and the
shoulder is caused by the singularity in Ny,Rel'(z 4-A€y).

in (A6) is therefore obtained for very small €. This ex-
plains why the introduction of spin-orbit splitting yields
somewhat more weight in the neighborhood of €z. The
figure, however, illustrates that spin-orbit splitting has a
fairly small effect on the valence photoemission spectrum.
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APPENDIX B

In Sec. III we performed a first-order ground-state calculation. Here we take double occupancy into account and ex-
tend the calculation to second order. The ground state is written as

| o) =A

|0)+fj8a(6)|6>d6+ foB’ [ijb(E,eHE,e)de

dE + f_OB [f_EBc(e,e’)le,e’)de' ]de] , (B1)

where we only allow states | €,€') with > €’ since |€,€’) = |€’,€). Minimization of the total energy yields a set of equa-
tions analogous to Egs. (3.9) and (3.10). Since, however, | ¢€,€’) can couple to both |€) and |€’),

(e, |H |€")=VNs—1[V(€)be' —€")+ V(€' )dle—e€")], (B2)
we obtain an integral equation. To solve this equation one has to invert a matrix. Thus we define
B | V(E)|? 0 [V(e")|?
B s ') = AE _ —_ dE ___ . 7
(e,€") er+e=J, AE —E +¢ W= [, AE —2¢;—U +e+¢€”
, VeN[vie)T*
S(e—€')—(Np—1 , B3
X 8(e—€')—(Ng )AE—2ef——U+e+e' (B3)
and obtain
0
a(e)=V'N; [ B e, eIV (e)de , (B4)
0 0 .
sE=N; [ | [ V1B cerverde |ae . (B5)
It is now straightforward to express b (E,€) and c (€,€’) in terms of a(e),
b(E,e)=[V(E)]*a(e)/(AE —E +¢) , (B6)
clee= YN 1Vieale)+Vielale)] (B7)
AE —2e;—U +e+€
For the normalization constant 4 we obtain
0 B 0 0 € —172
a=(14 [ Ja@ et [ [ [° 1bEe) e |am+ [° de [ [ ae |ceer|?] ] (B8)
r
APPENDIX C ag NA [ _e—AE o
In this appendix we discuss in more detail the ground- o B+e—AE |’ )
state properties and the valence photoemission spectrum d th . .
for a V' (e) which is constant within the band. Here were-  20¢ Ct /(e C oclc)upa.nlcl:y of the f level is given by
strict ourselves to the limit Ny— oo (NyA=const), where ny= + 1, wit
first-order theory leads to the exact results.’” As discussed NeA 1 1
in Sec. III, one obtains for AE the transcendental equation C= 7 |e—AE € —AE+4B | (C2)

T
—— Ags =025

---— Ag¢ =000
N¢A =168

pyvl€)

-3 -2 -1 0
€(eV)

FIG. 19. Valence photoemission spectrum with (solid curve)
and without (dashed curve) spin-orbit splitting. Parameters are
[Eq. 3.22)] A=0.12 eV, B=6 eV, and €,=—2 eV. We have
used a constant V(e)=V and introduced a 0.1-eV (FWHM)
Lorentzian broadening.

We introduce the (positive) energy 8=€,—AE and assume
that the width B of the occupied part of the band is much
larger than 6. Then one obtains

*
5 quTA exp #(Jevff;S) (C3)
and
e _NA (c4)
1—ng w8
with
=+ N:TA In A’,TfBA : (Cs)

From these equations it follows that n, is a function of
one (dimensionless) variable €r/NyA. This scaling
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behavior was first discussed by Haldane*® and Jefferson*’

using the “poor-man’s scaling” technique. Note that this
scaling behavior only holds when the bandwidth is suffi-
ciently large (B >>0). For 8 <<N,A/m, i, l—ny<<ng
the solution of (C3) is trivial

NA

5= exp
T

o
NA

mer
N/A

+0 . (C6)

In the spin-fluctuation limit, e} << —NgA/m, where the
exponent is very large and negative, § (when divided by
kp) is called the Kondo-temperature. 1In this limit the f-
level occupancy is very close to 1,
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™| €r |

N/A (cn

l—ne~exp

Note that this result is very different in form from the ex-
act result for Ny=1, which is given as l—nr=A/m|€;|
if ns is close to 1.

In Sec. VI we discussed in detail the sharp rise of the
valence spectral function p,(€) when € approaches the Fer-
mi energy from below. We show here that the continuum
contribution starting below €r—8 does not alter this pic-
ture, which arises from the discussion of “pole contribu-
tion” (6.23) only. The complete expression for p,(e) for
constant V (€) reads

(€)= —eX1 )NfA 1—ng +f0 1 O(€' —€—8)NsA/m de B)
o (€)=O(—¢€)(1—n e €
P Iy (e—8)? —B (¢'—§)* [e+8—€—es—Rel(e+8—€)]*+(NsA)?
In the spin-fluctuation limit we can use (C6), (C7), and the expression for ReT for constant ¥ (€) to obtain
5 O(—e—8) O 1
o (€)=0(—€)(1—ny,) de' | . C9
P f (6—8)2 77_2 f€+5(61_8)2 e—¢' ilnf-}—a—el 2 1 € ( )
Na T s |t

If we measure all energies in units of §, i.e., €=x8, we see that the term (e—€')/N/A in the integrand is of order §/N A
and can therefore be neglected in the extreme spin-fluctuation limit for |x | of order 1. On the energy scale & we then

obtain a universal shape for p,(€) near €y,

2

T 1

1

dx'

0
Po(x8)=6(—x) +6(—x—1) [

NA | |x—1

+x (x'—1)% [In(x —x")]?+ 72

(C10)

This is shown in Fig. 20. The other characteristic feature of p,(€) in the spin-fluctuation limit is the “normal” ionization

peak at
& =7 +Rel(€)) =€} +(N;A/m)In[N,A /(1))

for |€;| <<B. The width of the nearly Lorentzian ionization peak is NyA. The value of p,(€) at the maximum is small-

er than the value at the Fermi energy,

po(€r)/pylep) = 1/m* .

APPENDIX D

The general approach for calculating the core spectrum
was described in Sec. IV. We now consider the case when
U = w0, so that double occupancy can be neglected and we
can consider a first-order calculation. In this case an
analytical solution can be obtained.

This limit is of practical interest for La compounds
where the f? configuration has negligible weight, w (f?), in
the initial state, and is less important in the final states
than for Ce compounds. The spectrum does, however,
change when double occupancy is allowed, as is illustrated
in Fig. 21. For the values of U considered, w(f?) is very
small ( < 1073), and the variation of the spectrum with U
is due to the interaction between the final f! and f2 con-
figurations. For U=4 these configurations are degenerate
and the interaction between them leads to final states with
f! character over a larger energy range. Since states with
f! character can couple to the initial state, the spectrum is
indirectly influenced by the presence of the f? configura-

(C11)

Intensity

FIG. 20. Universal curve [(C10)]. Solid curve shows the pole
contribution 1/(x —1)? and the dashed curve shows the integral.
Latter curve has a very broad maximum at about x = —35.
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FIG. 21. Core-level spectrum as a function of U for La com-
pounds. Solid curve shows the results when double occupancy is
suppressed (U= «) and the dashed and dashed-dotted curves
show the spectra for more realistic cases with U=4 and 6 eV,
respectively. We have used the parameters [Eq. (3.22)] €,=5
eV, Up=9¢eV,B=6¢eV,A=0.1¢V,and Ny=14.

[z —Eo(N)+H]oo
H,o

Hy,
[z —Eo(N)+H]y,

where H o, Hy;, and H, are block matrices and the index
1 refers to the states |€). Equation (D4) also defines the
Green’s functions ggg, £10, 801> and g;;. It is now very
convenient to use the formula

—Hoi[z —Eo(N)+H]y;; " 'Hyp} ™!,

since [z —Eo(N)+H],, is diagonal, so that the inversion
in (DS5) is trivial. We shall repeatedly use a similar tech-
nique later to invert matrices which would otherwise be
too large for a numerical treatment. We obtain

gw(2)=[z —AE —N;T(z —AE+€e,—U;)]"", (D6)

(D5)

where
- 0 2
r(z)zf_B—l—?_e—)—e—l—de . (D7)

The major difference from the calculation of the valence
density of states of a nondegenerate Anderson model’® is
the limitation of the integral (D7) to states below €=0.
Simple matrix algebra yields

goel€)=—f(€,2)gp(2) , (D8)
gee(2)=(z —AE +€;—Up, —€) " '8(e—€')
+f(€,2)g00(2)f (€',2) , (D9)
where
fle,2)=V'N;V(e)/(z—AE +e;,—Uys —€).  (DI10)

Performing the sum in Eq. (4.3) we obtain the core spec-
trum,

8oo(2z) goi(z)
g10(2) g11(2)
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tion. In the same way we expect an influence on the Ce
spectrum if the f3 configuration is taken into account.
Nevertheless, the figure illustrates that the neglect of the
f? configuration for La compounds (and probably the
neglect of the f* configuration for Ce compounds) should
not be too serious, although it will change the values of
the parameters deduced somewhat.

We need the matrix elements of z —E(N)+ H between
the states |0) =1, |0) and |€)=1,|e) [Egs. (3.1) and
(3.2)], where we suppress the tilde in the following:

(0|[z —Eo(N)+H]|0)=z—AE , (D1)
(€|[z —Eo(N)+H]|0)=1V'N;V(e), (D2)

(€|[z—Eo(N)+H]|€)=(z —AE +€;—Uy;, —€)8(e—€') .
(D3)

The inversion of this matrix is closely related to the calcu-

lation of the valence density of states of the nondegenerate

model and we can use the same technique. We write the
matrix element (D1)—(D3) in the form

: (D4)
!
2 2
pele)=“=Im| goo(2) (1~ [a(este,2de |
late|? ,
+ fz——AE+ef—Ufc~e’d€
(D11)

This expression can be shown to be identical to the result
we have obtained earlier in the nondegenerate “filled-
band” model,?’

2

Use
£ | (1—ny)Imgeo(2) .

p— (D12)

1
pcle)=—

The assumption that Ny is large allows us to neglect the
conduction states above the Fermi energy (filled-band
model). If in addition we assume U— «, only the states
|0) and |€) are needed. The present problem can then
be mapped onto a nondegenerate filled-band model with
the interaction V' NyV(e). This justification for the
filled-band model was not given in the earlier derivation,?’
and the model was only applied to the case when € is far
above the Fermi energy in the initial state.

APPENDIX E

We now describe in detail the calculation of the
second-order core spectrum including double occupancy.
In contrast to the calculation in Appendix D this calcula-
tion requires a numerical inversion of a matrix.

The basis functions used are defined in Eqgs. (3.1)—(3.4).
The ground-state calculation in this space was described in
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Appendix B. To obtain core spectrum (4.3), we have to in-
vert the matrix i |z —Eo(N)+H |j) where |i) and |j)
are the basis functions (3.1)—(3.4) with a core hole, which
is not explicitly shown. Most of the relevant matrix ele-
ments have been given in Egs. (3.11), (3.21), and (B2).
Following the notation in Eq. (B1) the Hamiltonian ma-
trix is written in the block form as follows:

Hy Hy,, 0 O

HaO Haa Hab Hac
0 Hy, Hy 0 |

0 H, 0 H,
where O, a, b, and c refer to the states |0), |€), |Ee),
and |e€'), respectively. All the elements in matrix (E1)
are block matrices except for the ¢ number Hy. Matrix
(E1) is too large to be readily inverted numerically. For

instance, matrix Hj, has a double-continuum index Ee.
J

(ED)

H00=Z——AE N
Ho=V'Ne[V(e)]*V o; ,
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Thus we proceed in a way similar to Eq. (D5) and calcu-
late
-1

Go Goa Ho Ho,
= ~ , E
GaO Gaa Hao Haa ( 2)
where
H~aa :Haa —Habeleba_Hach:cha . (E3)

To invert this matrix we discretize the energy mesh and
introduce N equidistant points €; in the energy range
(—B,0) with an energy step Ae. We define weight factors
w; according to some integration method. Simpson’s
method, for instance, gives the values Ae/3, 2Ae/3, and
4Ae/3 for the w;’s. With the use of the index O for the
function |0) and i =1, ..., N for the functions |¢; ), the
matrix elements in (E2) and (E3) are given by

Hj=[z —AE +€;—Up —€—(Ny— DIz —AE +2¢; —2Us + U —¢;) —y(z — AE —¢;)15;;

[V (€)]*V (v wiw,
z—AE +2¢,—2Up +U —€;—¢; ’

—(N;—1)

where ' was defined in Eq. (D7) and

B | V(E) ZdE.
z+E

0

Y(z)= (E7)

To obtain the remaining elements of the Green’s function
we now use formulas of the type

Gba = _Hbleba Gaa ’ (E8)
Gpp=Hpp' +Hpp ' Hpy GoaHop Hyp ' (E9)
1

w, | V(E,) |%a(e;)Vw;(G,, )y

(E6)

I
According to Eq. (4.3) these Green’s-function matrices are
multiplied by the coefficients a, b, and ¢ in (B1). Since b
and c are expressed in terms of ¢ in Egs. (B6) and (B7), we
do not need to explicitly calculate b and ¢ or matrices (E8)
and (E9). For instance, we define

bviE Vv u)vb(E'v’Ei)L w; , (EIO)

and obtain

b .G 2 2 T e
% w( ba)w,} ?? (AE—-EV—}'E,')(Z—“AE‘FEV—E

Thus we introduce

T |V(E)|?
f'—fo (AE —E +¢€;)(z —AE +E —¢;)

dE ,

which can be expressed in terms of y [Eq. (E7)],
1
f,-=;[7/(z —AE —¢;)—y(—AE —¢;)] .

Similarly, we define

D

(E11)

(E12)

(E13)

| Ve)|2ale)+ V()W (e )ale)

hi=A(N;—1)Vw,; ffB (

to take the coefficients ¢ (€,€’) into account. Finally we define

a0=A N
a,~=Aa(€,-)v Wi, l=1, ...,N

and denote matrix (E2) by G;;,

d
AE —2¢,—U+ete)z—AE +26,—2U+ U —e—e) ¢

(E14)

(E15)
(E16)

where indices / and j run from O to N. The spectrum is then given by
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1 N X B 0 b(E,e)|?
pe(O=—Im |3 3 k,~G,»jkj+A2f0 dE f_Bde

i=0j=0

lc(e,€)]|?

z—AE +E —¢€

0 €
A2 [ 4 de’
+A2 [ de [, €I AE+2¢,—2Up+U—e—¢

where z =€—i0%, k;=(1—f;)a; —h;, and hy=f,=0.
APPENDIX F

Many Ce compounds have a magnetic ground state
while all the calculations in this paper were for a singlet
ground state. Since our basic Hamiltonian (2.1) cannot
have a magnetic ground state,”® we must go beyond the
impurity model to discuss the magnetic Ce compounds.
An accurate treatment of the Anderson lattice model is,
however, not within scope of this paper. Instead we use a
mean-field-type approach and add an additional term

ex 2n,{n,) (F1)

to (2.4). This term is supposed to describe a tendency for
the spins to order ferromagnetically. Whether the ground
state is ferromagnetic or not depends on the size of €, and
Ns|V(e)|% We assume that €, is large enough to give a
ferromagnetic ground state with the state |v)
preferentially occupied. This leads to two effective levels,

er1=€r+epln,) , (F2)
epr=esten S () /(Ny—1) . (F3)
Vv

We can now use the formalism of Appendix A and make
the identification Nyj=1, Npy=N;—1, Aes=€s,—¢€sy,
and éf = 6]‘ 1-

In Fig. 22 we show spectra calculated this way. The

T T T

—— Magn

---— Nonmagn

NeA =17

py (€)

FIG. 22. Valence photoemission spectrum for a magnetic
(solid curve) and a nonmagnetic (dashed curve) initial state. We
used the parameters €;=—1.6 eV, B=6 ¢V, and €, = —0.4 eV,
and assumed a constant ¥V (e)=V. Lorentzian broadening of 0.1
eV (FWHM) was used.

, (E17)

. .
solid curve shows results for a magnetic ground state

where one n, is larger than the others. The dashed curve
is for a nonmagnetic state where all n, were kept equal.
The magnetic solution gave AE=-—-1.982 eV,
€r1=—1.979 eV, €,=—1.602 eV, and n;=0.976. The
large occupancy is mainly due to the preferred level,
which is almost full (r,,=0.949). The nonmagnetic state
has a higher energy (AE = —1.85 eV) and a substantially
lower f occupancy (ny=0.72). To understand the large
difference in n, between the magnetic and nonmagnetic
states we apply formulas (A2)—(A4), although ¥ (€) is not
sufficiently small in this example to make the formulas
very accurate. For the nonmagnetic solution we obtain

7B

7T6f
1—(nf )nonmag= Nf—AexP

NsA

, (F4)

and for the magnetic solution we find
(Np=1)
exp

mE

7B
A

B

1—-(nf)magz a:f—l

(F5)

Although the prefactors are quite different the decisive
difference is the appearance of NyA in the exponent of
(F4) but only A in (F5). Since €, is negative the value of
the exponential function in (F5) is normally extremely
small. The reason is that the hopping between the f level
and the conduction states is governed by N,A for the non-
magnetic state where all the levels v are equally occupied,
and by A for the magnetic state, where one level v is
preferentially occupied. We can therefore not automati-
cally infer that A is small from the observation that ny~1
for a magnetic state.

Figure 22 shows that both the magnetic and nonmag-
netic states lead to a peak close to €. The magnetic state
leads to a peak slightly below €z which is mainly due to a
structure in (Ny—1)I" in Eq. (A7). This peak corresponds
to final states similar to the nonmagnetic state but with a
conduction electron close to €z removed. Since these final
states have higher energies than the magnetic ground state
the peak is located below €x. It is very important that this
structure is governed by (N —1)A and not A. This is re-
lated to the fact that the final states are nonmagnetic.
There is a much weaker structure at € (not visible in the
figure) corresponding to a magnetic final state and deter-
mined by A. Since the stronger peak is related to the
strength of (Ny—1)A, we expect the weight close to €f to
be comparable for the magnetic and the nonmagnetic
states. Actually there is even somewhat more weight at €x
for the magnetic state. The main reason is the small value
of €7y — AE, which means that most of the contribution to
the € integral in Eq. (A6) comes very close to € =0. The
peak in g(e€) [Eq. (A7)] is therefore spread out very little in
the €’ integration.
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