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Tunneling transition rates are evaluated for a two-mode system in the semiclassical (WKB) ap-
proximation with inclusion of contributions of neighboring paths to the classical one, connecting two
given points, or by considering a distribution of classical paths. Neighboring paths increase the
transmission coefficient in the cases of single —saddle-point barrier by about 6%, while in the cases
of two or three saddle points this rise can reach 100%%uo. Thus the consideration of several classical
paths is important if there are several least-action paths, e.g., for symmetry reasons. This formalism
is then applied to nonradiative transitions occurring in color centers. In particular, we reconsider the
temperature dependence of the AT and A~ emissions in Tl centers, which is a typical case of
three —saddle-point barrier.

I. INTRODUCTION

The usefulness of the semiclassical (WKB) approxima-
tion has been recently emphasized in various fields of
physics such as collision theory and molecular and solid-
state physics. ' ' Particular attention has been paid to
nonradiative processes occurring in systems with complex
potential surfaces in multidimensional spaces. ' ' '"

Here the basic problem is the evaluation of the probabil-
ity for a system in going from a given point to another in
a suitable space-time manifold. According to the Feyn-
man path-integral method, ' ' the problem can be at-
tacked by considering the contribution over all the paths
connecting the two given points. Such a procedure, how-
ever, encounters severe limitations, mainly because of nor-
malization problems. It becomes amenable when the La-
grangian of the systems is a quadratic form of the coordi-
nates and velocities, since in this case the amplitude of
probability depends on the action integral S,j taken only
along the classical, path. When the potential is a slowly
varying function of the coordinates, or for quasiclassical
systems, the amplitude can still be approximately ex-
pressed by S,l (WKB approximation), even in multidimen-
sional nonseparable problems, by assuming that the system
moves only along the classical trajectory. "

A criterion for judging the validity of this procedure
was given in Ref. 15 on the basis of the geometrical
characteristics of the trajectory. Such a criterion, howev-
er, is not easily applicable in practical cases. This problem
has recently been reconsidered by including in the analysis
of the tunneling transition the contribution of all the

neighboring paths to the classical path and suggesting a
simple normalization rule. ' On this basis, we consider in
this paper the problem of the nonradiative transition be-
tween minima situated on multidimensional potential sur-
faces. In Secs. II and III a new method of evaluating the
transmission coefficient, with inclusion of neighboring
paths to the classical path, is derived. This procedure on
one hand justifies the usual approximation of considering
only one contribution, that corresponding to the classical
trajectory; on the other hand, it allows us to extend the
evaluation to the cases of nearly coincident classical trajec-
tories, as well as the continuous distributions of classical
paths. This analysis mill then be applied to study the
emission intensity behavior of luminescent centers in ionic
crystals. In Sec. IV we examine the temperature depen-
dence of the emission intensity as originating by optical
transition from a double-well excited-state potential
model. Here, rather general expressions are derived, in-
cluding tunneling and back-tunneling from one minimum
to the other. Then we apply the results of Secs. II and III
to the case of a Tl+ impurity in alkali halides, obtaining a
sensible improvement of the capability of the model in ex-
plaining the experimental data with respect to the method
used in a previous work. The approximations involved
are then discussed in Sec. V.

II. TRANSMISSION COEFFICIENT
IN MULTIDIMENSIONAL PROBLEMS

Let us consider the transmission across a barrier in a
multidimensional space between an initial point (i) in the
left-hand well and a representative final point (f) in the
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where 2;„ is the total section of the left-hand well across
which particles travel from i to the right-hand well by
classical motion. (Particles going across the left-hand well
outside X;„do not get to the right-hand well. )

The WKB wave function, along a classical path (p) con-
necting the initial point (i) and a generic final point (f) in
the right-hand well, is expressed as'

(4)

FIG. 1. Transmission across a potential barrier between two
potential minima (shading represents classically allowed regions,
where E & V). (a) Several pathways, leading from the initial
point (i) to a representative final point (f}, one of which is the
least-action path or classical path; (b) A set of classical paths,
leading to a set of ending points in the neighborhood of f, pass-
ing across a section deaf of the initial well.

right-hand well. The situation in a two-dimensional space
is shown in Fig. 1(a). There are several pathways
p&,p2, . . . leading to f. The wave function based on path
integrals is a sum of the contributions

P(~'~f) =
P=P)~P2~ -. -

gp(i~f) .

2lp

By substituting P as given by Eq. (1), we have

In the classical allowed region (E & V), shown by shading,
the partial waves gz strongly fluctuate and tend to cancel
one another, except for p near the classical path (where the
action integral is stationary' ) and therefore, approximate-
ly

iS,&(.i,f)/fi
Pp(i ~f)=He

The density of current is given by'

where B is a constant, X is the normal section of the flux
tube. In the barrier region the wave function [Eq. (4)] will
be attenuated according to the factor e ~ ~ ", S being the
action integral between the two classical turning points a
and b [ V(a) = V(b) =E].

By substituting Eq. (4) into Eqs. (2) and (3) and identi-
fying X with X;„, we see, after integration, that the in-
cident current is simply given by

—2S &(X)/A
e 1

X (5)

In order to evaluate the transmission coefficient with Eq.
(5) in practical cases, one must define X,„,. A critical
analysis of this point has been given elsewhere. ' Here we
limit ourselves to the following considerations. First, we
wish to note that Eq. (5) contains as a limiting case the
usual approximation of considering only one contribution,
that corresponding to only one path. This is the case
when the flux tube is very narrow (X,„,~O), so that X,„,'
in Eq. (5) behaves as a 5 function, and we have

(this is true if 8 can be considered as independent of X; if
this is not the case, B must be replaced by a suitable
mean value).

Analogously, the current outgoing from the barrier re-
gion is expressed as

1 8 f —2S~ ~(X)/A
OUI

p Xout *out

where S, s(X) is a function of X since it depends on the
path. The transmission coefficient is the ratio of the
transmitted and incident currents and turns out to be

j (i~f)= —2 VS(i,f)=—
~
P~(i~f)

~

VS(i f) .
P P

—2Sa, p ~ /& dX —2S,(a,b)/glim e
0'

X„t 0~ X„,
out

The classical path i ~f for sub-barrier energies will trans-
pierce the left-hand potential well at some point. The set
of classical paths leading to a set of points in the neigh-
borhood of f will pass across a section dXf of the initial
well [for a two-dimensional system dXf will be a curved
line element; see Fig. 1(b)]. Neighboring contributions to
the current element dg will be

dg =j (i~f)dXf .

Integrating over the set of point f in the right well, we

The same result is obtained, for any finite value of X,„,
when S, b is independent of X (multidimensional separable
problems).

More generally, it is convenient to consider an expan-
sion of S in powers of X (S=d SjdX ),

~ g2
S(X)=So+So

2

where the linear term is missing since the path for 2 =0 is
assumed to have the minimum value of S ( =So). If it is



28 NONRADIATIVE TRANSITIONS BY PATH INTEGRALS WITH. . . 4309

08

0.4

X 0

-0.4

0.8

0.4 0
X3

0.4 0.8

tential surface Tt„ in the two-dimensional space of
tetragonal (Qz, Q3) coordinates. The relevance of this po-
tential model has been demonstrated especially in connec-
tion with excited-state impurity centers as Tl+ in alkali
halides and other luminescent systems. Here we shall18

reconsider the problem of the double-emission band (Az.
and Ax) of Tl+ impurity under excitation in the A band.
Accordingly, we must evaluate the nonradiative transition
rate, as function of the temperature, in going from the T
minimum (from which the high-energy emission A T
originates, after optical excitation) to the X minima (from
which the low-energy emission Ax arises). Figure 2 shows
a potential map of the T», state, obtained by diagonaliz-
ing the Jahn-Teller and spin-orbit Hamiltonian, for the

18a 1gt1„electron configuration in O~ symmetry. The
shape of the potential suggests that we look for one or
more classical trajectories connecting T and X minima,
through the intermediate saddle point, in the form of coni-
cal curves. Defining normalized ionic displacements coor-
dinates through x2 3

———[b/(2V 3$)]Q2 3, the curves are
given by

FICy. 2. Potential map of the 'T&„, state in the subspace of
the tetragonal Qz, Q3 distortions with a family of curves [Eq. (8)]
connecting the tetragonal T minimum and one of the two rhom-
bic X minima. Parameter values: 3 =3, g =0.4,
/=tan ' =0,0. 1,0.2, . . . , l. Each contour line corresponds
to an increment of 0. 1$ in the range —1.4(—0.

admissible to stop at the quadratic term in X, Eq. (5) can
be integrated to give

1 /2 2SO{a b)/A'
eD=

Xso Out

(6)

Taking X =2(A'ln2/So)'~, which corresponds to thea ing —2S{X)width at half-height of the function e, we simply ob-
tain'

—2SO{a,b)/AD=1.06e

This expression becomes exact in the case where the action
is a pure quadratic expression of X. Therefore, also in this
case the transmission coefficient is nearly coincident with
the contribution of one path alone, that corresponding to
the easiest path connecting the two minima through the
saddle point of the barrier. Equation (6) can be modified
for the cases of two or three saddle points closely placed in
the X space. In the next section we shall see how this
problem is worked out in the case of three saddle points.

III. TRANSMISSION COEFFICIENT
ON THE T] POTENTIAL SURFACES:
T t3) (e+ A. ), JAHN- TELLER PROBLEM

In this section we shall apply the results of Sec. II to a
concrete case, namely to the evaluation of the transmission
coefficient in going from a tetragonal minimum (T) to the
two lower-lying rhombic minima (X) situated on the po-

(x3 —[ x 3[1—m (m +2/v 3)]
m +2/v 3

+(B/A) m (m +2/V 3) )
' ), (8)

1/2

ds
S 2A''g b V E

(10)

where a and b denote the turning points (V=E) on the
selected path. Figure 3 (solid lines) shows some numerical
results as a function of the angle P=tanh m (negative

—1

values of P correspond to paths connecting the initial
minimum T with the other minimum X). The least-action
paths, for each energy value E, are identified with the
minima of the curves S(P).

In order to evaluate the "total" nonradiative transition
rate in going from the initial minimum (T) to the final
ones (X), we must consider all classical paths starting
from the initial minimum and ending in the valley region
of L minima. This would require repeating the above pro-
cedure for each point situated in the X' region (and not just

where m is the angular coefficient of the straight line
tangent to the curve at the upper minimum T, whose coor-
dinates are x2 ——0, x3=B/A (B-2). The tangent is in
fact given by

xz ——m (x3 B/A) . —
The quantity A =12(1 13)g/b is a—dimensionless param-
eter, which, together with g =G/g, determines the shape
of the potential map. ' For m & 1/~3 Eq. (8) represents
an hyperbola, for m = 1/v 3 a straight line, and for
m & 1/v 3 an ellipse. A family of these curves is drawn in
Fig. 2.

We have computed the action integral for several paths
characterized by a set of parameters m and for different
values of the energy E inside the upper minimum T. In
terms of the variables and parameter here adopted, the ac-
tion integral is given by
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FICi. 4. Transmission coefficient exp[ —2A' '[S((())—S„„„]],
normalized to its maximum value corresponding to the minima

of Fig. 3, as a function of the angular variable P and for dif-

ferent values of the energy inside the initial T minimum.
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FIG. 3. Action integral (5) as a function of the angle

/=tan 'm for different values of the energy inside the upper
minimum T. Solid lines represent numerical results obtained

along the curves of Fig. 2 [Eq. (g)]. For a given energy, the clas-

sical paths connecting T with the two X minima are identified

with the minima of the curve S(P). These minima tend to
coalesce with increasing energy. Dashed curves represent nu-

merical results relative to the tangents [Eq. (9)], going from the

initial minimum T, which approximate the classical paths end-

ing in the X-minima region.

the X point). However, considering the shape of the bar-
rier region [which alone enters in the evaluation of the
transmission coefficient, see Eq. (10)] we have approxi-
mately solved this problem by replacing the initial portion
of the classical paths with the tangent outgoing from the
initial minimum T, as given by Eq. (9). The action in-
tegrals, as evaluated along these paths, are also reported in
Fig. 3 by dashed lines, showing in the minimum regions of
the action integral a behavior similar to the solid lines.
Therefore, at least in this case, the problem of including
contributions from several classical paths is nearly coin-
cident with that of including contributions from the
neighboring (nonclassical) paths to a given classical trajec-
tory. Figure 4 shows the normalized transmission coeffi-
cient as a function of the angular variable (() for different
values of the normalized energy (E Eo)lg inside the —ini-
tial well (Eo is the value of the energy in the upper
minimum T; g is the spin-orbit coupling constant). For
lower-lying levels, this function presents two distinct max-
ima [one for positive (P~) and the other for negative
( —P~) values of P], while, with increasing energy, these
two maxima tend to coalesce tending to a bell-shaped
function. The total transmission coefficient has been
evaluated by Eq. (5), where X =pP, so that



28 NONRADIATIVE TRANSITIONS BY PATH INTEGRALS WITH. . . 4311

dX/Xo„, =dglg, and the integral has been evaluated by
the saddle-paint approximation. For the cases of a single
maximum this can be done by Eq. (7), while in the cases of
double maxima by a three-saddle point approximation. '

This is now presented.
The function S, b(X) in Eq. (5) can be written as

2Af (P); this, in turn, can be expressed as a polynomial of
a new variable z that describes in the simplest fashion the
relevant saddle-point arrangement at / =0. In such a way
we have

S,b(X)—2 '—:2kf (P) =an —(a +z )

](
Dl DMAx

2~~-

4am

2A,
' f(0)

1/2
2igao —a /2)~

where A, =ZA'/ g/1rtco, ao=f (0) &0, and
a =[f($1) f(/=0—)]'/. After substitution into Eq. (5)
we get'

0
I

0.03 0.06
I It' I

0.09
(E-E.}lg

I

0.&2

where f(0)=(d f/dp )~ o and W, /2(2X'/ a) is the par-
abolic cylinder function

e [& 2]2/2I e (t+p—1 /2'

When the two maxima of the function f(P) tend to
coalesce ($1~0), Eq. (11)becomes'

r( —,
'

)
(y)

—1 22f(0) (12)
2(2A, )' f' '(0)

where

4f(4)(0) f
As for the parameter P in Eqs. (11) and (12), this has been
chosen, according to the results of Sec. II, as the width at
half-height of the Gaussian function fitting the function
exp[2Af(P)] (see Fig. 4) in the region of the maximum.
This is easily done when the maxima are well separated, or
in the opposite limit of coalescence minima, while it is a
little more uncertain in the intermediate case.

Following this procedure, we get the important result
that when the maxima in Fig. 4 are well pronounced, the
total transmission coefficient [as given by Eq. (11)] is
nearly equal to twice the value (D,„) corresponding to
the path of minimum action. The factor of 2 is due to the
existence of two X minima and two well-separated classi-
cal trajectories for reaching each of them. When these tra-
jectories are closer (with increasing energy inside the ini-
tial well T) this factor of 2 decreases and tends to unity
when the two maxima of Fig. 4 coalesce into only one
maximum at /=0. In Fig. 5 we report the computed
values of D/D, „as a function of the normalized energy
inside the initial well.

IV. APPLICATION OF Tl+ LUMINESCENCE

The theory of Secs. II and III will now be applied to
analyze the temperature dependence of the emission inten-

FICx. 5. Total transmission coefficient [Eqs. (11) and (12)], di-
vided by the value corresponding to the path of minimum ac-
tion, as a function of the normalized energy inside the initial
well. The level density p(E) is estimated to vary between 1 at
the bottom of the well to —1.3 at the top of the barrier (Eb).
The dashed line indicates the product p(E)D/D, „.

sity of KI:Tl and KBr:Tl. In order to derive the intensi-
ties of the two emission bands (Ar and Ax), we must cal-
culate the populations of the wells (T and X) which are
governed by the kinetic equations

dC~

dt

de
dt

= —( Wr x+r ')Cr+ Wx rCx ~

(Wx-T+& —')Cx+ Wr-xCr
(13)

+C2exp( r't) . —
The intensity is obtained by integrating over t:

(14)

C1+C2+(WT x+ WX~T)r 2

, C(t)dt= !+(Wr x+ Wx T)r

(15)

The constants C~ and C2 obey the following conditions:
C'1 '+C2 ' Cr(t =0)=1 f——or the Ar emission (the sys-
tem is supposed to be prepared initially in the upper T
well) and C1 '+C2 '=Cx(t =0)=0 for the Ax emission.
The other condition is that the sum I~ +Iq ——1. From

these conditions we get

where W~ ~ and Wz z- are the nonradiative transition
rates in going from T to X minimum and vice versa and

' is the radiative transition rate from the excited to the
ground state. By solving the system of differential equa-
tions (13) with respect to Cr (or Cx) and integrating, we

get

C(t) = C1exP[ —( Wr x+ Wx r+r ')t]
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FIG. 6. Double-minimum potential function along the reac-
tion path.

1+(WT x+ Wx T)TC2( '

1+(~T «+~« T).
(16)

0.01—

(lVT-x+ ~x T)«2(X)

I 1+(~T «+le«
where C2"'+C2 ' ——1.

The intensities, as given by Eqs. (16), are temperature
dependent since the 8'z z are functions of the tempera-
ture. We further assume that the initial distributions in T
and X are thermal. With this assumption,

C(T) ~ aE/kT(1+—It. aE/kT) —i—

C(x) =(1+% EE /kT) i— —

so that the condition C2 '+C2 ' ——1 is always satisfied.
The quantity AE corresponds to the energy difference be-
tween T and X minima; see Fig. 6. Clearly, when AE is
sufficiently high, we have C2 '-0 and C2 ' —1. In this
case we can also neglect the back-tunneling (8'x T-O),
and Eqs. (16) reduce to

I„(T)= [1+WT «(T)]

I~ (T)=1 Ig (T) . —

These equations are nearly coincident with Eqs. (6) of Ref.
6, apart frorri the absence of a factor 2 (multiplying
W'T x), which is now replaced by an energy-dependent
factor entering the expression of 8'z- & through the
transmission coefficient, which is evaluated according to
the results of the preceding section.

To obtain the transition rate 8'z ~ we can extend the
treatment given in Ref. 6 by integrating over all processes
that start in the initial well and over all momenta:

WT x(T) fdq fdpp(p, q)D(p, q)e

f df d~ (~ ~) E( P, q )/kT-
Here v is the vibrational frequency within the initial well,
q is the coordinate vector in the space of the configuration
coordinates, p is the conjugate momentum, p is the densi-
ty of states in the phase space p, q, E is the energy, and D
is the transmission coefficient for tunneling that starts at a
given point q with momentum p. The expression holds
for potential surfaces of any kind.

We shall simplify the above expression in several ways.
First, we shall suppose that only processes starting near

0.001
0.06

I

0.05
I

0.04 0.0 3
&/T (K-')

0.02 0.0&

FIG, 7. Temperature dependence of the intensities of the 3&
and A~ emission in KI:Tl. 0: experimental data taken from
Ref. 21. Solid lines: after Eqs. (18) with A =3, g =0.4, /=4114
cm ', fico=3.2X10 'g, and rv=10'.

=(1—e ) DeT~X —Ace j'kT —n AcolkT
V n=0

(19)

The transmission coefficient D„ is for the nth quantal lev-
el and is evaluated according to Eqs. (11) and (12).

The results for the case of KI:Tl are reported in Fig. 7,

the optimal path (/ =0 in the preceding section) dominate.
Thus the q integrals above become one-dimensional.
Next, we shall assume that along the path the potential
may be considered parabolic; in other words we suppose
that tunneling takes place before the anharmonicities in
the potential become felt. Last, we only include tunneling
processes that start at the (classical) turning points, i.e.,
with zero initial momentum. The transmission coefficient
written as function of the initial energy and position then
becomes

D (E;q) =D( V(q);q),
and the total transition rate takes the classical form ap-
propriate to a uniform distribution of states in configura-
tion space (p—:1):

x(T) fdqD(V(q);q)e

fd —v(q)/kT

The quantum-mechanical expression arises in this formal-
ism by using a nonuniform distribution of states, p~q.
Then

x(T) fdVD(V;q)e

fd V
—v/kT

and splitting up the range of integration into discrete in-
tervals spaced Ace apart, one obtains finally
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where by reasonable values of the parameters we get a
good agreement with the experimental results. ' In the
case of KBr:Tl, where the temperature behavior of the in-
tensity is more complex, we would have to consider the
complete expressions [Eqs. (16)]. However, due to the in-
trinsic complexity of computing also 8'z T (back-
tunneling) by the procedure of Sec. III, we have simply
considered approximate expressions of W as (see Fig. 6)

—ET /AT8'T»( T)—ve

—Ex/kT8'» T( T)-ve

(20)

which correspond to taking into account only the classical
contributions and neglecting the quantum tunneling. " By
substituting Eqs. (17) and (20) into Eqs. (16) we get

1+(e & +e & )rv~e aElkT( —
1 +~e —aE/kT) —I

ET/kT —E /kT

IA (T)=
T —ET/kT —EX /kT1+(e +e )rv

(e ' +e )rv(1+Ke- "
)
—'

—ET /kT —Ex /kT

IA (T)=
X —ET/kT —Ex/kT1+(e +e )rv

(21)

V. CONCLUDING DISCUSSION

We have shown how to include contributions of neigh-
boring paths to a classical path, connecting two given
points corresponding to different potential minima, in
evaluating nonradiative transition rates occurring in a
multidimensional space. A suitable normalization cri-
terion allows the attainment of simple formulas [Eqs. (11)
and (12)] that yield, as a limiting case [Eq. (7)], the usual
approximation of considering only one contribution, that

(0z 0.5-
UJ

z

50 100 150
TEMPERATURE t Ki

FICx. 8. Same as Fig. 7 for Kar:Tl. Solid lines: after Eqs.
(21) with ET——653 cm ', Ex ——1014 cm ', DE=361 cm
rv = 10, and E =5.37.

Figure 8 shows the results obtained together with a best fit
of the experimental points by Eqs. (21). The constants
(especially Er, E», and b,E) appear as very reasonable6's
even if the low-temperature behavior cannot be well repro-
duced without considering quantum tunneling.

corresponding to the least-action path.
Dealing with nonradiative transitions in a solid, one

should be referring to a multidimensional space of an ex-
tremely high number of dimensions comparable to the
number of normal modes of the system. Actually, the po-
tentials are regarded as depending only on a few coordi-
nates, the so-called interaction-mode coordinates, which
can be considered to represent in some average sense the
lattice coordinates belonging to the same irreducible repre-
sentation. This procedure is not restrictive as it seems,
especially when applied to rather well-localized centers, as
with Tl -like impurities. %'ithin the adiabatic approxi-
mation, where the potential surfaces are determined in-
dependently of the nuclear kinetic energy, the interaction
coordinates formally correspond (apart from the dimen-
sions of coordinates and coupling constants) to the normal
coordinates of the quasimolecular cluster including the
impurity and its nearest-neighbor ions.

The potential model here considered is that relative to
the T&„state in O~ symmetry. It consists of a tetragonal
T minimum coexisting with two rhombic X minima. '

The potential map of the T)„z state is given in the sub-
space of the (Q2, Q3) tetragonal coordinates (Fig. 2). The
potentials of the T&„„and T&„z states are completely
equivalent to that of Tt„, apart from a rotation of + —,

' m.

in the Q2, Q3 plane, so we can consider only the T~„,
state. Really, these three states are linked by the trigonal
modes (Q4, Q5, Q6) so that a complete description of the
potential should take into account the trigonal coordinates
too. In the analysis of the intensities, however, the trigo-
nal modes may be neglected while they become essential
when other experimental features are studied. '

Owing to the shape of the potential, the normalized
transmission coefficient (NTC) has been integrated over P
by a three-saddle-point approximation. Two isolated max-
ima, in the NTC-vs-P curves (see Fig. 4), correspond to
two well-separated classical paths for reaching the X mini-
ma, one for each minimum. Accordingly, a factor of 2
enters the kinetic equations [Eqs. (13)]„which govern the
population of the initial well. This is equivalent to multi-
plying by the same factor the transmission coefficient rela-
tive to only one classical path. This procedure, which has
been rigidly applied in Ref. 6, becomes increasingly less
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acceptable as the two paths of minimum action tend to
coalesce. When the NTC-vs-P curve becomes a bell-
shaped function centered at /=0, we must consider only
one contribution; hence the factor 2 must become 1. Fol-
lowing the method of the present work, we obtain the
correct results. When the maxima of the NTC are well
pronounced, the total transmission coefficient is nearly
equal to twice the value corresponding to one path of
minimum action (D/D, „=2). When the maxima tend to
coalesce, the factor decreases and tends to the unity (see
Fig. 5). On the basis of these results, the temperature
dependence of the AT and A~ emission intensities of KI:Tl
is obtained [through Eqs. (18)] more accurately with
respect to the results of a previous work. In particular, in
Ref. 6 the Az circles could not be made to lie on a single
curve, whereas they do so in the present interpretation
(Fig. 7).

We must recall, however, that the present results (as
well as those of Ref. 6) have been obtained neglecting
anharmonic effects, that is, assuming a uniform distribu-
tion of levels inside the initial well [p(E)=(fico) ' in Eq.
(19)]. This fact was indeed qualitatively considered in
Ref. 6 in order to explain the variation of the fitting pa-
rameter trio/g with increasing temperature. A detailed ac-
count of the anharmonic effects, already difficult in the
scheme of Ref. 6 which essentially employs a one-
dimensional model, becomes more difficult in the present
framework, which implies several potential cross sections,

one for each value of P. Thus we limit ourselves to give
only a descriptive account. By considering a typical po-
tential cross section, we can estimate that the level densi-
ty varies between 1 [in units of (irtco) ', at the bottom of
the initial well] to —1.3 near the top of the barrier where
the deviation from the harmonic shape is more accentuat-
ed [for higher-lying levels, p(E) is expected to be again
—1]. Therefore, as sketched by dashed line in Fig. 5, we
see that the product p(E)D/D, „may give an indication
of the involved approximation. In the previous computa-
tion of Ref. 6, D/D, „was maintained constantly equal
to 2. This certainly implies a stronger approximation with
respect to the present analysis with )o=1, but D/D
variable.

We can therefore conclude that the present work, al-
though still affected by approximations, gives a better ex-
planation of the temperature behavior of the Tl+-emission
intensities. More important is the fact that the inclusion
of neighboring-path contributions to the classical contri-
bution may represent an improvement of the semiclassical
approach to this kind of problem.
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