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Critical diffusion in a two-dimensional Ising system
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The relaxation of an Ising spin system which conserves the magnetization is analyzed using
the time-dependent real-space renormalization group. The critical-dynamic exponent is found to
be 3.74, close to the value suggested by the conventional theory.

I. INTRODUCTION AND DISCUSSION

The Ising spin system with a conserved magnetiza-
tion is one of the simplest models in which the criti-
cal slo~ing down' is affected by a conservation law.
An empirical master equation which describes the re-
laxation of the local magnetization was suggested by
Kawasaki. ' He generalized the Glauber model' by as-
suming that a spin flip takes place only between two
spins which are nearest neighbors (NN) and with a
transition rate which is determined by the detailed
balance. Kawasaki calculated an upper limit to the
dynamic exponent z, characterizing the slowing down
of the diffusion process occurring in this model. A
renormalization-group (RG) analysis in a 4-e dimen-
sion of a similar model by Halperin et al. revealed
that this limit of z is the exact result. However, their
expansion is not valid in low dimensions. Hence,
although the relation z = 4 —q, where q as well as the
other critical indices have their standard definitions,
is believed to hold in all dimensions, a general proof
to this assumption does not exist.

Recently we proposed, using the real-space RG
technique, to analyze the time-dependent properties
of systems near their critical point. ' This technique
which fits the low-dimensiona1 system was used to
calculate z of a one-dimensional (1D) magnetization-
conserving Ising model. In our RG technique it is
preferable to deal with nonlocal perturbations. Thus
we modified the Kawasaki model. We allow any two
spins in the system to exchange their magnitude and
not only the NN, as was postulated by Kawasaki. We
found by an exact RG transformation that z = 3 as
expected.

In this paper we analyze the relaxation of a similar
model but in two dimensions. Unfortunately, we are
not able to perform an exact RG transformation. We
chose the Kadanoff potential moving approxima-
tion, ' based on the 1I3 spin-block transformation,
and obtained z =3.746. This value is very close to

the one at 4-q, and thus strengthens its validity.
Since we have first published briefly the main results
of this study, " the original Kawasaki model was stu-
died by using the different real-space RG technique'
(the cumulant approximation). Although the method
in that case was limited to the study of the behavior
of the correlation function, and the model was dif-
ferent from the present one, there was found a simi-
lar value of z, and that the operator 0;(i = 2, 3, 4)
[see Eq. (19)] should be included in order to have an
invariant dynamical operator. Thus both the
Kawasaki model with the local spin conservation and
the present model with the nonlocal spin conserva-
tion belong to the same universality class, and have
the conventional behavior.

II. MOI3EL AND RG TRANSFORMATION

r dP (I~),r)
dt

= —$(1—pj) Wj(rr)P ((rr), r ) (2)

~here v is the bare time scale which characterizes the
interaction with the heat bath. p,~ is a spin-exchange
operator:

The model describes the time-dependent behavior
of a large interacting spin system whose equilibrium
is determined by an Ising Hamiltonian:

H = (E/g) err; g a.,
i j

(NN)

where Ia-; = +1},g is the coordination number of the
lattice, and o-,. are the NN of a-;. The system is
brought into constrained equilibrium. The constraint
is removed at t = 0 and the system relaxes toward the
final equilibrium, described by (1). We assume the
relaxation to be an instantaneous random spin-
exchange transformation between two spins. This
procedure is described by the empirical master equa-
tion for the spin s probability distribution P( (a), r):-

pijf (+li . ~ +i~ ~ i &ji ~ ~ ~ i &I) =f (&li ~ ~ ~ i &ji ~ ~ ~ i &i& ~ ~ ~ i &n)

and the transition probability distribution 8'„" satisfies the detailed balance which ensures the ergodicity of the

(3)

1983 The American Physical Society



28 BRIEF REPORTS

system:

(1 —pg) WgP, (a) =0

By using the perturbation from equilibrium,
@(o,t) =.P(a, t)/.P„Eq. (2) reads

rdP (a, t)
dE

= —XP, W;,"(a) (1 —pg) @

The normalized equilibrium probability distribution
P, (a) is given by (1):

P, (a.) =exp( H/k—sT)/Z =—exp(H)/Z . (5)

The right-hand side (rhs) of (6) is composed of
two parts. The first one, P'~= P—, Wq, is by (4) sym-
metric under the o-; a-j exchange. It can be taken
as independent of these spins, due to the fact that
the dependent part gives a vanishing contribution to
(6). This property, that P'~ can be taken as indepen-
dent of i and j, is responsible for the detailed balance.
The second term, (1 —p,j)@, is antisymmetric under
the i -j spin's exchange, and takes care of the dynam-
ic equilibrium restoring force. %e will use

1/2
~ &i. i &j. ~ ~ &n)

~ &gi ~ ~ ~ ~ &ii ~ i &n)
E

exp ——(a;+ aq) g a.k+ g a. i
2 k I

, (NN of r') (NN ofj)

The last factor in 8'& is entered to remove the i,j
dependence in P~. It is not equal to unity only when
all the rhs of (6) vanishes. There is no limitation on
the distance between the spins. Hence, i and j are
not correlated and the sum over them is of order %,
where % is the number of spins in the system. To
obtain the correct dependence, an extra factor of
(I/N) has been introduced in (7). In the previous
study of the 1D case we found that the relevant per-
turbation to the equilibrium is an energylike pertur-
bation,

@=h Xaioj

where i and j are NN. Our study will be restricted to
this perturbation.

The time-dependent real-space RG (TRG)
transformation is composed of two stages. First, the
RG transformation is applied to the two sides of the
master equation (6). Thus the transformation of the
left-hand side (lhs) of (6) is nothing other than the
standard RG static transformation. " This transfor-

mation maps the set of the spin variables (a-) to a
new set of spin variables (p, ), defined on a lattice
whose dimensions are scaled by a factor b, while
preserving the free energy of the system. The
transformation is performed by using the operator
T(p„ tr) operating on P(a, t):.

P(p) = QT(p, a)P(a)

The probability distribution can be represented as a
point in the parameter space, K = (K ), of the in-
teractions appearing in the Hamiltonian (and @).The
RG of the lhs of (6) is represented in the parameter
space:

K'=RK

where (K') are the interactions in P'(p, ). The fixed
point of this transformation, K' = R K', is associated
with a critical point (or zero correlation). '

The RG transformation that we use in the present
calculation is the spin-block transformation. ' In
each direction it is

T ( a 2;, a 2;+~,p ) =
2

cosh(E) (1 + pa2; tanh, q ) (1 + p, a2;+ ~ tanhq ) exp( —K o 2; a 2;+i)

where tanhq = (tanhK ) 't .
The transformation of the rhs of the master equa-

tion (6) is performed in a similar manner. Usually
new terms are generated during the transformation.
These terms have to be included a priori in the kinet-
ic equation. This procedure is terminated when an
invariant expression is obtained. ' The rhs becomes a
combination of terms associated with slow modes and
transients. The rhs is written in a general form:

their amplitudes.
Under the RG transformation of @, expression

(12) becomes

/ gP"t'(„)[nK O(p)]

where I" ~ is determined by the static RG of I', and
W. Thus the transformation of (12) is represented
by

h QPJ[K O(a)], (12)
K'= AK (14)

where h is the perturbation field, contributed by @,
O(a. ) are the set of invariant spins operators which
are created by the RG transformation of gati, and K are

The slow mode is the eigenoperator of A with the
largest eigenvalue ao. The other eigenoperators
describe transients.

The second stage of the TRG is the time scaling.
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This is performed using a scale factor:

r' = b'v", b'= )t—/oi

where X is the scale factor of h. The transformation
leaves the equation of motion for the slow mode in-
variant, while the weight of the transients becomes
smaller. By using the standard RG arguments, z is
identified as the dynamic critical exponent. '

The approximation in which the RG transforma-
tion is carried out is the potential moving approxima-
tion. ' In this approximation part of the interactions
in one direction are shifted to other locations on the
lattice. That enables us to perform an effective 1D
RG transformation in the other direction. This ap-
proximation gives a lo~er bond of the free energy,
and has already been applied to the study of the mag-
netization and energy relaxation. The effective 1D
RG transformation can be either decimation or spin-
block transformation. In 2D the recursion relations
for the parameters Kin the Hamiltonian (1) are

four spin operators have been generated:

'01 (iri rrj) (tri 1—+ rri+1 trj —1 irj+1)

02 = 0 I'CJg

O 3 rri rrj ( rri 1+—rr i+ I ) ( rrj I +—irj+1)

O4 iri trj( iri 1 rr—i+1 + trj —1trj+1)

It is easy to calculate the new parameters of these
operators by using the graphic representation appear-
ing in Fig. 1. These terms conserve the magnetiza-
tion: They all depend on o-;o-, , and trl 1 g„tr;o;o-k
=0. The new terms do not change the dynamic
behavior. However, their existence means that the
invariant parameter subspace of the problem must at
least consist of O~, 02, O3, and O4. It is easy to see
that this parameter subspace is invariant under the
RG transformation, and the new parameters are
transformed as follows:

K bR K Kr =R (bKr) (16)

III. POTENTIAL MOVING APPROXIMATION

where 8 represents a 1D RG transformation which
scales the space by a factor b. For more detail the
reader is referred to Kadanoff' for the static RG,
and to Achiam for the TRG.

k2 =2 cosh (K)a„'A k2

k3 ——2 a„' cosh (K) exp(2K)A k3

k4 =2 a„'sinh(K) cosh'(K)A k4

where

a„' = tanh'q/[1+ tanh(K ) ]

a =a„'/tanhq

(20a)

(20b)

(20c)

The RG transformation is carried out with the use
of the potential moving approximation. This approxi-
mation effectively reduces the dimensionality of the
problem to 1D. The relaxation of the 1D conserved
magnetization Ising system has been studied before
by using the decimation transformation, based on the
value p/1 =0 which is correct only in 1D. Thus we
perform the calculation using the spin-block transfor-
mation. '

Starting with (7) and (8), the master equation (6)
reads

0 0+1
x X

———+ 6+

{3+1
X X

———+++ ~

a-1
X

cf Q+l
x &C

Qe---Qe+++I

{3-1
X

]3 {3+1
X X/e ---e+++ e

k;, i =1, . . . , 4 are parameters of 0;, i =1, . . . , 4,
respectively, and A =2[1+tanh (K)]'j cosh(K).
The contribution from the transformation of O~ and

~dP(~, r) P'j(rr; —rrj)
dt

x (rri 1+ rri+1 rrj —1 —trj+1)

(17)

P (cr, t) is characterized in the parameter space by
two parameters: K (1) and b (8) . The RG transfor-
mation (9) transforms them as

0—l

X
c

Q Q+]
x

Qe ——-0 +++ ~
I

0 Q+t
X X

QO
———~ + 1-+ 0

I

[3-1
X

[3-1

[3+1
X XI———(&+ + +

J

{3+1
x x

———+++

K' = arctanh[tanh2(K) ]; it'= )ih;

)1. = 2 [tanh' (K ) ] [1 + tanh (K ) ]/[1 + tanh'(K ) ]

In the transformation of the rhs of (17) the following

FIG. 1. Graphs which describe the RG transformation of
Ol [Eq. (8)]. The spins {ir) are marked by dots. The new

spins {p,) are marked by crosses. A bond of + or-
symbols stands for a E or —E interaction, respectively.
A full bond between o. and p, contributes cosh(K)
x [(l+ irptanh(K)]/ 2' , . A spin which appears linearly is
marked by a circle around the dot.
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from Eq. (20) are collected together to give

2a„' cosh(K ) exp(K )
—2'a cosh (E )

2a„' sinh(K) exp(E)
—2'a„' sinh(K) cosh(K)

t

a„'cosh (K)
2'a„' exp(2K )

0 22a' sinh(K) cosh(K)

&& [1+tanh (K)] cosh (E)2

An extra factor of 2 ~ has been introduced into (21).
This factor results from the transformation N = 2 X'.

We can now check the 1D limit. In this case
EC = ~, all the eigenvalues of 0 are the same,
ceto=2, and Xtn=2. A substitution in (15) yields
z = 3, in agreement with our previous decimation cal-
culation. '

Now we can use the potential moving approxima-
tion and scale the whole 2D space. The application
of this approximation to the TRG has been discussed
in length by the author in Ref. 8, and the reader is
referred to this paper for more details. The result of
the potential moving approximation is that we deal
with perturbations in one direction only. In each
direction we get the fl which is found in (21), but
with the following parameters:

~Q= 0(K„); 0„=fl(Ky)

Similar expressions are found for a system of higher
dimensionality.

At the fixed point, E„'=bK~'. Thus the common
contribution Q(K') from the TRG of the perturba-
tion in different directions can be collected together.
At the fixed point, ' E„=0.609; A, =2.174, where X
describes the scaling of the energy perturbation. The
largest eigenvalue of 0 is m = 0.162 and the dynamic
exponent is z = 3.747.
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