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Bandwidths for a quasiperiodic tight-binding model
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A study is made of the spectrum of a class of one-dimensional models that are equivalent to the
equation for an electron in a magnet field and a two-dimensional periodic potential. A rigorous
lower bound for the measure of the spectrum is derived, and theoretical and numerical arguments
are presented to show that this bound is attained in the incommensurate limit. In the case that cor-
responds to an isotropic system this lower bound is zero, and numerical work shows that the mea-
sure has the asymptotic form 3/p, where p is the period. The existence of a finite Lyapunov ex-
ponent and of a nonzero spectral measure in the incommensurate limit seems to be correlated with
the existence of semiclassical open orbits in the problem of an electron in a magnetic field.

I. INTRQDUCTIQN

c„=gd exp[i (K+2vrmg)n] (1.2)

In a study of the eigenvalue problem

V&c„&+2V2 cos(2mng+v)c„+ V, c„+, Ec„, ——
where n has an infinite range, Aubry and Andre' gave nu-
merical evidence that for P irrational the spectrum has
measure 4

~
V2 —V& ~. For rational values of P the union

of the spectrum for all values of v has a measure greater
than this, but it tends rapidly towards it as the denomina-
tor of P gets larger. Sokoloff has obtained some results
which give a value for the measure of the extended spec-
trum, for P irrational, lower than 4(V, —Vz). Since the
duality arguments' suggest that for V» V2 all states
should be extended, there seems to be a conflict, but I
show in this paper that 4

~
V& —Vz

~

is a rigorous lower
bound for rational values of P. Theoretical arguments
suggest that the difference of the spectral measure from
this lower bound should be of order
exp[ —,'p

~

ln(V2/V&)
~
], where p is the denominator of tt,

and numerical results given in Sec. III support this conjec-
ture. At the critical point V2 ——V&, where the self-similar
nature of the band structure was studied by Hofstadter,
the numerical results show a spectral measure proportion-
al to p ', with a constant of proportionality which
asymptotically approaches 9.3300V2 for most values of
the numerator q of P.

Equation (1.1) has been used to describe the quantum
theory of an electron confined to a plane with a periodic
potential in the plane and a uniform magnetic field per-
pendicular to the plane. It arises in two different cases.
The first is an s-band tight-binding model in a weak mag-
netic field, ' in which case P is the number of flux quanta
per unit cell. In the second case the potential is weak
compared with the cyclotron energy Ace„ it oscillates
sinusoidally in two directions, and 1/P is the number of
flux quanta per unit cell.

Aubry and Andre' pointed out that Eq. (1.1) satisfies an
important duality property. This can be derived by mak-
ing the substitution

in Eq. (1.1), in which case an equation for d is obtained
which is the same as Eq. (1.1) for c„with V& and V2 inter-
changed, and v replaced by K. It can also be obtained
from the two-dimensional problem by choosing a vector
potential in the x direction instead of they direction. This
duality relation has been used to show that the Lyapunov
exponent which gives the inverse localization length is
equal to

1/L =ln( V2/V& )

for V2 & V&, for all energies in the energy bands and for P
irrational. This can be identified with the inverse localiza-
tion length in the x direction for the two-dimensional
problem —the states are extended in the y direction for
Vz & V&. It is only for the isotropic case V&

——V2 that the
localization length is infinite in both directions.

If the localization length is identified with a correlation
length, V&

——V2 appears like a critical point where the
length diverges linearly. This has led me to examine other
aspects of the critical behavior, and the linear dependence
of the sum of the bandwidths (measure of the spectrum)
on both

~
V2 —V,

~

and p
' gives two more critical ex-

ponents that are equal to unity. Tentatively, p has been
identified with a finite size in the scaling problem.

In order to verify the association of the vanishing mea-
sure of the spectrum with the infinite localization length
two slightly different models were examined. The first
was the anisotropic triangular lattice, where again it can
be shown that the localization length diverges and the
spectral measure vanishes at the critical point correspond-
ing to isotropy. The second model has anisotropic
nearest-neighbor coupling on a square lattice and isotropic
next-nearest-neighbor coupling. From a combination of
theoretical and numerical arguments it appears that the
localization length is infinite and the spectra measure is
zero wherever the isotropic next-nearest-neighbor coupling
is dominant. This indicates that the critical region has
some sort of stability against weak anisotropy.

In Sec. IV these results are discussed briefly in terms of
scaling theory. There is also a discussion of the associa-
tion between the existence of broadened bands and of a
finite localization length at all energies in the bands and
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the existence of open orbits at some energies in the semi-
classical theory of the tight-binding models.

II. LOWER BOUND FOR THE SUM OF BANDWIDTHS

E++ E—+ E++

g (E + E—++)+2V2 E—,+++) ——0 .
m=1

(2.6)

If P has a rational value q/p, Eq. (1.1) can be reduced
to a finite-matrix problem of order p for the Bloch-wave
solutions satisfying

c„+~=c„exp(iKp) . (2.1)

It is obvious that the characteristic equation for E depends
on K only through the constant term —2V~1 cosXp, and
then duality requires that the v dependence should involve
only the constant term —2V~2 cosvp. This implies that the
band edges are given by extremal values of the expression

—2 V~1 cosKp —2 V~2 cosvp . (2.2)

This means the band edges (for V&V2 positive) can be
found by considering X =0, v=O and K =m/p, v=m/p.
For the sake of symmetry we choose, instead of v=~/p,
the equivalent values v=~ for p odd and v=mq/p for p
even.

The solutions for E =O, m/p can be split into those that
are odd or even about the two symmetry points n =0 and
p/2. For v=O and p =2s+1 odd the eigenvalues cor-
responding to the solutions symmetric about n =0 are
given by

=2E, +1 —4V2+4V1 . (2.7)

Since the extremals of the band are at +E,+++1 this shows
that the sum of the bandwidths is greater than or equal to
4(V~ —V2). Duality immediately shows that it is also
greater than or equal to 4( V2 —V& ).

For large values of p and V2 ~ V1 the nonzero value of
the Lyapunov exponent would lead one to expect very
little interference between the effect of changing the 01
element of matrix from v 2V~ to zero in going from E++
to E + and the effect of changing the ss element by 2V&,
since eigenvectors should be localized and should not have
appreciable amplitudes at two sites s apart. This suggests
that for large p and V2& V1 the sum of bandwidths is
given by

These two results can be combined to give the sum of all
band gaps (for both K =v=0 and K =v=~) as

2 X IE++ E. —
m=1

S

&2 g (IE++ E +—I+-IE.+ E-—
m=1

2 V2a0+ V 2V, a, =E+—+ao,
IV=4( V2 —V) )+0((V)/V2) ) . (2.8)

v 2V~ao+. 2V2 cos(2vrp)a&+ V, a2 E++a&, ——-
(2.3)

V~a„~+2V2cos(2nng)a„+ V&a„+& E+—+a„, 2——&n &s

V~a, &+2V2 cos(2vrsg)a, + V, a, =E+ +—a, ,

where ao ——v 2co, a„=c„+c „. The solutions antisym-
metric about n =0 are given by

V~b„~+2' cos(2mng)b„+ V&b„+& E +b„, 1 ——& n &—s

(2.4)
Vib, i+2V2 cos(2msg)b, + V&b, =E b, ,

—

where bo ——0, b„=c„—c „. The top of the highest band
is given by the highest eigenvalue E,+++& of Eq. (2.3), and
the band gaps are the intervals between the corresponding
eigenvalues E++ and E of Eqs. (2.3) and (2.4). For
v=K =m. the positions of the band edges are simply minus
the band edges for v=K =0. Equation (2.4) shows that
E + and E are the eigenvalues of two symmetric ma-
trices that differ from one another by a positive definite
matrix of trace 2 V&, and so it follows that

The rapid approach to the limiting value is in agreement
with the numerical results of Aubry and Andre, ' while the
numerical work described in Sec. III gives a more detailed
confirmation of this conjecture.

For even values of p the argument is very similar. The
only difference is that for v=O the equations have off-
diagonal terms at each end which are either v 2 V~ or zero,
while for v=~q/p the equations have diagonal terms + V1
at each end.

It is possible to generalize this argument to a limited
number of other interesting systems. Firstly,

2 V~ cos[m(n ——, )P+v/2]c„~+ 2 V2 cos(2~ng+ v)c„

+2 V~ cos[m(n + —, )P+v/2]c„+ &
Ec„——(2.9)

gives the spectrum for an electron in an anisotropic tri-
angular tight-binding lattice. The spectrum in the isotro-
pic case V1 ——V2 was calculated by Claro and Wannier.
Secondly,

[ V~ +2 V3 cos [2m (n ——, )P+ v] [c„

E + E, g (E + —E )=2V(.
m=1

(2.5)
+2 Vz cos(2mn P+ v)c„

+ [ V&+2V3 cos[2~(n+ —,)P+v]]c„+, Ec„——(2.10)

Similarly, comparison of Eqs. (2.3) and (2.4) shows that, if
the 01 element of the matrix whose eigenvalues are E++
is replaced by zero, a matrix whose eigenvalues are 2V2
and the E + is obtained. The E +, which are the zeros
of the 00 element of the resolvent of the first matrix, lie
between the E++, and the two matrices have the same
trace. It follows that

represents an electron in a square tight-binding lattice
with anisotropic coupling to nearest-neighbor sites and
isotropic coupling V3 to next-nearest-neighbor sites. In
both cases the same equations can be obtained for a strong
magnetic field and a weak periodic potential of the ap-
propriate form. The dependence on K of the characteris-
tic equations for the Bloch waves is obtained by taking the
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product of off-diagonal terms, and the v dependence can
then be deduced from the rotational properties of the lat-
tice. For the triangular lattice this gives a term

2V~2 cos(pv)+4V~& cos( —,'pv)cos(v 3pK/2), (2.11)

while for the square lattice it gives

V2
4 V3 —cosh p cosh cos(pv)

2V3

Vi—cosh p cosh cos(pK)
2V3

+ ( —1P+~cos(pv)cos(pK) (2.12)

For V2 greater than V& and 2V3 these expressions are
dominated by the leading term for large p, so the ex-
tremals are found for v=0 and ~/p, just as for expression
(2.2). For finite p the effect of restricting attention to
these values of v can only be to underestimate the sum of
bandwidths, so it still gives a lower bound for the measure
of the spectrum.

The argument goes through with little alteration. In
Eqs. (2 3) and (2 4), V, is replaced by one of the
more complicated expressions from Eqs. (2.9) or (2.10),
and similarly in Eq. (2.5), V& is replaced by

~

2V$ cos[ —,(17q+v)]
~

or by
~

V/+2V3 cos(7rq+v) ~,
where v is 0 or w. The final result is that the sum of
bandwidths is bounded below by

ponent is also zero, but numerical results described in Sec.
III support the conjecture that in this case the sum of
bandwidths is of order p ', and so tends to zero in the in-
commensurate limit.

III. NUMERICAL RESULTS

lim pW(q/p) =9.3300V& .
P —+ oo

(3.1)

Since the band edges for the square lattice can be found
from the eigenvalues of tridiagonal matrices of the forms
given by Eqs. (2.3) and (2.4), or the corresponding equa-
tions for even values of p, there is no difficulty in generat-
ing extensive results with a modest use of computer time.
For the isotropic square lattice with nearest-neighbor cou-
pling (V~ ——V~, V3 ——0) a complete set of results were ob-
tained for p & 20, and scattered results for larger values of
p up to about 400. In this case the results fell into such a
regular pattern that little gain was expected from more ex-
tensive results or larger values of p.

The conjecture that the total bandwidth should tend to
zero as some negative power of p was confirmed, and it
was established that the exponent of p is unity with rather
high precision (of the order of one part in 10 ). This value
of the exponent seems to be demanded by Hofstadter's ob-
servation that the diagram of energy bands as a function
of P is self-similar. Furthermore, if the sum of band-
widths is W'(q/p), the limiting value of pW appears to be
independent of the way in which q varies as p tends to in-
finity (with one possible exception which is discussed
below). The limiting value is given by

4( V2 —Vi) (2.13)

for the triangular lattice, and by

4 Vz —4 max( V~, 2 V3 ) (2.14)

for the square lattice.
The duality argument can again be used to get the local-

ization length. The cofactors that come into the Aubry-
Andre' calculation are the coefficients of exp(ipEC) in Eqs.
(2.11) and (2.12). It is convenient for the triangular lattice
to consider three different coupling constants in the three
directions so that the rotational symmetry can be used; the
Lyanpunov exponent for this lattice is 1nV2/V&. For the
square lattice, with 2V3 & V& & Vz, the exponent is

ln[ V2+( V2 —4V3)' ]—ln[ V, +( V& —4V3)' ], (2.15)

with V] &2V3 & Vz it is

in[ V, +( V', —4V', )'"]/2V, , (2.16)

arid with V] ( Vp (2 V3 it is zero. Because the exponent is
nonzero the lower bound (2.13) should be attained in the
incommensurate limit for V& & V2 in the triangular lattice.
The lower bound (2.14) for the square lattice should be at-
tained for 2V3 ( V2.

It is interesting to note that as 2V3 approaches V2 the
sum of bandwidths tends to zero and the Lyanpunov ex-
ponent tends to zero even though the square symmetry is
broken by unequal values of V2 and V]. The argument
presented here does not allow anything to be said about
the bandwidths in the case V& & V2 &2V3, where the ex-

W(q/p)-4(V2 —V~)+ap 'V2(V~/VqP (3.2)

but the coefficient a varies from one sequence to another.

For even p the value of pW(q/p) is above the limit, and
for odd p it is below the limit in all cases that have been
examined. For even values of p the distance from the
limit is about twice as far as it is for corresponding odd
values. The speed of approach to the limit does depend on
the manner in which q varies. Two of the most favorable
cases are q =2 for odd p and q = —,p —1 for even p, and
there the convergence is roughly quadratic, while for q = 1

the convergence is so slow that the limiting value is doubt-
ful. Some values of pW(q/p) are shown in Table I.

The behavior for q =1 (or equivalently q =p —1) ap-
pears anomalous. My best extrapolations of those sys-
tematic results give limits of 9.42 for even p and 9.29 for
odd p, with deviations of order p ', but these extrapola-
tions are not reliable. It may be more than a coincidence
that the average of pW(1/p)/V& for an even value of p
and the two neighboring odd values of p is very close to
the limiting value 9.3300. In each of the two cases shown
in Table I the difference is of order one part in 10 .

A few calculations have also been made for V& &Vz. In
Fig. 1 some bands are compared for V] ——V2 and 0.5V2.
The results support the form for the sum of bandwidths
given in expression (2.8). Various sequences of values of P
were studied for V~ ——0.5 V2 and 0.9V2. In all cases the re-
sults fairly rapidly approached an apparent limit of the
form
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TABLE I. Values of p8'(q/p) for selected values of q/p, for the square lattice with V1 ——V2 ——1,
V3 ——0.

89
q/p 233

p 8'(q /p) 9.329 01

144
377

9.329 87

70
169

9.329 80

169 2
4/8 199

9.33003 9.329 89

99
200

9.330 11

2 199
399 400

9.329 96 9.33001

q/p
p8 (q/p)

1

47

9.1784
48

9.6312
49

9.1806

1

199

9.2334

1

200

9.5225

1

201

9.2337

For example, for V~ ——0.5 V2 the sequence q =2,
p = 15, 17, 19,21 gave cx =7. 16, while the sequence

16 20 24 28 32 gave a =7.73. Other sequences examined7 9 11 13 15

were too short to show convergence, but suggested values
of o.' in the range from 7 to 9. For V& ——0.9V2 the se-
quence q =2, p = 15,25, 35,45, 55,65, 75, 85 gave a =9.66,
while the sequence 4', , —'„', ~ gave 9.68. It is clear that the
general form of these results is in agreement with what is
expected, but it does not appear that o. has a value in-
dependent of q as it seems to for V& ——V2.

Some calculations were also carried out for the square
lattice with next-nearest-neighbor coupling given by Eq.
(2.10). The most interesting region for this model is
2V3 ) V2 ) V), since the localization length is infinite
there despite the anisotropy, and the lower bound (2.14)
gives no information. In this region the extremals of
(2.12) are at v=O, rr/p and K=O, m/p; all four stationary
points were found for each band and the highest and
lowest were used to determine the band edges. Some re-
sults were obtained for V3 ——10V, =5 V2 and for
V3 —2 VJ —V2, A selection of the values of p IV (q /p) / V3
is shown in Table II. The results are scattered and do not
follow any obvious pattern. It seems likely that the sum

I I 2 3 50 2 3 5 8 13
I 2 3 50 2 3 5 8 I3

Vi/V2 =

(a)
Vl/V2 = 0.5

{b)

FIG. l. Energy bands for a sequence of values for P approxi-
mating (V 5 —1)/2 for (a) V&/Vz ——1 and (b) V~ V, =0.5. Ar-
rows show the positions of the narrowest gaps.

of bandwidths is tending to zero at least as fast as p
' in

this case also.

IV. DISCUSSION

There is some analogy between the behavior of the sys-
tem described by Eq. (1.1) and a system displaying critical
phenomena. The localization length calculated by Aubry
and Andre' is analogous to a correlation length which
diverges linearly as V2/V~ —1 tends to its critical value,
zero. The value of p can be taken as analogous to the
length in a finite-size-scaling theory, since it gives the dis-
tance up to which an incommensurate system with irra-
tional P is approximated by the commensurate system.
The sum of bandwidths 8' for infinite p tends linearly to
zero with V2/V, —1. Finite-size-sealing theory suggests
that, for fixed p, W should not depend much on the corre-
lation length g when g is much larger than p, nor should it
depend on p when p is much larger than g. Finite-size
scaling therefore gives

IV = ( V2 —V) )f(g/p), (4.1)

and so f must be linear in g/p where g is too large to be
important, and so, close to the critical point, 8 is propor-
tional to p

Some tests of the finite-size-scaling relation (4.1) are
possible. Since g is In( V2/V& ) it is possible to compare
W/( V2 —V&) for two different values of V2/V~ that give
the same value of p ln( V2/V, ). This was done for q =2 in
the two cases Vz/V& ——0.9 and 0.5705, where the loga-
rithms differ by a factor of 5. Reasonable agreement be-
tween the values for q =2, p =55,65,75, 85 in the first
case and q =2, p = 11,13, 15, 17 in the second case was ob-
tained. The scaling cannot be exact, or the values of a de-
fined by Eq. (3.2) would be proportional to (1—V2/V& )/
ln( V2/V~), and there are considerable discrepancies from
this, but the scaling may be good near the critical point.

Since these numerical results show that for the isotropic
case the measure of the spectrum tends to zero as p goes
to infinity, there can be no analytic local density of states,
so the spectrum has no absolutely continuous part in the
incommensurate limit.

The q independence of the limit of pIV(q /p) and its nu-
merical value are intriguing observations for which I have
no exp1anation. Further questions are raised by the quan-
tity a defined by Eq. (3.2); it does seem to have a weak
dependence on q and its value is not entirely in accord
with the predictions of finite-size scaling.

The model given by Eq. (2.10) has some interesting and
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TABLE II. Value of p8'(q/p) for the square lattice with next-nearest-neighbor coupling V3 and iso-
tropy broken by a weaker nearest-neighbor coupling. In (a) the coupling constants are V3 ——1, V1 ——0. 1,
and V2 ——0.2, and in (b) they are V3 ——1, V1 ——0.5, and V2 ——1.

(a) q/p

p 8'(q /p)

5
12

10.60

12
29

6.63

29
70

3.22

8
21

6.54

13
34

4.71

21
55

2.29

12
41

5.13

29
99

2.86

(b) q/p
p8 (q/p)

2
45

8.55

2
55

6.20

2
65

8.81

2
75

6.86

2
85

3.68

23
48

4.10

27
56

1.65

31
64

2.55

E ( k ) =2 V& cosk
&
a +2 Vz cosk &a

+4 V3 cosk
&
a cosk&a (4.2)

For 0 & 2V3 & V& & Vz this has a maximum at k& ——kz ——0,
a minimum at k& ——kz ——~/a, and two inequivalent saddle
points at (m/a, O) and (O, vr/a). There are orbits open in
the k& direction for

—2Vi+2Vp —4V3 )E) 2Vi —2' —4V3 .

Similarly for 0 & Vj & 2 V3 & Vz there are open orbits for

—2V)+2' —4V3 )E) —2Vi —2Vp+4V3 .

In the region 2V3) Vz) V& )0 in which V3 dominates
there are maxima at (0,0) and (vr/a, ~/a), minima at
(O, m/a) and (m. /a, O), and four equivalent saddle points at
kja =+cos '( —Vz/2V3), kza =+cos '( —Vi/2V3) so
there are no open orbits except at this singular value of the

unexpected features, which can be clarified by comparison
with the semiclassical theory of electron motion in a mag-
netic field. ' In the semiclassical theory the magnetic
field drives electrons around contours of constant E(k).
Important distinctions exist between electron orbits, which
surround minima of E ( k ), hole orbits, which surround
maxima, and open orbits. The energy ranges in which the
three types of orbits occur can be found by examining the
stationary points of E(k). For example, the tight-binding
model described by Eq. (2.10) has energies given by

energy. When these results are compared with the
theoretical analysis which leads to Eqs. (2.14) and (2.16),
and with the numerical results in Sec. III, it can be seen
that the existence of a band of semiclassical open orbits
corresponds to a finite localization length in one direction
(and therefore, from duality, states which are extended in
the perpendicular direction) at all energies in the spec-
trum, and to a spectrum of nonzero width in the com-
mensurate limit. When there is no band of open orbits,
but only a singular energy, then the localization length is
infinite in both directions, and the width of the spectrum
tends to zero, as one might expect for the quantization of
closed orbits. These relations between the nature of the
orbit, the width of the spectrum, and localization have
been discussed by a number of authors. '
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