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Optical properties of two-dimensional systems of randomly distributed particles
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We have studied the optical properties of a two-dimensional system of small particles. A lattice-
gas model is used to simulate nearly randomly distributed particles and the coherent-potential ap-
proximation (CPA) is applied to obtain a solution of the disorder problem. The disorder introduces
characteristic structure in the absorption spectra which compares favorably with experiments.

I. INTRODUCTION

where E(x;) is the local electric field at particle i (exclud-
ing the field from particle i) and a; its polarizability.
Working in the Coulomb gauge and neglecting quadrupole
and higher-multipole contributions to the local electric
field, one has

E(x;)=Ei(x;)—g U(x; —xj. ) pl, (2)
j(&ij

Here —U(x; —xj) pj is the dipole field at particle i from
particle g,

U(x) = 3xx
/x/'

and E~ is the transverse part of E. Combining Eqs. (1)
and (2) gives

p;=H;. Ei(x;)—g U(x; —xl) pj
j(&i)

The optical properties of small-metallic-particle systems
have attracted considerable interest during the last few
years for several reasons. First, in the search of an effec-
tive coating for solar-energy absorbers, a promising group
of materials has been found that consist of small metallic
particles embedded in a dielectric host. Second, it was
discovered in 1974 that Raman scattering from molecules
adsorbed on small silver particles is greatly enhanced (by a
factor of about 10 ). In addition, unusual behavior of
small-particle systems has been predicted and observed for
many thermodynamic and transport properties.

Consider a system of small metallic particles. In an
external electric field the particles will be polarized, i.e.,
the external field induces dipoles (and also higher mul-
tipoles). If the external field oscillates in time the radia-
tion from the induced dipoles will generate a scattered
field. The dipole moment p; induced in particle i at x; is
given by

p; =H; E(x;),

This equation is easily solved for the induced dipoles p; if
the particles are identical and if they are localized at the
sites of a cubic lattice. The result is the Clausius-Mossotti
formula, or, when applied to a collection of small metallic
particles, the Maxwell-Garnett (MG) formula.

Recently it was shown how to generalize the MCx for-
mula to nearly randomly distributed particles by using a
lattice-gas model. That is, Eq. (3) was solved for parti-
cles located randomly on the sites of a cubic lattice. Cal-
culations of the absorption coefficient for a system con-
sisting of small silver particles (radius —100 A) embedded
in a dielectric host (gelatin) showed good agreement with
experimental results. In particular, the width of the ab-
sorption peak was correctly reproduced by this theory,
while the MG formula predicted only about half of the
observed width. Thus, it is important to include
disorder-induced broadening in order to obtain quantita-
tive agreement between theory and experiment.

In the present work we will consider the optical proper-
ties of a two-dimensional system of nearly randomly dis-
tributed particles. As will be seen, the effect of disorder is
again very important and it gives rise to characteristic
features in the absorption spectra which compare favor-
ably with experimental observations.

A particularly important result of the present work is
the fact that the disorder-induced broadening of absorp-
tion peaks is largest at relatively low particle concentra-
tions (average spacing between neighboring particles typi-
cally a few particle radii). At these distances, multipole
interactions which we have not included so far, have only
minor influence on the positions and shapes of absorption
lines.

This paper is sectioned as follows. In Secs. II and III
we consider the optical properties of a two-dimensional
system of' plasma spheres arranged in an ordered lattice
structure (Sec. II) and distributed nearly randomly (Sec.
III). The results are discussed in Sec. IV and the con-
clusion is given in Sec. V. Appendix A contains a few
mathematical details and Appendix 8 gives a short discus-
sion of the field enhancement in surface-enhanced Raman
scattering.
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II. ORDERED SYSTEM OF PLASMA SPHERES Since U( q = 0) is diagonal, ao(O, co) may be written as

We consider first an ordered system of plasma spheres,
i.e., we assume that identical plasma spheres occupy all
lattice sites of a two-dimensional square Bravais lattice
(lattice constant a). (This system has been treated earlier,
e.g., in Ref. 5.) The polarizability of a single sphere A is

ao(O, co) = 0

0

0

0

0

0

ao(~)

3 e(co) —1
a~ (co) =R

e(co)+2

where R is the radius of the sphere and
2

COp
e(co) = 1—

a)(co+i /r)
(5)

~g (co)
1

1 —
2 ag(co) Uo

~~(~)
~~(~) =

I+~~(~»o

CX~ ~(67)=

where from (8) and (9),
(4)

is the dielectric function of the plasma. Substitution of (5)
in (4) gives

R~~(~)=
1 —[oo(co+i /r)/0 ]

where A=co&/V 3. Thus each particle behaves as an iso-
tropic harmonic oscillator with resonance frequency Q,

and damping constant 1 /~.
For an ordered system, Eq. (3) can be solved by intro-

ducing collective variables,

i( q x —cot)

p; = pqe
q

E,(x;)= QE&(q)e
q

Inserting these expressions in (3), we obtain

p, =~~(~)[Ei(q)—«q) p&l

az (co)
Pq= E,( q )

—=Hp( q, co ) Eg( q ) .
1+a~ (co)U( q )

We will hereafter restrict the discussion to long wave-

lengths, qa ~~1; thus only the q=0 component of the to-
tal polarizability ao( q, co) is relevant,

a„(co)
ao(O, co) =

1+ag (co)U(0)

From the definition

Substituting (6) into these expressions gives

p R 1

1 —
2 R 'U, I —[~(~+ i /7. )/II

~
~]

p R
~~(~) =

1+R Uo 1 —[co(co+i/r)/Q~]

where

Qii=0 (1——,'R Uo),

Qi=Q (1+R Uo) .

(13)

It follows from (13) and (14) that if I/r is small, then
Ima~~(co) and Imaz(co) wiii both be Lorentzian with the
same full width at half maximum (FWHM) I/r, and cen-
tered at A~~ & A and A» Q, respectively.

We must now relate the total polarizability Ho(O, co) of
the system of plasma spheres to the reflectivity r and
transmission t. Consider therefore a p-polarized elec-
tromagnetic wave at an angle of incidence 8 (see Fig. 1).
It is possible to show that

—A (cos ea[~ —sin OaJ) —ABa~~aj~e '

1+B(ca~—a~~) —A (cos Oat~+sin Oaz) —ABaza~~e '

(15)

U(q) =g'
J

3XjXj i qe

we get

U(q =0)= 0

0

1

2 0 0
1 0 Up,

0 1

E
- ((k x -vtj

I
ee

F ~hei(k'-x -utjr=

E t- i(k x -gtjt- ee

where

=9.03a -'1
(10)

FIG. 1. Electromagnetic wave (wave vector k, polarization
vector e) incident on a two-dimensional system of small parti-

cles gives rise to a reflected wave (k', e') with amplitude r and a

transmitted wave (k, e) with amplitude t.
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1+8(aq —a~)
1+8(a~—at~) —A(cos Ha~~+sin Oa~) —ABazat~e '

Here

2''CO l

ga cosO

B= sinO,
27Tco

ca

If the terms in r and t containing 2 and B are much small-
er than unity, then to first order in 3 and B,

r=A( —cos Ha~~+sin Haj),

t=l+A(cos Hat~+sin Oaj) .

The reflectance and transmittance are therefore

/r /'=0,
~

t
~

=1+2Re[A(cos 9a~~+sin Haj)],

and the absorptance,

1 —
I
t ['—

l
r ['= —2«[A«os'~~[[+»n'«J)]

47TCO sin 0 ocosO Ima
~
~+ Immy

ca cosO

randomly on the lattice points until a fraction c of the lat-
tice points are occupied. This generates a nearly random
distribution of particles with the constraint that the parti-
cles do not penetrate each other.

Figure 3(a) shows a possible configuration of particles.
Physical quantities of interest, such as the polarizability of
the particle system, are not those of a particular configu-
ration but those averaged over the ensemble of all possible
configurations. Within the so-called "coherent-potential
approximation" (CPA), this ensemble is replaced by a
periodic system with the same "ensemble-average" polari-
zability H at each lattice site [see Fig. 3(b)]. The most im-
portant problem is to find a reasonable procedure to deter-
mine the polarizability a which describes the "average"
particle. According to the CPA this quantity can be self-
consistently determined in the following manner: Assume
that each site except the origin is occupied by the average
particle and the origin by particle A (see Fig. 4). The in-
duced dipole moment (due to a given external field) in
particle 3 is denoted by pz. n is then obtained by the
equation

&pw =p ~

where p is the induced dipole moment of an average parti-
cle at the origin.

This leads to the following self-consistency condition
for H(co)'.

Thus, if the assumptions made in deriving this equation
hold (as will be assumed hereafter), the absorption spectra
will consist of two Lorentzian peaks with the same
FWHM=1/~. The lower absorption peak is centered at
Q~~ &Q and corresponds to charge oscillations parallel to
the layer of particles while the upper mode is centered at
Qz& Q and corresponds to charge oscillations normal to
this plane. This is illustrated in Fig. 2 where Ima~~(co)
and Imaz(co) are shown for plasma spheres with radius
R =50 A, resonance frequency AQ=4 eV, and damping
constant Ay =A/~=0. 158 eV. The lattice constant is
a =2R/V0. 3.

III. DISORDERED SYSTEM OF PLASMA SPHERES

Consider a square lattice with lattice constant 2R. We
distribute spherical particles of radius R (denoted by A)

lecP lj

R

I I

Y Y Y Y 7 7 Y 8 7 Y

10-

4 5 Au)(eV]
(bj

FIG. 2. Ime~~ and Imo.'q are shown as a function of co. In the
calculation R =50 A, A/r =0.158 eV, RQ =4 eV, and
a =2R /V'0. 3.

FIG. 3. (a) Possible configuration of particles generated by
taking 10 numbers randomly out of 1—100. (b) In the CPA the
ensemble of all possible configurations is represented by a sys-
tem with an average particle at each site.
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a(co) = cHg (co)

I+[(z„(ru)—a(co)] I d'qIU(q)/[I+H(iu)U(q)] ]

(18)

Here the integral is over the Brillouin zone (BZ) of area
Since the average particles form a complete lattice,

the total polarizability is given by Eq. (7) with a„replaced
by o.',

( )
a(~u)

1+a(co)U( q )

It is shown in Appendix B that Eq. (18) is satisfied by

(19)

a(( 0 0
a= 0 a(( 0

0 0 O.q

(20)

where a~~ and ar are given in Eqs. (A7) and (A8). Note
that even if the original particles have isotropic polariza-
bility, az ——o.&I, the average particles have only one axis
of symmetry. Thus, disorder affects the

~~
and l modes

differently.
As in the preceding section, we are only interested in

the q=0 component of the total polarizability ao(q, co).
From Eqs. (9), (19), and (20) we get

Ho(O, co) =
a()(co)

0

0

0

where

1
1 ——,a)~(co) Up

aq(co )
ai(co) =

1+ar(co) Up

We will now present numerical results obtained from (21),
(22), (A7), and (A8). Notice that (A7) and (A8) must be
solved for a(( and ez by iteration. If the zeroth-order
solution is taken as az(co) then it turns out that about 10
iterations are necessary. Figure 5 shows Ima~~(co) and
Imaz(co) as a function of co. The particles have a radius
R =50 A and they occupy a fraction c =0.3 of the lattice
sites. The resonance frequency 0 and the damping
y = I/r, occurring in the expression (6) for the polarizabil-
ity of a single particle, are chosen as in Fig. 2 (i.e., fico=4
eV and R/r=0. 158 eV).

The dashed line in Fig. 5 shows the imaginary part of
the polarizability of the particle system when the dipole-
dipole coupling between the particles has been artificially
set equal to zero. This curve is, of course, a Lorentzian
centered at RA=4 eV and with a FWHM =Ay. As a re-
sult of the interaction between the particles, the

~ ~

mode is
red-shifted while the l mode is blue-shifted, just as for the
ordered-particle system studied in Sec. II. The shape and
width of Ima~ ~(co) and Imar(ro) are, however, strongly in-
fluenced by disorder. For the ordered structure these
functions are both Lorentzian with the same FWHM =Ay
(see Fig. 2). As Fig. 5 shows, disorder gives rise to
asymmetrical peaks Imar(co) having a tail towards lower
frequencies and Ima

~

~(co) towards higher frequencies.
Moreover, both peaks are broadened, the

~ ~

peak being
much broader than the l peak. This remarkable result
will be discussed further below.

Figure 6 shows the variation of the width with concen-
tration c. The broadening is seen to be largest for relative-
ly small values of c. The average distance between neigh-
boring particles in this range is typically 3—6 times larger
than the particle radius. Thus, multipole interactions
which are not included in the present calculations and
which are known to be important at small interparticle
spacing' have negligible effect on the spectra shown in
Fig. 5.

Figure 7 shows an experimental absorption spectrum
obtained by Yamaguchi et al. for small silver particles lo-
cated on the surface of a film of polyvinyl alcohol. The
theoretical results presented above are obtained for a two-
dimensional system of Drude particles located in vacuum
and can therefore not be quantitatively compared with
these experimental data. " For example, the "image" di-
poles induced in the substrate will affect the dipole in-
teraction between the silver particles and the "self-image
interaction" will cause a red shift of both the

~ ~

and I ab-
sorption peaks. Interband transitions will also modify
the absorption profile at frequencies ~)3.5 eV.

[ma.
R=SOA
c =Q.3
&'Y =0.158ev

Q x

FIG. 4. Schematic representation of the equation which
determines the average polarizability.

Su(eVj

FICz. 5. Solid lines show Imo;I((co) and Ima&(co). Dashed
curve shows 1m[ca&(co)], i.e., the imaginary part of the total po-
larizability for noninteracting particles. In the calculation
8 =50 A, c =0.3, A/&=0. 1S8 eV, and AQ=4 eV.
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I I I
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FIG. 6. FTHM of Ima~~(co) and ImaJ(co) as a function of the
coverage c. R =SO A, A/~=0. 158 eV, and AQ=4 eV.

(b)

FIG. 8. Two different particle clusters. Arrows in the parti-
cles denote the induced dipoles. Clusters (a) and (b) have the res-
onance frequencies 0[1—2(R/() ']'~ and 0[1+(R/t)']'~,
respectively, where R is the particle radius and I the distance be-
tween the centers of the particles.

~02-
LJ

O

0.1-

R QOA
c =0.35 0 Saeva

polyvinyl alcohol

Nevertheless, the basic disorder-induced structure predict-
ed by the theoretical calculations is clearly visible in the
experimental spectra as follows: (i) The J. peak has a tail
towards lower co and the

~ ~

peak has a tail towards higher
co, and (ii) the

I I
peak is much broader than the J. peak.

We close this section with a simple discussion of why
the

~~ peak is much broader than the J. peak. In a random
distribution of particles there will be particle clusters of
various sizes and shapes. Each cluster will have different
resonance frequency owing to the dipole-dipole coupling
between the particles. Thus there will be a distribution of
absorption peaks which for an infinite system merge into
a continuous absorption band. Consider now the simplest
possible clusters consisting of two particles separated by a
fixed distance l. For the l mode all such clusters will
have exactly the same resonance frequency. This is not
the case for the

~~
mode. Consider for example the two

clusters pictured in Fig. 8. The contribution to the local
electric field at particle a from particle b is 2p/I for
cluster (a) but —p/I for cluster (b). Thus these clusters
will have rather different resonance frequencies
(0[1—2(R /1) ]'/ and 0[1+(R/I) ]'/, respectively).
Similar differences exist in larger clusters so that as a re-
sult the distribution of resonance frequencies will be much
broader for all

~ ~

modes than for the I modes.

IV. DISCUSSION

Real systems are certainly more complicated than the
idealized model studied in Sec. III. However, the influ-
ence of disorder on the absorption spectra is best illustrat-
ed with a "clean" model calculation. Nevertheless, a
quantitative comparison of the theory with experiments is
meaningful only if the fo11owing points have been con-
sidered.

(a) We have neglected quadrupole and higher-multipole
interactions between the particles. This is a reasonable ap-
proximation at small particle densities where the average
distance between the particles is large compared with the
dimensions of the particles, but it breaks down at higher
particle densities. ' '

(b) We have assumed that the particles are identical
spheroids. In reality one will always have a distribution of
particle sizes and shapes which will shift and broaden the
spectral features. A good discussion of the optical proper-
ties of small particles of various shapes is given by Qer-
sten and Nitzan in Ref. 2.

(c) We have used a Drude or free-electron-like dielectric
function e(co) for the particles. The dielectric function of
a real metal has also contributions from interband transi-
tions and from the core polarizability. Furthermore, even
the Drude part of e(co) is different for a small particle as
compared with an infinite metal. For example, the relaxa-
tion time r occurring in e(Drude) [see Eq. (5)] is certainly
shorter for a small particle owing to the reduced electron
mean-free part caused by electron collision with the sur-
face of the particle. It has been suggested that

1 1 UF
C

+bulk R

4 fao (eV)

FKx. 7. Absorption spectrum of small silver particles ran-
domly distributed on a polyvinyl alcohol sheet. Particle radius
R =90 A and coverage c =0.35 (the uncertainty in these quanti-
ties is about 50%). By performing transmission measurement at
both normal and oblique angles of incidence, it was possible to
decompose the total absorptance (0=60) into the absorptance
by the

~ ~
and J. modes separately. Spectrum shown is only one

among several similar spectra obtained by Yamaguchi, Yoshida,
and Kinbara (Ref. 7).

where UF is the Fermi velocity and where C is a constant
of order unity. '

(d) We have used a lattice-gas model to account for dis-
order. The particles were distributed on a square lattice.
A better approximation would be obtained for a hexagonal
lattice owing to its higher density of lattice points.

(e) We have assumed that the particles are randomly
distributed in space. This is certainly not always the case.
Deviations from true disorder can occur due to sample
preparation or due to non-negligible interactions between
the particles. An illustration of the latter phenomena is a
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system consisting of small helium bubbles (the "particles" )

in an aluminium host. If these bubbles are assumed to be
randomly distributed then a very broad surface-plasmon
resonance is predicted theoretically in contrast to the rath-
er sharp resonance which is observed experimentally. '"
Thus the position of the helium bubbles must be correlat-
ed in space, which has indeed been observed in electron-
microscope pictures. '

V. CONCLUSION

We have presented results concerning the optical prop-
erties of two-dimensional systems of small particles. The
particles are (nearly) randomly distributed in space and in-
teract with each other through their dipole fields. The
disorder is accounted for by using a lattice-gas model.
The CPA was applied in order to obtain an approximate
solution of the disorder problem. The disorder introduces
characteristic structures in the absorption spectra which
compare favorably with experimental observations.

The formalism presented in this paper can be applied to
gain insight into the optical properties of many interesting
and important small-particle systems, including (a) spec
troscopy of atoms and molecules adsorbed on surfaces '6;
(b) photosynthesis, the energy transport from the antenna
chlorophyls to the active centers; (c) optical properties of
rough metal surfaces, e.g., many rough metal surfaces can
be considered as consisting of a flat surface covered with
randomly distributed small bumps of various sizes and
shapes' (the formalism in Sec. III is well suited to treat
the optical properties of such surfaces); and (d) surface
enhanced Raman scattering (SERS) (see Appendix B).
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APPENDIX A

The polarizability of an average particle is given by
(18),

7

)
1 f dz U(q}

1+HU(q}

(Al)

where a~ ——la~ is isotropic. We will now prove that this
equation is satisfied by

cx(( 0 0

0 a(( 0

0 0 ag

For a square lattice U( q ) takes the form

U» Uxy 0

U(q) = Uy U» 0

0 0 U~

(A3)

U =g' 3
cos(q x;),fx;i'

1

/

x;/'
323'i

cos(q x;),

—3x.g.
cos(q x;),fx;['

cos(q x;) .
c /x;]'

Assume that (A2) is a solution to (Al). Then

I+a U=
1+a]]U» a)f U y

cx)/U y 1+ex//Uyy

0 0 1+a.i U

and

where U», U„y, Uyy, and U~ are real-valued functions of
q,

(7L+H U)
(1+a((U„„)(1+a((U» ) —a()U„y

1+aff Uyy
—

cx~/Uxy 000
1—a~[Uxy 1+A])Ux„Q + 0 0 0

1+agU
0 0 0

(A4)

Now consider the integral

f d qH U(7L+H U) '=1— „ f d q(I+H U}

Since U», Uyy, U„y, and U~ are invariant under qx~ —q„and qy~ —
qy while U„y change sign under any of these sub-

stitutions, we get from (A4)

f d q(7L+H. U)
1 100 0001+—,~~~(U +U»)

z Q1Q +- dq 000
+ IIU } +

II » ~ll ~ Ooo ' 001
J

(A6)
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Here we have replaced the diagonal elements I+a~~Uyy
and I+a~~U~ in (A4) with 1+—,(U~+ Uyy) since on per-
forming the integral over the BZ these give identical re-
sults. Substituting (A5) and (A6) into (Al) shows that
(A2) is indeed a solution of (Al) if

1+(ag —ag) I d q
1 I.+ A J 9

1 U

(A7)

C CXg

1 T'(U„„+Uyy)+. all(U Uyy
— „y)

1+(~& ~I
I

) d'q
Bz (1+a((U )(I+~((U ) —~()Uy

The last equation can be simplified slightly if we notice that U„„+Uyy = —U

CAg

II 2
1 +~11(U„„Uyy —U„y )

I+(a~ —a~~), d q
1 —a(( U~+ a((( Uxx Uyy

—U„y )

(A8)

Equations (A7) and (A8) are the basic equations from
which the "average" polarizability a is obtained by itera-

tion. Note that az and a~~ only depend on U(q) via the
invariants (under rotations in the xy plane): U and

2U~ Uyy
—Uxy.

Incidentally, we note here that for particles located on a
three-dimensional cubic lattice, the average particle will be
isotropic, i.e., a=aI. This result can be proved just as
above and has been used in a previous paper.

APPENDIX 8

Many molecules adsorbed on rough silver surfaces show
strongly enhanced Raman scattering. There are now both
experimental and theoretical indications that this enhance-
ment, at least in part, is caused by the large electric field
set up at the surface when the resonance frequency for
collective plasma oscillations in the particle system coin-
cides with that of the external field. We will give here a
rough estimate of the magnitude of this so-called "classi-
cal field enhancement. "

Within the CPA all particles of the same type will have
the same induced dipole moments. In the case that there
is only one type of particle 3 of coverage c, one gets

Pa = &O'EX=
c c

(B1)

3xx
'Pa ~ (B2)

where we have neglected the contribution from the exter-
nal field and from the fields of the other particles. The
Raman scattering enhancement factor g is obtained from

where the last equality is valid to zeroth order in 3 and 8
defined after Eq. (16). The electric field at the surface of
a particle is

(Bl) and (B2),

2

(3r r —I) e—
R c

where r = x/R is a unit vector along x, and where e is the
polarization vector of E,„,. Since mainly the

~

mode is of
interest in SERS [ the J. mode is centered well above typi-
cal SERS frequencies (see Fig. 7)], we put e =x in (B3)
and get

(3 sin Ocos /+1)
~
all/R

1
II 2

where we have introduced spherical coordinates so that
r.x=sinOcosg. If (g~~(8, $)) denotes the angular average
of g~~(8, $) we get

0 2

7 1 +II 7 1 0 3 2

4 c' R' 4 c' (Ima~~/R )

From Fig. 5 we obtain Ima~~/R =2 at the
~ ~

peak max-
imum. Thus (g~~) =10 . Very similar enhancement fac-
tors have been obtained by Burstein et al. ' and Otto' us-

ing experimental information for Ima~ ~.

Actually, not only the incident field is enhanced at the
surface but so is also the Raman-scattered field. Thus the
total enhancement is likely to be 10 —10 .

The discussion above must be taken with some reserva-
tion because we have not accounted for the effect of the
substrate nor for items (a)—(e) in Sec. IV. Nevertheless, it
seems quite clear that the classical field enhancement
alone cannot account for a total enhancement of 10 as
observed in many SERS experiments. The enhancement
factor —10 —10 given above is, however, consistent with
an additional "chemical" enhancement of about 100, as
has been indicated by some recent experiments.
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