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In a recent paper it was suggested that the double-peak 4f photoemission spectra of Ce and
Ce 0 9Tho, indicate strong d fcorrela-tion. This paper discusses the effects of this correlation on the
mixed-valent properties of Ce systems. In the impurity-lattice approximation, which is valid at high
temperatures, the f-electron spectrum has the well-known x-ray-edge singularity at the Fermi level.
The inclusion of d fhybridiz-ation adds fine structures to the spectrum near the Fermi level. Fur-
thermore, the singularity can account for the Kondo-type resistivity and specific-heat anomalies
without the need to invoke spin-flip scattering.

I. INTRODUCTION

The mixed-valent properties of Ce metal and its alloys
and intermetallic compounds have been studied exhaus-
tively in recent years. The problem originates from at-
tempts to understand the first-order phase transition from
y-Ce to a-Ce. Both phases have the cubic-closed-packed
structure, but on going from the y phase to the a phase
the lattice parameter shrinks by about 6%.' The electron-
ic and magnetic properties of Ce are no less intriguing.
Both phases have large electronic specific-heat coeffi-
cients, which indicate high densities of electron states at
the Fermi level. The magnetic susceptibility of y-Ce fol-
lows a Curie-Weiss law with a magnetic moment corre-
sponding to one 4f electron per atom. On the other hand,
a-Ce has a high but temperature-insensitive susceptibility,
which is indicative of a narrow band of electrons.

To explain the y-o. phase change Zachariasen and Paul-
ing suggested that the volume collapse is caused by the
promotion of 4f electrons into the conduction band, i.e.,
the a phase is tetravalent. The added band electron
strengthens the metallic bonding and reduces the inter-
atomic distances. This so-called promotion model was
carefully analyzed by Ramirez and Falicov, 3 who showed
that the thermodynamic properties of the phase transition
can be understood if the 4f level is close to the Fermi lev-
el.

Johansson argued against the promotion model by
pointing out that a-Ce has a melting temperature (940 K)
characteristic of trivalent metals, rather than tetravalent
metals (2000 K). Based on this observation he proposed a
band model such that in a-Ce the 4f level broadens into a
band and that the 4f electrons can participate in crystal
bonding. There should be no significant difference in 4f
occupation between the two phases, as confirmed by a
number of recent experiments. Since a 4f band has a
high degree of degeneracy, the requirement of one 4f elec-
tron per Ce atom puts the Fermi level near the bottom of
the f band. The overlap between nearest-neighbor 4f

wave functions is insignificant, so the f bandwidth must
come from hybridization of 4f and conduction-band
states. In y-Ce, however, the 4f electrons are in localized
states and do not participate in bonding. The electronic
and magnetic properties can be reconciled with the picture
that the 4f states have an intrinsic width due to hybridiza-
tion. ' Incidentally, when d fhybridizatio-n is included in
the promotion model, the predicted change of f occupa-
tion is much reduced, and the model converges to the
band model. ' '"

The success of the f-band model has stimulated ab ini-
tio band-structure calculations of both phases of Ce and
some Ce intermetallic compounds. C+lotzel' carried out
self-consistent band calculations using the local-density-
functional approximation for the crystal potential. He ob-
tained a nonmagnetic 4f-band state for a-Ce, but a mag-
netic ground state with nearly one f electron per atom for
y-Ce. Koelling' has been able to map out the Fermi sur-
face of CeSn3 and to explain the observed de Haas —van
Alphen frequencies of this mixed-valent compound. ' On
the negative side, the band-structure calculation con-
sistently underestimates the effective mass of the band
electrons, or equivalently the density of electron states.
This suggests that certain many-body correlation effects
are present but are not adequately treated by the local-
density approximation for the exchange-correlation poten-
tial.

A clue to the missing correlation effect has been fur-
nished recently by photoemission experiments. ' ' The
purpose of the experiments was to verify the theoretical
prediction that the 4f level should be very near the Fermi
level. However, early experiments placed the 4f level at
around 2—3 eV below the Fermi level for a number of Ce
systems. ' ' With improved sample-handling technique
and the high resolution of synchrotron-radiation sources
new and finer measurements have become possible. The
resulting 4f spectra for both y- and a-Ce exhibit two
peaks, one at the Fermi level and another at 2 eV below.
None of the existing models explains adequately the origin
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of the double-peak spectrum. In a recent paper the
present authors suggested that the unusual structure of the
photoemission spectrum of Ce arises from strong d f-
correlation. ' When an f electron is excited out of an
atom, the d electrons around that atom experience a large
change in local environment such that a localized impuri-
ty state is formed. In the final state the impurity state
may or may not be occupied, and this gives rise to two
peaks in the f-electron spectrum. The separation between
the two peaks is equal to the energy of the impurity state
measured from the Fermi level.

The origin of the strong d fc-orrelation is not clear at
present. In this paper we start from the assumption that
such a strong local interaction exists and proceed to ex-
plore its consequences. %"e will discuss in particular the
effects of d-f correlation and d fh-ybridization on the
photoemission spectrum, the resistivity and the specific
heat in the impurity-lattice approximation.

II. SINGLE-SITE PROBLEM
The important interactions in a mixed-valent metal are

embodied in the following model Hamiltonian:

H= ge-d-„d +efgf; f;+Uffgf; f; f; f;
n, k, o l, G'

g U d -„d,-„, f; f; e '+(N) 'i g g [V„(k)f; d - e '+H. c.],
I

, k; ', k' n, k, a
(2.1)

where d - is the band-electron operator in band n, wave
n ke

vector k, and spin o., e is the band energy, fi is the fnk
electron operator for the ith site at R;, ef is the single-
particle energy of the f level, and N is the total number of
Ce sites. The d-f interaction term is written in the form
of an attraction between a d electron and an f hole. The
strengths of the interaction parameter are Uff=-8 eV,
which has the effect of preventing multiple occupation of
the f orbital, U =- 3 eV, ' the d finteraction, -and

I
V„(k)

I
-=0.2 eV, ' the hybridization energy between d

and f electrons. Ramirez and Falicov first pointed out
the importance of the d-f interaction in the a-y phase
transition in Ce, while Kaplan and Mahanti invoked this
interaction in their theory of the phase transition in SmS.
It is customary to treat this term in the mean-field ap-
proximation. In this approximation the interaction renor-
malizes the single-particle energies ef and e -. Then thenk
hybridization term can be exactly diagonalized to give the
mixed d and f bands.

The d finteraction stren-gth U is comparable to the
width of the d band, which is W=4 eV. ' This fact
makes the mean-field approximation questionable. In our
approach we treat the U term exactly to the extent possi-
ble and handle the hybridization term by perturbation.
We will siinplify the model somewhat without affecting
its physical content. We retain only one band and assume
a constant density of states for the band. Since the f level
can only be singly occupied, we suppress the spin index,
ignore the Uff term, and build the single occupancy into
the wave function. We consider as a start the promotion
of an f electron froin a Ce site into the conduction band.
The hybridization is neglected for the moment. Thus the
Harniltonian is reduced to

~o=eff f+g&-d-„d-„(U!N) g d-
k k'

k k, k'

(2.2)

where the selected Ce site is at the origin. The eigenstates
of the system can be solved exactly for both f and f '

configurations. In the f ' configuration the ground state
is f I +i ), where

(2.3)

c„=pa -d-,n nk k
k

such that

HO =QM„c„cn

(2.5)

(2.6)

The new energy levels co„are solved from the equation

1=(U/N)g(e-„co„)— (2.7)

There is a one-to-one correspondence between the new
states labeled by n and the old states labeled by k. The
lowest level ~& falls below the band to form an impurity
level. Measured from the bottom of the band we have

coi ———W/[exp( W/U) —1] . (2.g)

The levels in the continuum are each shifted by an infini-
tesimal amount. Under the assumption of uniformly dis-
tributed levels in 0 & e„&W, the nth level (2 & n &N) is

(2.9)

I
0) is the vacuum state, and N, is the number of band

electrons. The ground-state energy is

Ei =Ef+QE~ . (2.4)
k

In the f configuration the Hamiltonian is diagonalized
by a canonical transformation
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where e„ is the energy of the nth band level and 5„ is the
scattering phase shift

8 &n5„=tan m +ln
U 8' —e„

(2.10)

The eigenstates of the system are

(2.11)

with energies

Ei= ~n~ (2.12)

Et (2.13)

We compare the ground-state energies of the two con-
figurations

N

Ei —E'i =~f —~~, +i+ g (~. —~. ) .
n=1

We identify the last filled level coN +I with the Fermi en-e+
ergy p and define the d finteraction e-nergy by24

where the index n runs over %, +1 electrons. In particu-
lar the ground-state energy is

N, +1

where the left hand side is the Fermi energy of the
mixed-valent state. The quantity Xp is solved from this
implicit equation. The equilibrium condition also means
that the energy required to create or destroy an f site is
zero. Or equivalently, the Fermi level is pinned to the ful-
ly relaxed f-level energy given by the right-hand side of
Eq. (2.18). The last term in Eq. (2.18) comes from relaxa-
tion of the number off sites.

In this discussion we have treated the crystal as a col-
lection of noninteracting Ce sites. The feasibility of this
approximation is considered in the Appendix in which we
solve the problem of two f sites in a lattice off ' sites. It
is shown that the two sites repel one another with a
short-range potential such that their interaction energy is
negligible when they are three or more lattice spacings
apart. Thus the approximation is valid as long as the
number of promoted sites is low, which is believed to be
the case for both phases of Ce.

We calculate the f-electron spectrum through the re-
tarded propagator defined by

G(t)= —t&[f( )t,f (0)]&e(t),
where f(t) is the Heisenberg operator

(2.19)

um condition as determined by dE/dip =0 is

IJ(N, +Np)=of+6(N, +Np)+Np(db, Id%()), (2.18)

iHtf iHt— (2.20)
~= g (e, —p~, )=(II'/Nir) g 5„. (2.14)

n=1

Then we can write

n=1

E, =E', =~f+s —~ . (2.15)

The f' state becomes unstable if Ei E'i &0, i.e., if-
@—ef &4. Thus if b, is sufficiently large, the system
tends to convert f' sites into f sites even though the
single-particle energy ef is below the Fermi level.

With every additional f electron promoted into the
band, the Fermi energy increases by the amount
5@=W/N. According to Eq. (2.9) the d finteraction en--
ergy increases by

r

and FI is defined in Eq. (2.2). The square bracket denotes
the anticommutator between two Heisenberg operators;
the expectation value is taken in the ground state of the
system; e(t)=1 for t&0 and e(t)=0 otherwise. The
Fourier transform of G (t) is

G(v)= J G(t)e '"'dt, (2.21)

and the spectral density is given by

pj(v) = —(1/m. )ImG(v) .

If the site is in the f' configuration, we calculate the
spectral density by inserting a complete set of f states.
We write

8 j
8' ptan ~ +lc——

mm U 8' —p
«t)= tX I &4- If I

W—i& I'e (2.23)

(2.16) The spectral density calculated from Eq. (2.23) is

Consequently, the system gains decreasing amount of en-
ergy with increasing number of f sites. Under suitable
conditions the promotion process stops after a fraction of
sites are converted to f . When this happens the system is
mixed valent. We can find the number of f sites at
equilibrium by the following consideration. Treating the
system as a set of independent Ce sites, we find that the
total energy with Np sites in f and N Np sites in f ' is—

N +No
E =(N —Np)Ef + g Ek Npk(N +'Np)—

where A(N') is the d finteraction energy of a si-ngle site
when the number of band electrons is N'. The equilibri-

pf(v)=X I &O' If I @i& I'@v—Ei+E' ) . (224)

pf(v) ~ (vi —v) (2.25)

for v&vi, where 6,=1—(5/m. ), and 5 is the scattering
phase shift at the Fermi level given by putting e„=p in

In photoemission experiments the binding energy is to be
identified with —v. As discussed in Ref. 19 the spectrum
has two peaks; one appears at v& ——E& —E&, and the other
appears at v2 ——v& —p+~&. The singular nature of the
peaks has been discussed by many authors. ' The
problem is identical to that of the x-ray-absorption edge.
The spectrum has the analytic form
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Eq. (2.16). In a strongly interacting system U/W= 1, one
finds 5=m/2 and b =0.75 for a range of p near the mid-
dle of the band. The spectrum is also singular at v2, but
this singularity is broadened by lifetime effects. The spec-
trum of an f site is calculated in an analogous way, with
the result

pj(v)=& I &kt If I P~ & I'&(v —E +Et »

where
I g ) are excited states of

I f~) with energy E~.
This spectrum is restricted in the energy range v& vi, and
has one peak at vI having the same singular analytic prop-
erty as the vt peak of pf(v). The total spectral density
given by

0.5

0.4

0.2

0.1

Vp

U/W= 0.75
p/W= 0.30

V&=@,

pf '(v) =(1—No/N)pf(v)+(Np/N)pj (v) (2.27) FNERGY V

is sketched in Fig. 1. As discussed earlier the Fermi level
is so situated that the energy required to promote the next

f electron to the Fermi level is zero. This means that the
peak v~ appears at the Fermi energy p and the lower peak
v2 appears at co~.

III. EFFECTS OF d fHYBRI-DIZATION

We now discuss the effects of adding the hybridization
term to the Hamiltonian H of the one-site problem as fol-
lows:

FIO. 1. Spectral density of the f electron in the one-site ap-
proximation. Inset shows the fine structure near the Fermi level
due to d fhybridiza-tion.

E) E) ————V Am csc[rr(l —b, ')](E't E) } —. (3.6)

The perturbed ground-state energy is shifted down from
Et. In the case of V&&E'~ —E~ the energy shift is scaled

y2/( i+&')

The ground-state wave function is given by

H) ——Ho+N '~ +[V(k)f d-„+H.c.] . (3.1) I»=f'l 0 &+vg-
~ E) —E)

(3.7)

E) E)+V gIM——);I /(E, E}, —(3.2)

where V is an average of V(k) at the Fermi energy and the
matrix element

The last term mixes the many-body states of f' and f
configurations. Consider the single-site problem with the
ground state in the f ' configuration. We can calculate the
perturbed energy of this state by using the standard
many-body perturbation method. The equation of the
new energy E] is found to be

which is a bonding linear combination of f ' and f states.
The f content of this wave function is less than one. Thus
with the help of d fhybridization f-ractional valence be-
comes possible even when the unperturbed ground-state
energy EI of f is higher than E& of f' as long as
E

&

—E& is of the same order of magnitude as V.
In a similar manner we find that the perturbed energy

of the lowest f state is solved from

E ', =E', + V g I
M~ ) I

/(E ') E;)—
M„=N '~ g(P, I d-„ I P;) . (3.3)

=E', +m. V 2 I cot[m(1 6')]+i—I (E
& E~)—

The last term on the right-hand side of Eq. (3.2) is the
lowest-order self-energy of an f electron due to d fhy--
bridization. The matrix element is the same as that for
x-ray absorption by exciting a core electron in a met-
al. ' The matrix element has the singular behavior

(3.8)

The energy is complex because this level lies in the contin-
uum off ' states. The wave function of this state is

(3.9)

IMi; I
=A(E EI)— (3.4)

where

(6/rr)', — (3.5)

and the constant A 'can be evaluated. In the strong in-
teraction case U/W=-l, we find 5—=vr/2 and b, '—=0.75.
The sum in Eq. (3.2) can be converted into an integral and
evaluated in closed form. The equation for E& is found to
be

which is the antibonding linear combination of f ' and fo
states.

The same consideration applies to the excited states.
The entire level scheme consists of a set of bonding orbi-
tals with energies E; and wave functions X; and antibond-
ing orbitals with energies E;'and wave function g,'. The
low-lying excited states have real energies and all have the
impurity level co& filled. For a lattice of independent Ce
sites, one finds that every site is a mixture of f ' and f
configurations, and the amount of mixing is the same for
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every site.
The photoemission spectrum can be calculated in the

sam. e manner as in Sec. II. The ground state is g& in Eq.
(3.7), and the final states are the complete set X; and X,'.
It is straightforward though tedious to show that the split-
ting of levels creates fine structures in the f-electron spec-
tral density near the Fermi energy, as also shown in Fig. 1.
The peak at the Fermi energy remains singular. The satel-
lites in both sides, which come from the matrix elements
between bonding and antibonding levels, have rounded
peaks due to the finite lifetime of the antibonding levels.
Since V—=0.2 eV, it will require very high resolution to
detect the fine structure by photoemission.

IV. ELECTRICAL RESISTIVITY
AND SPECIFIC HEAT

The electrical resistivity of y-Ce, P-Ce, and a number of
Ce alloys and compounds exhibit Kondo-type temperature
dependence. After subtracting out the phonon scattering
contribution to the resistivity, the remainder decreases
with increasing temperature over a range of temperature
around 100 K. At low temperatures the electrical resis-
tivity is well described by the Fermi-liquid model. The
commonly accepted explanation of the Kondo behavior is
the spin-flip scattering. "" The temperature at which
the Fermi-liquid behavior turns into Kondo behavior is
designated as the spin-fluctuation temperature T,t. In this
section we discuss the possibility that the Kondo behavior
in the electrical resistivity may have a totally different ori-
gin. The f-electron spectral density shown in Fig. 1 has a
singular peak at the Fermi level. The physical origin of
this peak is the local d fcorrelation. M-ahan was the
first to point out that the problem of this so-called x-ray-
edge singularity is mathematically equivalent to the Kon-
do problem. The isomorphism also implies that the
x-ray-edge singularity in the f-electron spectral density
can give rise to Kondo-type resistivity anomaly.

Gwing to d fhybridizatio-n the d electron acquires a
self-energy correction

X-„(v)=V Gf(v), (4.1)

o.( T) ~ t r(v) — d v,Bn(v)
Bv

(4.3)

where n (v) =(e~'" &'+1) ' is the Fermi distribution
function and P=(kit T) '. When the system is regarded
as a collection of independent Ce sites, the f-electron spec-
tral density has the singular behavior

pf(v) =&+
I

v —
S I

(4.4)

where the scale factors C+ refer to v~p and v&p re-

where Gf(v) is the f-electron propagator. The inverse
lifetime of the d electron is related to the imaginary part
of the self-energy, which in turn is proportional to the f
electron spectral density

1 =2~V pf(v) .
r(v)

The electrical conductivity is proportional to the integral

gions, respectively. Putting this result into Eqs. (4.2) and
(4.3), we find that the leading temperature dependence of
o(T). is o(T) cc T, or the resistivity

p(T) ~ T (4.5)

C ( T)= Ip( v)v[dn (v) /d T]dv .

At low temperatures

C(T) ~ T'

and at high temperatures

C(T) ~ T

(4.6)

Between the low-temperature limit and the high-
temperature limit the specific heat has a maximum.

The position of the specific-heat maximum falls near a
characteristic temperature T, which can be estimated
from the spectrum as follows. The integrated intensity
under the singularity at v~ is

Ii ——( W —cubi)p/W'(p —a~, ) (4.7)

for a band with a uniform density of states between 0 and
O'. ' We define T, such that the integrated intensity be-
tween v& —kT, and v~ is one-half of I&. Taking the
asymptotic expression for the spectrum in Eq. (4.4), we
find

kT, = IV(Ii/2)'i" (4.8)

Based on the energy parameters deduced for Ce, we esti-
mate kT, =-0.016 eV or T, =200 K. The spin-fluctuation
temperature for Ce systems range from 20 to 200 K. We
speculate that for those systems with high T,f the
Kondo-type behavior may have its origin in d fcorrela--
tion rather than spin fluctuation.

Note added in proof. It has been pointed out to the au-
thors that the calculation in Sec. III for mixed f and f '

states can be carried out more elegantly by the projection
operator approach. See L. Mower, Phys. Rev. 142, 799
(1966).
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APPENDIX: TWO-SITE INTERACTION 0.2

We create two f sites at Ri and Rz in a lattice of f '

sites. The Hamiltonian of the system is

H() ——ge d
k k

k

U t t(k ' —k) R) i(k ' —k) R2d-„d-„, e '+e
N

~ k, k'

(Al)

0.1

From previous discussion we expect that Ho can be diago-
nalized by a canonical transformation

c„=pa -d- .
nk k

k

such that

We define

i(k —k ') R) i(k —k ') R2(e '+e ')a - .
nk

k '

—ik'-R)
An =pa ~,enk'

k '

—ik '. R2B„=pa -,enk'
k '

(cn ~HO ] ~nen

Putting Eqs. (Al) and (A2) into Eq. (A3), we find

(e-—eo„)a-n nk

(A2)

(A3)

(A4)

(A5)

(A6)

0
0

FICr. 2. Repulsive potential between two f sites. Straight
lines are drawn between points for different lattice distances to
guide the eye.

Vp(R) =co) +co) —2eo),(+) ( —) (A9)

where R=R~ —R2. When the two sites are far apart, the
cosine term in the above equation undergoes many oscilla-
tions as k varies so that it makes negligible contribution
to the integrals. In this case the problem reduces to that
of two noninteracting sites.

We are particularly interested in the split-off states
eo'i-', which are the solutions of Eq. (AS) below the contin-
uum, because they contribute to the main part of the
correlation energy. Thus we study the interaction between
the two sites using the quantity

We can then solve Eq. (A4) to obtain

a -=
N e-—co

U + 1+cos(k.R)
N e-—co„

k k

(A8)

We substitute this result into the definitions of An and B„
to find two linear homogeneous equations for these two
quantities. The condition that nonzero solutions exist is
found to be

where a)) is defined in Eq. (2.8). To make the calculation
of co'~

—' tractable we assume a one-dimensional linear
dispersion relation ek=u

~

k
~

with —sr&k &rr The dis-.
tance between nearest neighbors is taken as unity. The re-
sult of the numerical analysis is shown in Fig. 2, in which
V2(R)/~ co)

~

is plotted as a function of R. Since two f
sites cannot coincide, V(0) is undefined. For nonzero R
the quantity V2(R) is found to be positive, indicating
repulsive interaction. The interaction strength decreases
very rapidly such that when the two sites are three lattice
distances apart, one makes a less than 2% error by treat-
ing them as noninteracting.
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