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Microscopic theory of coexistence of superconductivity and antiferromagnetism
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A theory of the coexistence of superconductivity and antiferromagnetism is presented. We
study the role of the "diagonal" exchange coupling between magnetic ions and conduction elec-
trons, using Eliashberg's formalism. This coupling generates a spatial displacement of the
Cooper-paired states, and thus reduces the pairing strength. The reduction is linear in the ex-
change integral and the staggered magnetization. The theory agrees well with experiment for
DyI 2Mo6Ss and Tb~ 2Mo6Ss.

Several rare-earth ternary compounds have been
reported, ' in which antiferromagnetism (AF) and
superconductivity (SC) coexist. The rare-earth ions
form an ordered lattice of magnetic spins, interacting
weakly with the conduction electrons. The Neel tem-
perature T~ is usually belo~ the SC critical tempera-
ture T, ; it is thus possible to see the influence of AF
on SC. In Fig. 1, we show the temperature depen-
dence of the critical field H, 2 in Dy~ 2Mo6Ss and in

Tb~ 2Mo6Ss. H, 2 is seen to behave anomalously near
Trt, and 0,2(0) is considerably smaller than expected
from extrapolation of the high-temperature
behavior. '

Baltensperger and Strassler' show that in an AF,
the Cooper pairing must be between time-reversed
states displaced by a lattice vector. They argue that
in an AF the pairing strength is reduced, by a mag-
non-mediated repulsive electron-electron interaction.
Ramakrishnan and Varma study the effect both of
magnons and of the Abrikosov-Gorkov pair-breaking
mechanism. Using a sum rule, they show that for
nonpathological band structures these effects tend to
compensate; moreover, their net contribution is the
same above and below T~. To explain the strong in-
fluence of AF on SC, Ref. 6 postulates strong Fermi
surface (FS)' nesting. This postulate needs justifica-
tion.

We consider here a more immediate influence of
the magnetic ions on the conduction electrons: the
"diagonal" part JS,s, of the exchange interaction.
Below T&, where the Fourier component S, (qo) be-
comes the macroscopic staggered magnetization, we
show that this term weakens the phonon-induced at-
traction between the displaced electron states of Ref.
5. The reduction is linear in the exchange integral.
Machida et al. also find a linear reduction, but only
by making the restrictive assumption qo= 2kF. (Here
qo is the wave vector of the AF order. )

The present paper is similar in spirit to Zwicknagl
and Fulde. However, our formulation is more trans-
parent, and we derive analytic expressions for the
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I.IG. 1. Temperature dependence (Ref. 1) of H, 2 (broken
curve) and its extrapolation from the paramagnetic region
(solid curve) for Dy~ 2Mo6Ss and Tb~ 2Mo6Ss.

essential features. We explicitly relate the strength of
SC to the AF order. Reference 8, on the other hand,
finds numerical solutions for a particular model, i.e.,
an assumed band structure, phonon spectrum, and
exchange and electron-phonon interactions.

We start from the Hamiltonian
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H = Hp+ Hph+ Hp ph

H = g E(k)c (k)c (k)+
2 J(qo)S, (qo) g ac (k)c (k+ qo)

k, cr k, cr

Hp„——QA, (q)b, (q)b, (q)

(2a)

(2b)

He-ph =
jcr, k, k

gi(k, k')c (k)c (k') [bi(k —k')+ bi (k' —k)] (2c)

where c (k), c (k); b&(q), b& (q) are, respectively,
annihilation and creation operators for conduction
electrons and phonons, a- = + 1 is a spin index,
0, ( q ), E ( k ) are the phonon (jth branch) and elec-
tron spectra, and g&( k, k') are the electron-phonon
matrix elements. For simplicity, the discussion is
limited to a single electron band containing the Fermi
level E+.

We assume that the spin-flip frequency of the mag-
netic ions is so slow compared to typical electron and
phonon frequencies that in (2a) we may replace
S,(qo) by its expectation value SM= (S,(qo)) (adia-
batic approximation). References 7 and 9 make a
similar approximation, but start from a BCS Hamil-
tonian rather than Eq. (l). They thus fail to find the
correct effect of AF on the electron-phonon interac-
tion. Nass et al. make the further assumption that

c (k) = cosn-„c (k) —o. sino. ~ c (k+ qo) (3)

where o. -k = —o. -k+ q
and

cos20.' k
= 1 + J(qo)SM

, E(k) —E(k+ qo)

' 2 —1/2

The transformation (3) transforms H, » to

AF af'fects the Cooper pairing of an electron k only if
both k and k + qo are within the BCS cutoff from
the FS. This assumption is shown here to be invalid.

Whether the lattice is magnetically ordered or not,
2qo is always a reciprocal-lattice vector, and hence
k + 2qo is equivalent to k. Hence H, can be diago-
nalized by the transformation

He-ph =
j, (r, k, k

c (k)c (k') [g, (k, k') [b, (k —k')+ b, (k' —k)]

+ogj(k k )[b&(k k + qo)+b& (k —k —qo)])

where g and g depend on g and n-k.
The essentially new feature is the term in g in (5), a

new umklapp term associated with the reduced
translational symmetry of the magnetized lattice. Its
spin-dependent phase [arising from the phase factor
o- in (3)] is related, via Bloch's theorem, to the spa-
tial displacement of the different spin states. This
term thus represents an interaction between the pho-
nons and the spin density of the conduction electrons.
Although explicitly an electron-phonon term, it
resembles the electron-magnon interaction formally.

And, like the electron-magnon interaction, it induces
a pair-weakening electron-electron repulsion.

In Narnbu's representation the g term is described
by the usual electron-phonon vertex, containing the
Pauli matrix 73, but for the g vertex, the correspond-
ing factor is the unit matrix. This introduces addi-
tional terms into Eliashberg's equations. ' One can
show that by assuming isotropy, and taking the limit
T T„where Eliashberg's equations become linear,
the equation for the SC gap function 5 can be written
as

( l
' A(ice, )

A(ice„) l+ ), gk(iv, ) = g, " A(iv, )(cos2n-, ) -„,„,
n n

(6)

1where v„= 27rkaTn and cu„= 27rkaT(n + —,) are Matsubara frequencies; the average (cos2o. -„) is taken over the
FS and X is defined as usual:

I g, ( k, k')
I
'0, ( k —k')

[0 (k —k')]'+v' (7)
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N (EF) is the density of states at EF. in three dimen-
sions we may neglect the AF renormalization of
X(E). Dispersion in the electron-phonon coupling
can cause deviations from Eq. (6); such deviations
might perhaps account for the enhancement of SC by
A F order in Sm Rh484.

The AF-induced reduction of the average elec-
tron-electron attraction is described by the factor
(cos2n-„) -„,„s in (6). To obtain an analytic expres-
sion for its magnitude, we make the approximation
(rigorous for free electrons) that E(k) —E(k+ qo)
is linear in k when k is on the FS. It is reasonable
for more general band structures, because by (4) the
main contribution to (cos2n k ) k, „s comes from the
small regions where E ( k ) —E ( k + q o) is small and a
linear expansion in k is valid. Hence, by (4),
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shown in Fig. 2 (the horizontal line is the back-
ground, found by extrapolation from T ) Tv ). We
have tacitly assumed that the ratio of the spin and or-
bital contributions to the magnetic moments does not
depend on T. Using one adjustable parameter to fix
the ratio H, gH, q at T = 0, we can calculate H, 2(T)

(cos2c„k ) k, Fs

1
2= (E2 —E~) '

~ dE/(I+ [J(qo)~M/E]') ' '
g E)

tooo—
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where E ~ and E2 are the extreme values of
E(k) —E(k+ qo) when E(k) =EF. We write
B = E2 —E), assume that E~ & 0 ( E2, and evaluate
the integral (8), to get

(cos2n k ) k, Fs= I —4(J(qo)SM/8 (+ 0 (J')

0 i.
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For application to real materials, we approximate 8
by the width of the nondegenerate band around EF.

Substituting (9) into (6), we solve' to find T„ the
SC transition temperature which we ~ould have if SM
were fixed at some temperature-independent value.
To first order in J(qo)/&,

T,/ T,o = I —4y ( J ( q o) ~M/~ I (10)

where y is a constant and T, = T, ($~ = 0). In
McMillan's" "two-square-we11" model, y is approxi-
mately

~ =—z(I+ a)/()„—p, )',
where g = X(0), and p,

'
is the previously omitted

Coulomb repulsion parameter.
In Dy~ 2Mo6S8 and Tb~ 2Mo6S8, SC sets in while the

magnetic ions are still disordered, i.e. , the observed
T, is T, The effect of AF is to. reduce H, 2(T)
below the value H, , (T) extrapolated from the
paramagnetic region. Since we have seen that the
primary effect of AF is to reduce the pairing interac-
tion, we can express the reduction in H, 2 as
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H, 2(T) = H, p [ TT, /T, (T) ] T, (T)/T, (12)
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where T, (T) is a hypothetical SC transition tempera-
ture found from (10) by freezing S~ at its observed
value SM(T) at temperature T. [S~(T)]' is propor-
tional to the intensity of the qo neutron-diffraction
peak minus the background intensity, which are

FIG. 2. Temperature dependence of the qo neutron-
diffraction peak intensity2 (solid curve), the experimental
and extrapolated H, & from Fig. 1 (open circles and coarse
broken curve), and the present theoretical H, 2 (fine broken
curve) f«(a) Dyt 2Mo6Sa, (b) Tbt 2Mo6Ss.
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from the neutron-scattering data and the extrapolated
H, 2(T). The agreement' with experiment is good
up to Tg. For Dyt 2Mo6Ss, H, q(T) is rather flat
around T~, and the results are not sensitive to the
exact shape of H, 2(T) [Fig. 2(a)]. But for
Tb~ 2Mo6S8, this is not the case. The agreement of
H, 2 with experiment below T~ [Fig. 2(b)] depends on
the shape chosen for H, 2 (T); the extrapolation
which we have used appears reasonable. ' Above
T~, Eq. (2a) breaks down and the theory will require
modification.

For both compounds, our choice of the ratio
H, 2(0)/H, 2(0) fixes the ratio 4y ~ J(qp) SM(T = 0)/
B

~
=0.3. Now SM(T =0) is' about 2.5, B is'

about 6 && 10' K, and, from (11), y lies in the range 2

to 4. Hence we find J(qp) in the range 50 to 100 K,
consistent with other estimates. ' [Note that
Ruderman-Kittel-Kasuya-Yosida theory gives

J(qp)'. ]
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