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A detailed account is given of a recently developed pair theory of the Hubbard Hamiltonian for
the case of a half-filled band. The resulting pair Hamiltonian is an exact reformulation of the origi-
nal Hubbard Hamiltonian in terms of pair operators which satisfy elementary boson commutation
relations. The Hamiltonian takes the familiar form of a sum of a quadratic part representing
independent-pair energies and a quartic part representing pair interactions. The matrix elements
entering the pair Hamiltonian are the pair energies and products of pair wave functions, which are
formally given as the solutions of a certain eigenvalue equation. By the solving of the eigenvalue
problem, explicit analytical expressions are obtained for both pair energies and wave functions for
an arbitrary number of dimensions. For the case M=1, where M is the number of spin-down elec-
trons, pair interactions do not enter since there is only one electron-hole pair, and the exact energies
of the Hubbard Hamiltonian are obtained. This will be explicitly verified for the one-dimensional
case; here we demonstrate that the pair energies agree with the exact energies found by other au-
thors for this case.

I. INTRODUCTION

The one-band Hubbard model' has been widely studied
in connection with correlation effects in narrow-band
solids. The general interest in this model was further
stimulated by the discovery of the exact solution for the
one-dimensional ground-state energy by Lieb and Wu.
Although the results of Ref. 2 are important for a proper
understanding of correlation effects in one-dimensional
systems such as long polyenes, they cannot be generalized
to more than one dimension. Despite the relative simplici-
ty of the model, only few exact theorems for certain limit-
ing cases exist so far. The significance and usefulness of
these results have been critically reviewed by Cyrot. Fur-
ther references to previous work in this field can be found
in the review articles by Bari and Ovchinnikov et al.

A novel approach, completely different from all previ-
ous ones, has been recently proposed by the present au-
thor. This approach is basically a pair-theory method,
and it leads to an exact reformulation of the original
Hamiltonian in terms of pair operators. The latter obey
ordinary boson commutation relations and the resulting
pair Hamiltonian takes the familiar form of a sum of a
quadratic part representing independent pair energies and
a quartic part representing pair interactions. Owing to the
simplicity of the Hubbard model, the independent pair en-
ergies and wave functions can all be obtained explicitly.

The purpose of the present work is to give a detailed ac-
count of the ideas developed in Ref. 6 and to add a few
new results. As in Ref. 6, only the case of a half-filled
band will be considered here. The paper is organized as
follows.

In Sec. II particle-hole (p-h) operators are introduced
and the Hubbard Hamiltonian is rewritten in terms of
these operators. Owing to the fact that p-h operators do
not obey simple Bose or Fermi commutation relations,

II. TRANSFORMATION TO PARTICLE-HOLE
OPERATORS

The main purpose of this section is to reformulate the
Hubbard Hamiltonian in terms of (p-h) operators. We be-
gin with a brief discussion of the Hubbard model' and
its main properties.

The one-band Hubbard Hamiltonian may be written as

k ka ko. + + ~ k+q, f pf p —q, l
u, k k,p, q

(2.1a)

some mathematical problems arise such as nonorthogonal-
ity and overcompleteness of state vectors generated by the
p-h creation operators. These mathematical problems are
analyzed in Sec. III. There it will also be shown how
these difficulties can be overcome by imposing certain
subsidiary conditions on the space of wave functions. The
results of this section provide a proper basis for an expan-
sion of the Hamiltonian in terms of ordinary ("ideal" ) bo-
son operators; this will be done in Sec. IV. In the past
several boson-expansion methods have been proposed, the
earliest one being that developed by Dyson. Here we
have preferred to follow the method of Girardeau, which
is ideally suited for application to the present problem. In
Sec. V the band limit and the atomic limit of the Hubbard
model are reconsidered. These limits will serve mainly as
test cases to show the equivalence of the Hubbard Hamil-
tonian with the one derived in Sec. IV. The final pair
Hamiltonian is obtained in Sec. VI. The independent pair
energies and wave functions entering this Hamiltonian are
derived in an explicit form for an arbitrary number of di-
mensions. By specifying our solutions to one dimension,
we recover the solutions derived by I.ieb and Wu for the
particular case M =1. The main results of the present

!
work are summarized in Sec. VII.
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where ak, ak are, respectively, the creation and annihila-
tion operators for an electron with spin cr and reduced
wave vector k. The first term of (2.1a) is usually referred
to as the hopping term, where the energies ek are given by

ek = —tgexp(ik R ) . (2.1b)

Here t & 0 is the hopping matrix element and R~ denotes a
nearest-neighbor lattice vector T.he second term in (2.1a)
describes an effective short-range Coulomb interaction. In
the one-band Hubbard model, it is assumed that each site
is capable of accommodating only two electrons of oppo-
site spins with an interaction energy U&0. A11 matrix
elements other than those for which both interacting elec-
trons are on the same site are neglected. We specify the
model further by restricting ourselves to the case of a
half-filled band, where the total number N, of electrons
equals the number N of lattice sites.

It is an important property of the Hubbard Hamiltoni-
an that it commutes with N =gkak~k . Hence the
eigenvalues M of N, and M' of N, are good quantum
numbers; here M and M' can assume all integral values
between zero and N so that M +M'=N is fulfilled.
Moreover, as has been shown by Lieb and Wu, one may
restrict the range of M to 0&M &N/2 without loss of
generality. We next define a new vacuum by

~
e,&=gak', ~O&, (2.2)

k

where the product extends over all wave vectors of the re-
duced zone, and we redefine the operator ak as

bk for o =1 (particles)
&k~= .

ck for o = t (holes). (2.3)

It is easy to show that
~

'Po& is an eigenvector of both N,
and H with respective eigenvalues M =0 and
&o ——gkek =0. We mention in passing that the particle
and hole destruction operators both annihilate the new
vacuum: bk ~%'o&=ck ~%'o&=0. It should also be clear
from the definition that all particle operators anticom-
mute with all hole operators because they refer to dif-
ferent spin components. The Hubbard Hamiltonian may
now be rewritten in terms of the new operators as

H = Ug&kbk + g&k(bk6k —Ckck )
k k

k k+q p+q p
k,p, g

(2.4)

Since N =N, +N „we have in addition that

N( =g&kbk =QCkck
k k

(2.5)

The latter equation expresses the well-known fact that, for
a fixed total number of fermions, particles and holes
necessarily have to occur in pairs.

The new fermion operators will now be used to con-
struct p-h operators. These are defined by

Pk(9) =ck+q~k Pk(9 = k k+q (2.6)

where k refers to the particle momentum and q is the total
quasimomentum of the p-h pair. The operators obey the
following commutation relations:

[Pk(9) Pk'(9 )1=[Pk(9) Pk (e') l ='o

[Pk(e),Pk (e ) ) =4k &qq 4k ck+q c—k+q 4+q, k +q—'i k'i k

[[Pk(9) Pk'(9 )] Pk"(e")1= &kk"ok+, k—'+ 'Pk'(9 +~ ~ ) ~kk ~k+, k"+'"Pk"(9 +~

(2.7a)

(2.7b)

(2.7c)

Equations (2.7a) and (2.7b) strongly resemble the commu-
tation relations of "ideal boson" operators. For this
reason, particles obeying commutation rules like those of
Eqs. (2.7) are sometimes referred to as "physical bosons. "
The additional terms by which (2.7b) differs from an ideal
boson commutator simply reflect the fact that the p-h
operators are composite particles whose constituents obey
Fermi-Dirac statistics rather than being really indepen-
dent Bose-Einstein particles. It may already be mentioned
here that Eqs. (2.7) will also entail some mathematical dif-
ficulties such as nonorthogonality and overcompleteness
of state vectors generated by the p-h creation operators.
These mathematical problems will be dealt with in some
detail in the following section where it will also be shown
how they can be overcome.

The physical meaning of the p-h operators becomes ob-
vious by considering the vector Pk(q)

~

+o&. As follows
from (2.6), this vector describes a state where a hole has
been created (a spin-up electron has been annihilated) at

ck ck N, =QPq ( k q)Pq (k —q), —
q

(2.8)

I

wave vector k+q with subsequent creation of a particle
(creation of a spin-down electron) at wave vector k. The
pk(q) operators can therefore be regarded as spin-deviation
operators. The state vector is schematically depicted in
Fig. 1.

Now let +~ denote the subspace spanned by all simul-
taneous eigenvectors of H and N, for some fixed eigen-
value M of N, (the spaces k~ will be explicitly con-
structed in Sec. III). Since N,

~

'P~ & =M
~
4~& for any

vector of this subspace, the operator N, may be replaced
by its eigenvalue M in k~. Hence, in the following, we
will focus our attention on a definite subspace k~ for
some 0 & M & N/2 (the trivial case M =0 will be excluded
from our further considerations since it has already been
solved at the beginning of this section). Consider now the
following relation:
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k+q

P+„ (q)[ 4o) = t tl

FICx. 1. Cxraphical illustration of the state vector pk(q)
~

'Pp &.

0&M &N/2. Here we wish to show how the space 4'~,
also denoted as physical-state space, is actually construct-
ed. In view of the importance of this section for the
theory presented here, we find it necessary to rephrase the
essential elements of Girardeau's treatment, which as pre-
viously mentioned, form the basis of the subsequent
development.

Consider an arbitrary vector
~

0'~ & of kM, which may
be written as

which is readily verified with the help of Eqs. (2.5) and
(2.6). It then follows from the above discussion that on
any subspace W~ (0&M &N/2), Eq (2..8) may be rewrit-
ten as

where

ttk, , . . . , k (qi.
k), ~ ~, kM q). - ~ qM

(3.1)

ckck ——M 'gp~(k q)pq(k —q), 0 &M—& N/2 .

(2.9)

l «i qi); ;«M, q. M)&=Pk, (qt). . .
Pk (qM) I +O&,

(3.2)

and

~k(q) =~k(q)+ U (2.10b)

ek(q) =ok —ek+q, 0 &M &N/2 . (2.10c)

Because of Eqs. (2.5) and (2.9), we can also express the
particle-number operator N„ in terms of p-h operators as
follows:

N, =M 'gpk(q)pk(q), 0&M &N/2 .
k, q

(2.1 1)

In view of the rather complicated commutation rules
obeyed by the p-h operators, it would be very helpful if
there existed some formalism allowing one to expand the
physical boson operators in terms of ideal boson operators.
Such methods do, in fact, exist, the earliest one being that
developed by Dyson in connection with the theory of
spin-wave interactions. Later Girardeau presented a
theory for composite particles which, in this author' s
opinion, is ideally suited to apply to the present problem,
and it is essentially this method that will be used in the
present work. A brief outline of Girardeau's method and
its application to the present problem may also be found
in Ref. 6. Before we can express the Hubbard Hamiltoni-
an in terms of idea1 boson creation and annihilation opera-
tors, however, it is first necessary to examine more closely
the spaces WM mentioned above.

III. PHYSICAL-STATE SPACE

In the preceding section the space +~ was defined to
be the subspace spanned by all simultaneous eigenvectors
of H and X, for some fixed eigenvalue M of X„where

With the help of Eq. (2.9) and a similar relation for bkbk,
the Hamiltonian (2.4) can now be completely rewritten in
terms of p-h operators. One obtains:

~k(q)4k' Pk(q—)Pk (q)'1 U

kk' q
X

where

and each of the 2M summations in (3.1) extends over the
whole first Brillouin zone. We will show in Appendix A
that

~
VM & is an eigenvector of N, with eigenvalue M.

Since
~

'PM & of Eq. (3.1) is completely arbitrary, this im-
plies that any vector of +M (which is, by definition, an
eigenvector of N, ) can be expressed in the form of Eq.
(3.1). Hence the set of all M-pair product states (3.2)
spans kM, i.e., any vector of PM can be represented as
some linear combination of such product states.

The wave functions f in Eq. (3.1) are required to be
symmetric with respect to an arbitrary permutation of the
p-h pairs. More formally, let P denote any permutation of
the pair indices I 1,2, . . . ,M I. We then require that

~4k, . . . , k (ql qhf) 4k, . . . , k (ql . 'qM)

(3.3)

This requirement is the same as for a wave function
describing a system of ideal bosons, and is due to the
fact that all pk(q) operators commute.

We now proceed to show that for M) 2 the set of all
M-pair product states (3.2) is not linearly independent, i.e.,
that there exist linear relations among these states. Since
we have already shown above that they span the space
WM, it then follows that they form an overcomplete set (if
they were merely complete, they would be linearly in-
dependent). This is the overcompleteness problem men-
tioned briefly in Sec. II. The physical reason for the linear
dependency between the pair product states (3.2) rests
upon the fact that, for M )2, there is no unique assign-
ment of particles or holes to the p-h pairs, i.e., there is the
possibility of exchange of particles (or holes) between dif-
ferent p-h pairs. To see this explicitly, consider two dif-
ferent pairs labeled by the pair indices i and j, where we
assume that 1 &i &j &M. These pairs are then described
by

pk;(q )pk, (q; ) =bk, ck. ;+q;bk ck. +q, . (3A)

An interchange of the particle operators b between the
two pairs leads to
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Pk (q }Pk'(qj } bk ck, +,hk ck + Pk (q +'k' kj }Pk;('qj +kj ki } Pk;(qj+kj k'}Pk, (q +'k' (3.5)

where use has been made of the anticommutation relations for fermions and Eq. (2.7a). One easily verifies that the same
result is obtained by interchanging the hole operators instead of the particle operators. Inserting (3.5) into (3.2), one has

~
(kl, ql);. . .;(k;,q;);. . .;(kj,qj);. . . ;(kM, qM })

= —
~
(kl, ql);. . .;(k;,qj+kj —k;);. . .;(kj,q;+k; —kj);. . . ;(kM, qM}), (3.6)

showing explicitly the linear dependence between the pair product states. An immediate consequence is, of course, that a
given vector

~
%M) of WM (M) 2) does not possess a unique expansion in terms of these product states. For if the

right-hand side of Eq. (3.6) is inserted into (3.1) and the summation variables are appropriately changed, one obtains

I'PM &
=—

where

X g &;,A, , . . . , k (ql, , qM)
l
(kl ql);;«M, qM) &,

k& kM ql qM

(3.7a)

qK"
1~. ~ M

4, , , k (ql qi Iq, +k-, «'-, qua+I—, , qj I,qi+k-; k, ,q, +—I qM), 1 &i &j &M

(3.7b)

A comparison of Eqs. (3.7a) and (3.1) clearly shows that the same vector
~

O'M ) can be expanded in two different ways,
since lti& —K;jlt~, in general. There exist other similar relationships between the pair product states, which can be ob-
tained by interchanging more than one pair of particle operators in Eq. (3.2). These additional relationships, however,
are not independent since any permutation of particle operators is a product of particle interchanges K,z.

There have been several attempts in the past to overcome the difficulties associated with the overcompleteness prob-
lem just discussed, which is a basic difficulty of all composite-particle theories in solid-state and nuclear physics. Some
of these attempts are reviewed in a recent monograph by Ring and Schuck. In a series of papers, Girardeau has made
a particularly thorough investigation of the many-body problem for composite particles. He solved the overcompleteness
problem by imposing subsidiary conditions on the space of wave functions P so that the latter all represent physically
possible many-pair states, i.e., states which have the correct symmetry under exchange of fermions (particles or holes) be-
tween different p-h pairs, and thus satisfy the Pauli principle. The subsidiary conditions imposed by Girardeau are

jPk, . . . , k ('ql ~ ~ ~ q ~ ~ ~ ~ q' ~ ~ qM}= 4k, . . . , k (ql ~ ~ q' . . 'qj . qM} 1 &i &J & (3.8)

where the left-hand side is defined by (3.7b). In order to show that any wave function satisfying Eqs. (3.8) obeys the ex-
clusion principle, we first set k; =kj =k in Eqs. (3.8). It then follows from (3.7b) that

Pk, . . . , k;, k, k, , . . . , kj, k kj, . . . , k ql . . q' —I 'qj 'Pi+I . . qj —I q' qj+I . qM

itk, . . . , k, , kk, , . . . , kj,kkj, . . . , k ql . . 'q' . . 'qj ~ . qM

But from the symmetry property (3.3),

4k, . . . , k, . . . , k, . . . , k 'ql . . 'qM( . . . )=O. (3.9a)

=0. (3.9b)

Equation (3.9a) obviously states that two particles cannot
occupy the same state characterized by the wave vector k,
whereas (3.9b) does not allow two holes to occupy the
same state q+k. Hence any wave function satisfying
Eqs. (3.8) obeys the exclusion principle.

Girardeau then proved that the subsidiary conditions
(3.8)just suffice to remoue the redundancy of the product
states (3.2), but without destroying their property of span-

Similarly, let q;+k;=qj+kj=q+k in (3.8). Then from

Eqs. (3.7b) and (3.3)

k (ql, . . . , q+k —k;, . . . , q+k —kj, . . . , qM)

ning the space k~. The proofs of these assertions are
clearly presented in Ref. 8(a) so they will be omitted here.
It then follows immediately that any giuen vector

~

IIiM ) of
WM can be uniquely represented by an expansion such as
(3.1), prouided the waue function l( satisfies the conditions
(3.8). In this context we note that the arguments given
above to show the nonuniqueness of the expansion of

~

'PM) fail if Eqs. (3.8) are satisfied. In summary, the
subsidiary conditions (3.8) suffice to remove the redun-
dancy of the pair product states (3.2} and, at the same
time, ensures the proper statistics under exchange of parti-
cles and holes between different p-h pairs. This is no ac-
cident since, as was discussed above, the overcompleteness
results precisely from the possibility of such exchanges.

Vfe conclude this section by pointing out that the
M(M —I)/2 subsidiary conditions (3.8) associated with
different values of i and j are not independent. Using the
symmetry (3.3) of g with respect to interchanges of whole
pairs, one can readily show that these conditions for one
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pair of values for i and j (e.g., i = 1,j=2) imply the condi-
tions for all other values of i and j.

IV. BOSON EXPANSION OF THE HUBBARD
HAMILTONIAN

tion condition

k(p 4 ~ ~ 7kM q&, o ~ ~ pqM

I lk, , . , k. . qi, , qM I'=1

(4.2b)

The results of the preceding section enable us to express
the Hamiltonian HM of Eq. (2.10) in terms of ideal boson
operators. These are defined by their commutation rela-
tions

[B„(q),B„(q')]= [B„(q),Bk (q') ]=0,
[Bk(q»Bk (q')] =~kk'~qq

(4.1)

X I(k&,q&);. . . ;(kM, qM)),

(4.2a)

with wave functions P which are made unique by imposi-
tion of the subsidiary conditions (3.8). Here the factor
I/M! has been chosen so that

I %M ) is normalized to uni-
ty provided the wave function f satisfies the normaliza-

together with the condition Bk(q) I
qlo) =0, where

I
%0) is

the ideal boson vacuum.
Once these operators are defined, it is possible to con-

struct an ideal state -space 4'M (the analog of the
physical-state space kM described in Sec. III). This will
again be done along the lines developed by Girardeau in
Ref. 8(a). In the preceding section it has been shown that
any vector

I
%M ) of the physical-state space can be

represented in the form

1
I
+M) Mt g g 4k, . . . , k ql 'qM

k) kM q) . qM

with the same wave function g as in (4.2), and where

Bk (qM) I
Po)

(4.3a)

(4.3b)

It can be easily shown that
I
%M) is also normalized to

unity provided g is normalized as in Eq. (4.2b). More-
over, one can prove that the inner product is conserved,
i e. we have & +M

I
q'M ) ('PM

I
+M ).

The ideal-state space PM is then defined to be the set
of all such states I'PM) as I'PM) runs over all of +M,
thereby establishing an isomorphism between I and

We emphasize the importance of the subsidiary
conditions (3.8) for the construction of k M, since without
them one state in kM would have many images in 4'M.
These conditions will now be reformulated in terms of an
eigenvalue problem in kM. According to Eqs. (3.8), we
require that

cxiven any such
I

%M ) of kM, we define its correspon-
dent

I %M ) in 4'M by

1
I PM) „Mt g g A, . . . , k ql

1' ''' Mql' ' 'qM

1 X X «1&k, , . . . , k (qi . qM)l«i qi) . «M qM)). .
kM qi

(4.4)

Consider now the following Hermitian operator K, hereafter referred to as exchange operator:

&= 2 g QBk+k (q»k (q'»k (q+k»k+k(q' —k) .
k, k'q, q'

It is not difficult to show that E
I %M ), where

I %M ) is given by Eq. (4.3a), yields the following expression:

(4.5)

«)4k, , . . . , k (ql qM) I (kiq»
'qM

(4.6)

where use has been made of Eqs. (3.3) and (4.1). A comparison of Eqs. (4.6) and (4.4) shows that the latter equation and,
hence, the subsidiary conditions (3.8) are fulfilled for all those vectors

I
4M) satisfying the following eigenvalue equa-

tion:

K
I
%M)= ——,M(M —1)

I

'PM) . (4.7)

Equation (4.7) is completely equivalent to Eqs. (3.8) and one may, therefore, say that only those vectors
I

'PM ) satisfying
(4.7) can be vectors of the ideal space 4'M. This implies that, for example, the product states (4.3b) themselves are not
contained in kM because they do not satisfy Eq. (4.7).

In order to express HM of Eq. (2.10a) in terms of ideal boson operators, we must find the image of HM in kM. Quite
generally, the correspondence between operators 0 on k M and those 0 and O'M is determined by expressing 0

I
'PM ) in

the form (4.2a), using (4.3), and identifying the result as some operator 0 acting on
I
4M ). Our first task, therefore, is to

calculate HMI %M ). A somewhat lengt'hy calculation, which is carried out in Appendix 8, yields
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HM
I
e )=, g g [HMgk, , ., .k. (qi, . . . , qM)] I

«/ qi» .1

]p ~ ~ ~ yk+q$p ~ ~ ~ p

(4.8a)

The expression in curly brackets is given by
M

HMfk, . . . , k (ql . qM) g g ~k, , k, +k(q' 4'k, . . . , k, +k, . . . , k (ql . 'qM)
i=1 k

M

QI A, , . . . , k,. +k. . . , k (qi q' k ' ' ' qj+k ' qM)
ij=1 k
i&J

+A, , . . . , k +k, . . . , k (ql . , q;+k. .q, k. —, qM)I (4.8b)

where

U
~kk (q) =~k(q)4k ——

X (4.8c)

and cok(q) is defined by (2.10b). The expansion (4.8a) is unique since HM/i/, as given by (4.8b), satisfies the subsidiary
conditions (3.8), which is also shown in Appendix B. To HM I %M ) there corresponds a vector H

I
VM) in kM which,

according to (4.3), is given by

IHMOk, . . . , k (q&, . . . , qM)] I(ki,qi);;(kM, qM)),
&&' ' ' ''&M

(4.9)

0&Bk«(q' k)Bk (q+k) —. (4.10)

We note that H is Hermitian and that the quantum num-
ber M no longer explicitly occurs in (4.10). Moreover,
since H is defined on kM and any vector of that space
must satisfy Eq. (4.7), H and K possess common eigenvec-

with the same function HM g as in Eq. (4.8b). Since HM g
satisfies Eqs. (3.8), the mapping HM I

'PM )~H
I
q'M) is

one to one as discussed above. We now ask what operat-
or H, expressed as an explicit function of the Bk(q) and
Bk(q) operators, leads to Eq. (4.9) with expression (4.8b)
for HMg. Subsequently, we will prove that the following
operator has the desired properties:

H = y &kk (q)Bk(q)Bk (q)
k, k', q

U I$Bk+k'(q)Bk" (q )
&k,k, k-q, q

t

tors. This is only possible if these operators commute

[H,E]=0 . (4.1 1)

In fact, it is not difficult to verify that Eq. (4.11) is ful-
filled. Another useful way of writing H is as follows:

H=g k(q»k(q»k(q) —~
k, q

where

(4.12a)

Here it can be shown that K commutes separately with
each term on the right-hand side of (4.12a). Equations
(4.12) will now be used to prove that H leads to (4.9),
where the expression in curly brackets is identical to that
given by Eq. (4.8b). First, it is an easy exercise to show
the validity of the following equation:

UV= —g QBk+k (q)Bk (q+k)Bk-(q')Bk"(q' k) . —
k, k', k" q, q'

(4.12b)

M
Bk(q) I(k/ q/)' . (kM qM))= g~kk;&«, I «/ qi)' . . « -/ q —i)'«+»q+i)' '«M qM)) . (4.13)

A simple and straightforward calculation then yields

M

g~k(q)Bk(q)Bk(q)
I
(k/ q/) «M qM»= 2~k;(qi) I

«»qi)' '(kM qM)) (4.14)

M

g Bk (q'»k-(q' —k)
I
(ki,q/);;(kM, qM))= g I

(ki, q/); . ;«q;+k);;(kM, qM)) .
k",q'

Using (4.13) again, we further obtain from (4.15)

(4.15)
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M

Bk (q+k) g l (k],q]);. . . ;(k;,q;+k);. . .;(kM, qM))

M
= g$k k 5 q l

(k„q]);.. .;(k; ],q; ]);(k;+]q;+]); . (kM, qM))

jM

+ g 5kk 5q+kq l(k ]q ]);. . ;(k.~ ]&qj ])&(kj+]&qj+])i ~ ~ ~ i(ki~qi+k)~ ( miqM))
/, J =1
E)J

M

+ g ~k'k. '|]q+kq.
l
(k],q] );. . .;(k;,q;+k);. . .;(k ]q, ]);(k,+],q, +]);.. . ;(kM, qM ))

ij =1
1(J

(4.16)

From (4.16) one then easily deduces the following result:
M

Vl«] q]) . . «M qM»= —

goal(k],

q»' '*« —kq)' . «M q'M))

M

+ g Q[ l
(k],q]);. . .;(k; —k, q;+k);. . .;(kj,qj k);. . .;—(kM, qM))~,j=1 k

+
l
(k],q]);. . .;(k;,q; —k);. . . ;(kj k, q +k)—;. . .;(kM, qM))I . (4.17)

If Eqs. (4.14) and (4.16) are now multiplied by (M!)
and summed over all k; and q; (i =1, . . . , M), one ends
up w]th Eq. (4.9), where HMg is precisely given by (4.gb).
This completes the proof.

Equation (4.10) is not yet our final pair Hamiltonian,
the latter being related to the former by a unitary transfor-
mation of the operators. Before we turn to the pair Ham-
iltonian, however, it is expedient first to investigate two
well-known limiting cases of the Hubbard Hamiltonian.
These will serve as test cases to show the equivalence of
the original Hamiltonian (2.1) with its correspondent H of
Eq. (4.10).

V. BAND LIMIT AND ATOMIC LIMIT

There are two limiting cases of the Hubbard Hamiltoni-
an (2.1a), frequently referred to as "band limit" and
"atomic limit, " for which the eigenvalues and eigenvectors
can be readily found. The band limit is obtained by set-
ting U =0 in Eqs. (2.1), while the atomic limit results for
t =0. These two cases and, in particular, the transition
from band limit to atomic limit, were studied extensively
by Hubbard' himself in order to explore the occurrence of
the metal-insulator transition. In the present section
these two limits will be reconsidered, since they will serve
as test cases to show the equivalence of the original Harn-
iltonian H of Eq. (2. la) with its correspondent H in ideal
boson space.

In terms of the fermion operators ak and ak the band
limit of the Hubbard Hamiltonian, Eq. (2.1a), is given by

Ho ——gekak~k (band limit) . (5.1)
k, o

The atomic limit is more conveniently described by using

Wannier operators an . These are related to the ak by

ak —— ga„exp( ik R„—),1 (5.2)

HU ——UgX„„%„, (atomic limit), (5.1')

where X„=a„a„.
In terms of ideal boson operators Bk(q) and Bk(q) the

band limit of H, Eqs. (4.10) or (4.12), is described by

Ho gek(q)Bk(q——)Bk(q) (band limit),
k, q

(5.3)

where ek(q) is given by (2.10c). Again the atomic limit of
(4.12) is more conveniently described by using Wannier
operators B„ instead of the Bk(q), these operators being
related by

B„=—QBk(q)exp(i[k R —(k+q) R„]I,1

Nkq
(5.4)

where Eqs. (5.2), (2.3), and (2.6) have been used. In terms
of Wannier operators, the atomic limit of (4.12) is then
obtained as

HU ——UQB„mB„—V (atomic limit),
n, m

where Vis now given by

V= Ug gB„„B„„B„B„
n, n' m

(5.3')

(5.3")

where R„ is a lattice vector and n runs over all X lattice
sites. In terms of Wannier operators the atomic limit of
(2.1a) is then characterized by
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For later purposes we also need the exchange operator K
expressed in terms of Wannier operators. From Eqs. (4.5)
and (5.4) one obtains

ac= ,'g-ga„' at .a„a„
n, n'm, m'

(5.5)

After these preliminary considerations, we will now show
that the eigenvalues of the operators (5.1) are the same as
those of the corresponding operators (5.3).

Here
I

4'o& and ek(q) are defined by Eqs. (2.2) and (2.10c),
respectively.

To solve the eigenvalue problem of Ho, Eq. (5.3), we
have to remember that since Hp and K commute, the
eigenvectors of Hp also must be simultaneous eigenvectors
of the exchange operator satisfying Eq. (4.7). Eigenvec-
tors of Hp with the required properties are readily found
and read

A. Band limit

One readily verifies that the eigenvectors of Hp have
the form

0
I
+M &=ak, , s

' ' ak, &ak, +q, , t

0 1
k1+q1

I
q'M)=, 2M!, , ki+9i

''''qM

kM +qM

kM +qM

x ' akM+q, ~ I
q'o&

while the corresponding eigenvalues are given by

M

EM g &k;(ei) (5.7)

x l«i el) '«M eM»

where 70 is the following determinant:

(5.8)

5,
q l, q l

k1+q1 . . kM+qM
XQ I 6k1+q1 . . kM +qM k;+q; k 1+q ~

5k)+q i, k)+q2

6
k, +q,', k~+q2

~ ~ ~

k l +q 1,kM +qM

~ ~ ~

k, +q,.', kM+qM

5
kM +qM, k

l +q I kM +qM, k2 +q2
5,

qM'qM

(5.10)

where IC&go is again a determinant similar to (5.9), differ-
ing from 70 only in that the ith and jth rows have been
interchanged. Since K;Jpp= —pp it follows immediately
from (5.10) that

I
%M ) satisfies Eq. (4.7). To obtain

Ho
I

O'M ), we use Eq. (4.14) and find

M

Ho I
4M)= g g ek (q )XoM!;

p ~ ~ ~ p

x I(k) q'));. . .;(kM, qM)) .

(5.11)

Here it is not immediately obvious that (5.11) is an eigen-
value equation for

I
%~). By using elementary properties

of determinants, however, one readily proves the follow-
ing:

M M

y ~k;(a' )~0 y ~k;('K )~0 ~ (5.12)

We shall now prove that
I

'PM ) satisfies Eq. (4.7) and is an
0eigenvector of Ho. If we let IC act on

I

qlM ), a straightfor-
ward calculation yields

M

«,&oM!; I

i (J

If this result is now inserted into Eq. (5.11) we see at once
0 0that

I
'I'M) is an eigenvector of Ho with eigenvalue EM,

where EM is precisely given by Eq. (5.7). This then clearly
shows the equivalence of the Hamiltonians (5.1) and (5.3)
in the band limit.

B. Atomic limit

Here again an elementary calculation shows that the
eigenvectors of HU, Eq. (5.1'), have the form

a„& ' a„M &am, , &

'
amM, i I

q'o& i
U (5.13)

where the Wannier operators of Eq. (5.2) have been used.
The corresponding eigenvalues are given by

ME'=U M —g S„ (5.14)
i,j =1

As is evident from Eqs. (5.13) and (5.14), EM can take the
values MU, (M —1)U, . . . , 0 according to whether
M,M —1, . . . , etc., lattice sites are doubly occupied by a
spin-up and a spin-down electron.

Turning now to the eigenvalue problem of HU, Eq.
(5.3'), we again recall that since HU and K commute, the
eigenvectors of HU must be simultaneous eigenvectors of
K such that Eq. (4.7) is fulfilled. As in the band-limit
case, it is not difficult to find eigenvectors with the re-
quired properties. Consider
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nM where

~(n, ,m, );. . . ;(nM, mM))=B, B,
~
Vo)

X
~
(n, ,m, );. . ;(n. M, m~}),

(5.15a)
I

and XU is the determinant

(5.15b)

5, 5,
n&n& n&n2

~ ~ ~ ~ ~ ~

72) ' nM
+U n) ' ' nM n ~ n) n ~

~ ~ ~

n &nM

5
n, nM

(5.16)

5, 6,
nMn& nMn

5 t
nMnM

» «de«o prov«hat
~

O'M ) satisfies (4.7), let K, as given by (5.5), act on
~

%M ). The result is similar to that of Eq.
(5.10),

M
& ~%'~)=, g g KJXU

~

(n ),m));. . ;(nM,.m~)),M!;
n l, , nMi(J

(5.17)

where X,zPU is again a determinant differing from (5.16) only in that the ith and jth rows have been interchanged.
Hence, by the same arguments as in the band-limit case,

~

+M } satisfies Eq. (4.7). To obtain HU
~

O'M ), we first calculate

V~ (n~, m~);. . .;(nM, mM)), where Vis given by (5.3"). This yields

M

V~ (n'&, m&);. . ;(nM, m. M))=U g 5,
~
(nI, m&);. . ;(nM, m. M)) . (5.18)

J

From (5.18) we then easily get the expression for HU
~

VM ):
M

HU
~

%M)=MU
~
%~)— g g 5, gU

~
(n (,m, );. . ;(nM, mM. )) .

&M!,
n ] p ~ ~ ~ p nM

(5.19)

As the last step, we again use elementary properties of
determinants to obtain

M M

XU = gn„,XU .n™J i=1
(5.20)

From Eqs. (5.19) and (5.20) it is now quite obvious that
U U

~
%M ) is an eigenvector of HU with the eigenvalue EM,

where EM is the same as in Eq. (5.14). This result again
shows the equivalence of the Hamiltonians (5.1') and (5.3')
in the atomic limit.

In summary, the results of this section show that the
original Hubbard Hamiltonian and its correspondent H in
ideal boson space have identical eigenvalue spectra in two
important limiting cases, namely the band limit and the
atomic limit. As a by-product we have also obtained the
eigenvectors of M for these limits. These might turn out
to be useful in constructing trial eigenvectors of FI for the
intermediate region between the two limits.

VI. PAIR HAMILTONIAN

In Sec. V we have studied the limiting behavior of the
boson expansion of the Hubbard Hamiltonian. We will
now continue the development of Sec. IV by transforming
the operators Bk(q) so that the first term of Eq. (4.10) as-

sumes diagonal form. The Hamiltonian resulting from
this transformation will be our final pair Hamiltonian.

Let Ap(q) be new boson operators related to the Bk(q)
by the unitary transformation

(6.1)

(6.2)

y4'kp(q)4'kp (q) ~pp' '.

The new operators Ap(q), hereafter referred to as pair
operators, are then given by

A (q)=yak (q)Bk(q),
k

(6.1')

and it is easy to show that they obey the ideal boson com-
mutation relations (4.1). The pair wave functions pkp(q)
will now be chosen such that the real symmetric matrix
8 (q) of Eq. (4.8c) is brought to diagonal form. This will
be the case if the pair wave functions satisfy the eigen-
value equation

Since (6.1) is required to be unitary, the coefficients must

satisfy the following orthogonality and completeness rela-

tions:

yekp(q)P k'p('q) ~kk'

P
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y W/, k ('q)yk p(q) =Ep(q)y/p(q) .
k'

(6.3)

Equation (4.10) is then transformed into the pair Hamil
tonian

The pair energies Ep(q) are then given as the zeros of
D(E,q) .We next multiply Eq. (6.6) by gp(q), sum over
all k, and make use of the orthogonality relations (6.2).
This yields

H= QEp(q)Ap(q)Ap(q)
E=E (q]

(6.8)

U
Vp p (k, q, q')

p). .p4 k~%C

XAp (q)Ap (q')Ap (q' —k)

(q+k), (6.4a)

showing that the slopes of D(E,q) at E =Ep(q) are all
negative. The qualitative behavior of this function is
represented in Fig. 2.

The normalization factors Np(q) can be obtained from
Eq. (6.8) and the easily proven relation

t& [E,(q) —~k(q)l '+[Ep(q) —~k(q)] '8

g Kp „(k,q, q')
I

p), ~, p4 k, g, g

XAp (q)Ap (q')Ap (q' k)Ap (q+k—),

where the exchange matrix elements are given by

K„,. . ,„(k q q') =g. A+k, p, (q)4k, „(q')
k'

(6.5a)

where Ep(q) are the pair energies and the interaction ma-
trix elements are given by

V„,„,„(k,q, q.
') = g 4k+k', p ('q)Ak", p (q')

k', k"

X pk-, „(q' k)pk, „—(q +k)
(6.4b)

The pair Hamiltonian (6.4) now has a form which one
would intuitively expect: The first term represents in-
dependent pairs, while the second term describes the pair
interactions. The exchange operator can be transformed
similarly by inserting (6.1) into (4.5). This results in

aE, (q)
Np(q) =—U+ t Ep(q)— (6.9)

Equations (6.6) and (6.9) determine the pair wave func-
tions once the energies Ep(q) are known.

The pair energies can be determined by evaluating the
characteristic function D(E,q). A closer look at Fig. 2 re-
veals that the zeros of D (E,q) fall into two distinct
categories: There is one isolated zero (bound state), here-
after denoted as E(q), which lies below the quasicontinu-
um of p-h energies cok(q). Since in this case none of the
terms in Eq. (6.7) is divergent, E(q) can be simply ob-
tained by converting the sum in (6.7) to a k-space integral.
Thus E (q) is determined by

II f dk [co„(q) E) '= 1, Qd = U—V, /—(2/r)

(6.10)

where BZ indicates the Brillouin zone. Here V, is the

E (q) t&E (q)/—/3t —U

[E,(q) —~k(q) l'

where t is the hopping matrix element of Eq. (2.1b). In
this manner one obtains

xpk, (q+k) . (6.5b)
D(E, q)

Pkp(q)=(U/N)[~k(q) Ep(q)] 'Np(q), — (6.6)

We emphasize once more that all eigenvectors of H must
be simultaneous eigenvectors of K such that Eq. (4.7) is
satisfied.

The Pair energies Ep(q) and wave functions Pkp(q)
entering the pair Hamiltonian, Eqs. (6.4), are formally
given as the solutions of the eigenvalue equation (6.3). We
will now show that these quantities can all be obtained in
an explicit form. From Eq. (6.3) we find that

I

I

I

I

Ep (q)
I

I

I I

I

D(E,q) =1+(U/N)g[E —cok(q)]
k

(6.7)

where Np(q)=gkpkp(q) is a normalization factor to be
determined later. By summing Eq. (6.6) over k, one ob-
tains the characteristic equation for the eigenvalues

quasicontinuum of
p-h states

FIG. 2. Schematic plot of D(E,q). The crosses ( && ) and cir-
cles (O) indicate, respectively, the positions of the poles co~(q)
and zeros E~(q) of D(E,q) on the real E axis. The bound-state
solution E(q) is indicated by an arrow.
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volume of the unit cell and d is the number of dimensions.
All other solutions E~(q) (scattering states) of Eq, (6.7)
fall inside the limits of the band in a way depicted in Fig.
2. To obtain these roots, much more care is needed in
evaluating Eq. (6.7). In Appendix C we have demonstrat-
ed one possible method, based on Wentzel's' treatment,
by which these roots may be obtained. According to Ap-
pendix C, these solutions are given by

~[E (q)]
Ep(q) =cop(q) —b—~(q)tan

Do[E, q

(6.11a)
where

b&(q) =(8mt/1V)
~
sin( z qa)cos[(p+ —,q)a]

~

while Eqs. (6.lib) and (6.11c) yield the following:

~(E,q) = UI [4t sin( , qa—)] (E——U) j

Do(E,q)=1 .

(6.13)

(6.14a)

(6.14b)

By Eqs. (6.14a) and (6.14b), the pair energies and wave
functions are now readily calculated. Thus Eq. (6.10) be-
comes

~(E,q) =rr&, f dk 8[E cok(q)—],
Do(E, q) = 1+AdP f dk [E cok(q)—]

(6.11b) E(q)= U —
I U +[4t sin( —,

'
qa)] j'~~,

while Eqs. (6.11) lead to

(6.15)

and At, (q) is the spacing of two successive poles cok(q) at
wave vector p. From Eqs. (6.10) and (6.11a) it is not diffi-
cult to see that in the limit U/t ~& 1 (atomic limit), the en-
ergies E(q) are separated from the Ez(q) by a gap of —U.
Hence, by the results of Sec. VB, the former energies cor-
respond to low-energy states where all sites are singly oc-
cupied (homopolar states ), whereas the energies Ez(q) be-
long to excited states where one site is doubly occupied
(ionic states ).

The preceding expressions for the pair energies and
wave functions are valid for any number of dimensions.
Before we proceed to evaluate Eqs. (6.9), (6.10), and
(6.11a) for the one-dimensional case, we wish to add a few
remarks here: The pair energies and wave functions deter-
mined above are the exact eigenvalues and eigenfunctions
of the full pair Hamiltonian (6.4a) for the particular case
M =1. This is true because the interaction term of (6.4a)
vanishes on the subspace +~ &. Moreover, since the ex-
change operator K also vanishes on that subspace, the
eigenvalue equation (4.7) is trivially fulfilled for any vec-
tor of this subspace. This implies that the pair energies
and wave functions are, at the same time, the exact solu
tions of the Hubbard Hamiltonian for M =1, since (2.1a)
is completely equivalent to (6.4a). Although this has been
proved for general M in Sec. IV, the equivalence for
M = 1 can also be seen more directly by applying the Hub-
bard Hamiltonian (2.1a) on

E (q) = U —2t Icos(yea) —cos[(yr +q)a] j,
where the yz are pseudo-wave-vectors given by

(6.16a)

7T 2
&

2t=p+ — tan —
I sin[(p +q)a] —sin(pa) jNa Na U

/N(q) /'=
U E(q)— (6.17)

while the one corresponding to (6.16a) is obtained as

2 cos [(p + —,
'
q)a]

~
xq(q)

g (q)+ cos [(p + —,
'
q)a]

(6.18a)

(6.16b)

Here the upper or lower sign applies according to whether
the argument of the arctangent function is positive or neg-
ative, respectively. Equation (6.16b) is correct up to, and
including, terms of the order 1/X. Equations (6.15) and
(6.16a) explicitly show that, for U/t &&I, the energies
E(q) and E~(q) are separated by a gap of —U since, in
this limit, E(q) tends to zero, while Ez(q) approaches U.

The pair wave functions are given by Eq. (6.6), the nor-
malization factors being determined by (6.9). From the
latter equation we find that the normalization factor cor-
responding to the bound-state solution (6.15) is given by

~
q', (q) &=gpk, (q)ak, lak+q, t l

'po& .
k

where

g~(q) = U /[4t sin( —,qa)] (6.18b)
The requirement that ~%'~(q)) be an eigenvector of H
leads to a condition for the Pk~(q), which is exactly the
same as Eq. (6.3). In particular, by specifying our solu-
tions to one dimension we should recover the solutions de-
rived by Lieb and Wu for M =1. This will be verified
below.

In one dimension, Eq. (2.1b) yields

Having obtained the solutions for the one-dimensional
case, we will now compare our results with those of Lieb
and Wu for M=1. According to Ref. 2, the ground-
state energy of the one-dimensional Hubbard model for
M = 1 is determined by the coupled equations:

co~(q) = U —2t[cos(pa) —cos[(p+q)a] j, (6.12) E(A) = ——f dk(sink)tan '[g '(sink —A)],
7T

where a is the lattice constant and the wave vectors p and
q range over the one-dimensional Brillouin zone
( —n./a, m. /a). From (6.12) the pole spacings b~(q) are ob-
tained as

] n'

ga =—f dk tan '[g '(A —sink)] .

(6.19a)

(6.19b)
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Here

f= U/(4t)

(6.19c)

where we have used the fact that g&cos(ka)=0. If we
now set k+ ——p+ir/a and k =p+q, Eq. (6.21a) becomes

E(k+, k ) =cop(q),

2K
Xa

where J is integer (or half-odd integer) for N even (or odd).
We will not attempt to solve Eqs. (6.19) for arbitrary
values of A and g, but consider only two special cases for
which these equations can be solved by a modest amount
of labor. Consider first the case g»1; here a Taylor-
series expansion of the integrands leads to

E(A) =—,A=/tan( —,
' Qa),g'+ A'

where only terms of the order g
' have been considered.

By inserting A into the expression for the energy and re-
placing Q by q+m/a, we find

4t~
E(q)= — [1—cos(qa)] .

U
(6.20)

It is now easy to verify that the same expression results
from Eq. (6.15), if the square root is expanded to the same
order of g. Consider next the case A=0; here the integral
in (6.19a) can be evaluated for arbitrary g yielding

E(0)= U 4t (1+/')—'i' .

This again agrees with (6.15) for qa =+sr.
We next turn to the energies E~(q) of Eq. (6.16a). Ac-

cording to our previous discussion, these belong to excited
(or ionic-type ) states. As described in some detail by the
authors of Ref. 5, such an excited state can be created by
first adding an additional spin-down electron of wave vec-
tor k+ to the system of N electrons in the state

i %0) [see
Eq. (2.2) and Fig. 1], and then removing one of the spin-
up electrons with wave vector k . In the notation of Ref.
5, the energy of such a state is given by

E(k+,k ) = U —p(k+ ) p(k —),
where

(6.21a)

p(k+ ) =E(N, O) —[E(N —1,0)]k (6.21b)

and use has been made of the relation
E (N, 1)= U +E (O, N —1). We mention that Eqs. (6.21)
differ from the exact expressions by terms of O(1/N)
since, in the chemical potentials p, terms of the order 1/N
have been neglected. In Eq. (6.21b), E(N, O) is the energy
of the state

i
'Po), which has been found to be zero in Sec.

II, while
N

[E(N —1,0)]k ———2tg'cos(kza) . (6.21c)

[E(N —1,0)]k =2t cos(k+a), (6.21d)

Here the prime on the summation sign indicates that the
term ki =k+ is to be omitted. We further note that, for
M =0, the pseudo-wave-vectors kj reduce to ordinary
wave vectors [see Eq. (9) of Ref. 2] so that (6.21c) may be
rewritten as

and we recover Eq. (6.16a), if terms of O(1/N) are
neglected in the latter equation. The preceding discussion
should suffice to demonstrate that our pair energies are, in
fact, identical to the energies found in Refs. 2 and 5 for
the case M = 1.

In the present work we have restricted ourselves to the
calculation of pair energies in one dimension since our pri-
mary purpose was to develop the general theory. The ex-
tension to higher dimensions presents no principal prob-
lems since the pair energies are given explicitly by Eqs.
(6.10) and (6.11) for an arbitrary number of dimensions.
Although the integrals, occurring in these equations can
no longer be evaluated in closed form, they can be treated
numerically. The numerical study of higher-dimensional
lattices is planned to be considered in future work.

VII. SUMMARY AND CONCLUSION

In the present work a detailed account has been given of
a recently developed pair theory of the Hubbard Hamil-
tonian. The resulting pair Hamiltonian is an exact refor-
mulation of the original Hubbard Hamiltonian in terms of
pair operators, which satisfy elementary boson commuta-
tion relations. The Hamiltonian takes the familiar form
of a sum of a quadratic part representing independent pair
energies and a quartic part representing interactions be-
tween the pairs. The price one pays for this particularly
simple formulation of the many-pair problem is that all
eigenstates of the Hamiltonian are required to be simul-
taneous eigenstates of an exchange operator, which com-
mutes with the Hamiltonian. Eigenvectors satisfying
these requirements have been explicitly constructed for
two limiting cases of the Hubbard model, the band limit
and the atomic limit. We were also able to show that in
these limits the eigenvalues of the pair Hamiltonian are
the same as those of the original Hubbard Hamiltonian.

The energies and wave functions entering the pair Ham-
iltonian are formally given as the solutions of an eigen-
value equation. By solving the eigenvalue problem expli-
cit analytical expressions for both pair energies and wave
functions have been obtained for an arbitrary number of
dimensions. The spectrum of pair energies is shown in
Fig. 2 and may be described as follows: There is one
eigenvalue (bound state), which lies below the quasicontin-
uum of p-h energies. In the atomic limit (U/t~ oo ), this
eigenvalue corresponds to a homopolar state, where all
sites are singly occupied (N —1 sites by spin-up electrons
and one site by a spin-down electron). All other eigen-
values (scattering states) fall inside the limits of the band
of p-h states; in the atomic limit these eigenvalues are de-
generate with each other and correspond to ionic states,
where one site is doubly occupied. In the same limit the
ionic states are separated from the homopolar state by a
gap of —U.

By a simple argument, we could further show that the
pair energies and wave functions are the exact solutions of
the Hubbard Hamiltonian for M =1, where M is the num-
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ber of spin-down electrons. This has been explicitly veri-
fied for the one-dimensional case, where we demonstrated
that our pair energies are, in fact, identical to the exact en-
ergies found in Refs. 2 and 5 for the case M ==1. In this
connection, we mention a recent paper by Chui, " where
he proposed the existence (in one dimension) of a bound
state with an energy & U, based on an extension of the
Bethe-ansatz solution of Ref. 2 to complex wave vectors.
Since, as demonstrated in Sec. VI, all solutions of the
M = 1 problem are given by the zeros of the characteristic
function D (E,q) of Eq. (6.7), where only real wave vectors
occur, the existence of such a bound-state solution" seems
to be ruled out, at least for M = 1.

In this work we attempted to show that the pair-theory
formalism possibly represents a very useful and interesting
alternative to other methods of treating the Hubbard
Hamiltonian, e.g., by more sophisticated Green s-function
decoupling schemes. Further-reaching conclusions about
the possibilities of the pair Hamiltonian approach can,
however, only be drawn once a suitable variational (or per-

turbational) treatment of the pair Hamiltonian has been
worked out.

So far we have restricted ourselves to the case of a
half-filled band. We believe that the theory presented here
can be extended to the case of arbitrary band filling, but
preliminary considerations seem to indicate that such an
extension is nontrivial. This question will be investigated
in future work.
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APPENDIX A

In order to prove that
I
%~ & of Eq. (3.1) is an eigenvector of N, with eigenvalue M, we start with the following equa-

tion which is readily proved by the use of induction:

pk(q)
I
(k»qi) (k~ qM) &

= 2 pk, (ql) pk;, (q —1)pk; (q'+1) pk (qM)fpk(q»pk;(q ))
i=1

+ X Pk, (ql ) Pk, , (q i)Pk, , (q +i) .
Pk, , (qj 1)—

ij =1

XPk, (q, +i) .
Pk (qM)[(pk(q), pk, (qi)],pk (q, )] I

'4& (A 1)

Here
I (k~,q&);. . .;(k~,qM) & is given by Eq. (3.2). We next multiply (Al) by g/M!, sum over all k; and q; (1&i &M),

and insert Eqs. (2.7) for the commutators. This yields

pk(q) I
P~&= M, X X X

g 1

klan

~ ~ ~ p kM q'i@ ~ ~ ~ p

&kk&gg A, , . . . , k (qi,

i,q; »;(k;+ i, q;+ i);. . .;(kM, qM ) &

M

kk k+q, k. +q. z'k&, . . . , kM q1, . . . , q~
tJ —1 k), . . . , kM ql, . . . , q

l (J

X
I «i qi); ;«;,q, +k. —k;);. . .;(k &,qJ &);(k +&,qj+, ), . . ., (k~,q~)&

M q1
l (J

kk k+q k +q k& kM q1, ~ ~ ~, q~

X
I
(k„q, );. . . ;(k; „q; , );(k; „q; , );. . .;(k,q; +k —k );. . . ;(k ,q )&,

(A2)

where the normalization factor 1/M. has already been included. In order to obtain N, I VM &, where N, is given by Eq.
(2.11), we multiply (A2) by pk(q)/M and sum over k and q. This results in
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M

N Iq'M&=
I

PM& —
MM, 2 2 2

i(J

X I(ki q&)' '(k qJ+kJ k )' '(k) q+k k)—)' '(kM qM)&

The final step of the calculation consists in applying relation (3.6). This immediately yields the eigenvalue equation
N,

I

O'M &=M
I

'PM &, which we set out to prove.

APPENDIX B

In order to show that HM
I

VM & has the form of Eq. (4.8a) with HMf given by (4.8b), we consider Eq. (A2) of Appen-
dix A. On multiplying this equation by M 'cok(q)pk(q) and summing over k and q, one obtains

1
g~k(q)pk(q)pk(q) I

q'M&=
MM, g g g ~k, (a Wk, . . . , k (qi qM) I «i, qi);. . .;(kM qM)&

M

k, q s —1 kl, . . . , kM q&, . . . , qM

M

[~k, (qJ+k, k;)+~k—,(q;+k; k, )]pk,—, . . , kM(q&, ... . , qM)
'ij =1 k), . . . , k~ ql, . - ~ ~ qM

l (J

&(
I
(k),q));. . .;(k;,q~+kj —k;);. . .;

;(k),q.;+k; —kj );. . ;(kM, q. M ) & . (81)

The second term of (81) can be simplified by recalling Eq. (3.6) and by using the easily proven relations

cok (q~ +k~ —k; ) + cok (q; +k; —kj ) =cok (q; ) +cok (qj ),

[~k;(q')+~k, (qj') 1 = (M —1)g ~k, (q')
i,j =1 i=1

(82a)

(82b)

Equation (81) then asssumes the simple form

1

M g~k(q)pk(q)pk(q) I
pM &

=
M, g g g ~k, (q )t('k, , . . . , k (qi. ' .qM) I «i q» (kM qM ) &

M

k, q I =1k) . . . k~ ql . . . , qM

We next multiply Eq. (A2) by ( UIN)pk (q), sum over k, k' and q to obtain

U g pk'(q)pk(q) I
q'M &

k, k', q

M

4, . . . , k, +k, . . . , k (qi. qM)
I
«i qi»' (kM qM).&

i=1 k kl, . kMql q~

M

0k . . . k 'ql qM
i j=1 k ki, . . . , kM q, , . . . , q~

I (J

X[ l(k„q, );. . .;(k, ,q, +k, k, );. . .;(k +k q, —+k, —k, );. . ;(kM qM)&.

(83)

+ l(ki qi) (k+kq, +k k». . «q+k —k) (kM qM)&l—

(84)
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In the middle term of (84) we now substitute kj. —k for kj. , q; —k for q;, and qj+k for qj, while in the last term k; is re-
placed by k; —k, q; by q;+k, and qJ by qJ

—k. This leads to

U
~ g Pk (q)Pk(q) l

q'M &

k, k', q

fk, . . . , k, +k, . . . , k (ql qM) l(kl ql» «M qM)~

M

[A, , . . . , k k, . . . , kM(ql . a — qj+
I J 1 k kl, . . . , kMql ''qM

1 (J

+ltjkl, . . . , k,.—k, . . . , kM(q1~ ~ ~ ~ qi+k~ . . ~ qj

&&
~

(k l, q 1 );. . .;(k;,qj+kj —k; ); . '(kj q +k —kj )'

The final step consists in recalling Eq. (3.6) again and to subtract the resulting expression from Eq. (83). These opera-
tions immediately lead to Eq. (4.8a), where the wave function HMltj is precisely that given by Eq. (4.8b)

To conclude our proof, we still have to show that H~p satisfies the subsidiary conditions (3.8), provided that g itself
satisfies these conditions. In view of the discussion given at the end of Sec. III, it suffices to consider only the case
M =2. We thus have to prove the equation

+12H20k k (qlq2) H2lt'k k ('q2+k2 k 1 'ql +kl 2) H24k k (qlq2)

where K;jlj'j is defined by (3.7b) and H21tj is given by

U
H2 Pk k (qlq2) [ lk (ql )+~k (q2)leak k ('qlq2) ~ +[4k +k k ('qlq2)+4k, k +k(ql'q2)l

U +[4k +k, k (ql —k q2+k)+4k, k +k(ql +k, q2 k)]
k

From Eqs. (86) and (3.7b) we then obtain

+12H2qk k (ql'q2) H2 4 k (q2+k2 k 1 q 1 +k 1 k2)

(86b)

[~k (q2+k2 kl )+~k (ql +kl k2)]0k k (q2+k2 kl ql +kl k2)

U g[ 6 +k, k (q2+k2 kl ql +kl k2)+0k, k +k(q2+k2 kl ql +kl k2)
k

+A, , +k(qk2+k2 kl k, ql +k1 —k2+k)

+ 4, k +k(q2+k2 kl+k, ql +kl —k2 —k)]

With the aid of Eqs. (82a) and (3.7b), this equation can be rewritten as

+12H2 Pk k ('ql'q2) [~k ('ql )+~k (q2)]+124k k ('qlq2)

U
+1~12[ltk +k, k (ql k q2+k)+ltjk, , k +k(ql +k, q2 k)]

U
~ ++12[4k +k k (qlq2) + I('k, k +k('ql'q2)]

k

(88)

Since by assumption g itself satisfies the subsidiary condi-
tion (i.e., we have %12'= —1)'j), Eq. (88) immediately leads
to Eq. (86a). Hence H2$ satisfies the subsidiary condi-
tions, ensuring the uniqueness of the expansion (4.8a).

APPENDIX C

We wish to determine here the zeros E~(q) of the
characteristic equation
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D (E,q) = 1+( U/N)g[E co—k(q)] E„=co~+ f dzz lnD(z) .
1 d

2m.i r dz
(C5)

with the exception of the bound-state (homopolar) solu-
tion E(q), which is determined by Eq. (6.10). A schemat-
ic plot of D (E,q) is shown in Fig. 2.

In order to determine these roots we closely follow the
treatment given by Wentzel in Ref. 10. Subsequently, we
shall consider, instead of Eq. (Cl), the complex function

D (z) =1+( U/N)g(z —cok ) (C2)

D(z) =
(z —~k )

Subsequently, we shall also need the logarithmic deriva-
tive of D (z). From Eq. (C3) we obtain

where z (Rez =E) is a complex variable and where, for
simplicity, we have dropped the parametric dependence on
the wave vector q. As follows from Eq. (C2) or Fig. 2,
D(z) is a meromorphic function with simple poles and
zeros at z =cok and z =Ek, respectively, which are all lo-
cated on the real axis. Moreover, there is an equal number
of poles and zeros and, except for the bound-state solution
E(q), there is exactly one zero between two successive
poles (see also Fig. 2). From these remarks we may infer
that Eq. (C2) can also be written as

Q(. —E, )

(C3)

According to the principle of argument, the variation in
the argument of lnD (z) over the contour I is zero, since I
contains exactly one pole and one zero; integration by
parts then yields

E =co~ — f dzlnD(z) .
1

2~i

Thus the problem of finding the zeros of D(z) is reduced
to the evaluation of a contour integral over the function
lnD (z).

As the next step, we let I approach the real axis by tak-
ing the limit g~0+, where 0+ is a positive infinitesimal.
In this limit the integral in (C6) becomes

b —ig
lim f dzlnD(z)= lim f dzlnD(z)

p+ r &~p+ a —i g

dzlnD z

Here a and b =a +A& are the points where I intersects
the real axis and Az denotes the spacing of two successive
poles at wave vector p (see Fig. 3). We now substitute
z =E —ig in the first integral and z =E+ig in the
second integral on the right-hand side of the last equation.
Equation (C6) then takes the form

z —cok

d
1 )

D'(z) ~ 1

dz D(z) q z Ek— (C4)
D (E)

E& ——co& — lim dE ln
2vri~ o+ 0 D+ E (C7a)

Let now g (z) be a function which is analytic in the vi-
cinity of the real axis and let I be the rectangular path in
the complex plane as indicated in Fig. 3. The contour I
encircles one pole at co& and one neighboring zero Ez such
that both g(z) and the logarithmic derivative of D(z) are
analytic on I . Then by Cauchy's integral formula and
Eq. (C4) one obtains

f dzg(z) lnD(z)
6

where

D+ (E)=D (E+i ri) = 1+( U/N)g(E cok+i q—)
k

By recalling the standard expression

lim =P—+ in.5(x),
q~p+ X+1'g X

(C7b)

=g f dzg(z)

where P denotes Cauchy's principal value and 5(x) Dirac's
5 function, we may rewrite the functions D+ (E) as

=2mi [g(Ep) —g(co~)] .

In particular, for g (z) =z the following equation results:

D+ (E)=Do(E)+i~(E),
where

Do(E) = 1+( U/N)PQ(E —cok )
k

(CSa)

(CSb)

z pIcIne ~(E)=vr( U/N) +5(E cok ) . — (CSc)

VhA
Ep 4)p

Now insert Eqs. (C8) into (C7) to obtain

E~ =co~ ——f dEtan1 b, ~(E)
a Do E (C9)

FICx. 3. Integration contour I in the complex plane. I encir-
cles one pole co~ and one zero E~. A~ denotes the spacing of two
successive poles at wave vector p.

The final step of this analysis follows by application of
the mean-value theorem, whence Eq. (C9) becomes

(C10)
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Here the variable E has been replaced by the zero E&,
which is located somewhere in the middle of the interval
(a,a+6&). Since the pole spacing bz is of —1/N, Eq.

(C10) becomes exact in the large-N limit. This concludes
the proof of Eqs. (6.11).
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