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Green s-function calculation of surface properties associated with adsorption
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A technique to calculate the single-particle Green's function, and therefore the density of states
and other single-particle properties for surface phenomena, is described. The Green s function is
constructed from two wave functions, solutions of the Schrodinger equation satisfying boundary
conditions in the bulk and in the vacuum. We apply the technique to piecewise constant potential
models, where the Green s function can be obtained in analytic form. Results for surface densities
of states for these model potentials are presented.

I. INTRODUCTION

The great difficulty of calculating spectra of atoms or
molecules adsorbed on surfaces arises because, on one
hand, the symmetry of the bulk is broken at the surface,
and on the other hand, the atom on the surface is no
longer an isolated physical system restricted to a micro-
scopically small region. Consequently, the boundary con-
ditions necessary for such systems are more complicated
than those for the bulk or for the isolated atomic entity.

Surface phenomena can be treated in terms of the
Green's function (GF) satisfying the appropriate boundary
conditions within the bulk and the vacuum. In this paper
we present a theoretical framework that is particularly
useful for constructing such GF's.

Green's-function methods for treating electronic states
in surface problems have been used in the past. Garcia-
Moliner and Rubio' have suggested a factorization
method to obtain the GF at an interface located at the
mirror plane between two infinite media. Inglesfield and
Velicky and Bartos generalized the method to more
asyrnrnetric cases. Davison et aI. used this method, with
a modification due to Glasser, for the factorization of
more complex systems, such as the n-interface problem
and virtual surface states. Oxinos and Modinos used this
method for studying the electronic structure of atoms ad-
sorbed on metals. This method expresses the surface GF
in terms of the GF's and their derivatives for each of the
separate media, thus replacing the difficult interface prob-
lern with two easier one-phase problems. It is especially
convenient for cases of ap abrupt potential jump at the in-
terface. Haydock et ah. calculated the GF in a tight-
binding model in the form of an infinite continued frac-
tion. The coefficients are obtained from a basis set local-
ized on each of the atoms. In this method it is difficult to
treat cases in which the periodicity of the bulk is modified
near the surface or when adsorbed atoms (adatoms) are
present. Kalkstein and Soven, "using similar methods to
those of Allen and Lenghart, ' ' treated a semi-infinite
solid in the tight-binding limit. They used a Wannier-

Bloch mixed representation for the states of the infinite
crystal from which they generated the GF for the surface
at a cleave plane in the infinite crystal. They also incor-
porated the effect of alterations in the surface potential.
Their method requires dispersion relations of the unper-
turbed crystal. Restriction of the interactions to nearest
neighbors is a great help in the actual application of their
method. Lyo and Gomer review some general ap-
proaches to the calculation of the GF in its spectral
decomposition representation. In these methods, one
needs a complete basis set, and, in principle, infinite sums
over them [see Eq. (1.7)]. Recently, Kambe' described a
layer by a GF technique.

In this paper we consider electron surface phenomena
treated within the single-particle approximation. That is,
we assume that we are given a potential (or pseudopoten-
tial) U(x ). Deep inside the bulk the potential is periodic,
whereas outside the bulk the potential goes to a constant.
At the surface the potential includes the contribution of
the adatoms. We shall for simplicity begin by discussing
the one-dimensional problem and develop techniques for
this case. Generalization to three dimensions is treated
only briefly. Other methods of generating integrals over
the GF's without directly obtaining the GF are under
development but will not be discussed here.

For the potential in Fig. 1 one can ask where are the
bound-state energies? What is the density of states (DOS)
as a function of energy? What is the DOS in a restricted
region of physical space (for instance, that associated with
the penetration depth of light)? What is the absorption in-
tensity of light of a given frequency ct&p I(top)? What is
the Raman scattering intensity of incident frequency coo
and outgoing frequency to, I(cop, co)?

All of these questions can be answered in terms of the
GF

with appropriate boundary conditions, where H is the
single-particle Hamiltonian and Q is the position variable.
The DOS pE is given by
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FIG. 1. Schematic representation of an arbitrary one-
dimensional potential for an adatom on a solid. / is the bulk
periodicity distance.

pE —— m—'Im f dg GE(g, g) .

The DOS in a restricted region can be defined as

pE —— n'—Im.f dg p(g)GE(g, g),
where p(g) is a function defining this region. For exam-
ple, for a region defined by the penetration of light with
penetration depth A, , one can take

(1.2)

(1.3)

p (Q) =0( —Q)exp( —Q /2k)+ e(g), (1.4)

e(g) being the Heaviside unit-step function. Thus,
within the bulk, the penetration factor falls off as the elec-
tric field penetration and, outside the bulk, the penetration
factor is unity.

The first-order perturbation theory expression for ab-
sorption intensity from initial state i at frequency coo is
given by

I~(~o) ~ + I (f I

X
I
i )

I
'&(~o+E —Ef )

f
= —m 'Im fdQ f gd'Q*;(Q) X( Q)

XGE (Q, g')X(g')f;(Q'),
(1.5)

where X(Q) is the photon-matter interaction Hamiltonian
and g;(Q) is the wave function of the initial state.

The lowest- (second-) order contribution to the Raman
spectrum from an initial state i to a final state f, with
incident-photon frequency coo is as follows:

I;(coo,co) oo fdg fdg'p (fQ)X( Q)

g, .( Q) P,".(Q')
GE(g Q')=g

1 l

(1.7)

Since all the energy eigenvalues e; lying above E& of
Fig. 1 must be included in the above sum (integral), the
boundary conditions on the wave functions 4, (Q) and

g, (Q) for E; in the continuous spectrum are important in
l

the construction of GE with the correct boundary condi-
tions. In fact, the spectral decomposition of GE in Eq.
(1.6) is not of any great practical value unless the sum
over i is truncated to a finite discrete sum of states. But
in this case it will be difficult to accurately ascertain GE
for E in the continuous spectrum.

In this paper we present an alternative method of con-
structing the one-particle GF. G~ is constructed from the
wave functions s (Q) and h (Q), which are solutions of the
Schrodinger equation at energy E, satisfying a boundary
condition on the left-hand side and right-hand side,
respectively. " The necessity of calculating sums over en-
ergy eigenvalues required in Eq. (1.7) is alleviated.

In Sec. II we outline the calculation of GE for the arbi-
trary one-dimensional potential of Fig. 2. In Secs. III and
IV we present and explain the results of the local surface
DOS for the potentials of Figs. 2 and 3, respectively. (Our
choice of discussing the local DOS, rather than some exci-
tation function, which is weighted with some appropriate
surface weighting factor, is arbitrary. ) These model calcu-

viding the answer to the questions raised above.
One can now ask, what are the correct boundary condi-

tions to impose on the GF? To answer this question one
must consider the physics of the process under considera-
tion. For the calculation of bound states, DOS, and ab-
sorption or Raman scattering, we can divide the energy re-
gime into four regions. For energies below E&, in Fig. 1

the GF GE(Q, Q') must decay as Q~+oo (true bound
states). For energies above E& but below E4, it must decay
as g~ oo, and as Q~ —oo it must be periodic, if the po-
tential U(g) is real; but, if U(g) contains an absorptive
part, then Gz(Q, Q') must also decay as Q —+ —oo. For
energies above E4 but below zero, the GF should behave
essentially like outgoing waves as Q~ —oo, and must de-
cay as Q ~ oo. Only when E & 0 does one obtain outgoing
waves as Q~+ oo .

One way to express the GF Gz(g, g') is in terms of its
spectral representation

XGE,. + (Q, g )X(g')f;(Q') (1.6)
0 DISTANCE Q

I

(actually this is the resonance contribution of the Raman
transition amplitude). In fact, any single-particle observ-
able can be calculated in the form of a double integral

fdQ fdg'~(g)«g, g')P(Q'),

with weighting functions a(g) and P(g').
Bound states are also obtained from the GF. Bound-

state energies occur where the GF has poles, or the Wron-
skian has roots. Consequently, knowledge of the GF with
the correct boundary conditions is a prerequisite to pro-

E2-

EI

LLI

Ey

Op

Op

FIG. 2. Potential vs position —uniform solid.
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if E is within a band, and will in general diverge as
Q~~. If E is within a band gap, then s(Q) should de-
crease as Q —+ —ao in the sense that

K
LLJ

LLJ

FICx. 3. Potential vs position —periodic solid.

II. CONSTRUCTION OF GE(Q, Q')

We wish to construct the GF for a single particle in the
potential shown in Fig. 1 for an arbitrary energy E. Con-
sider, for simplicity, an energy E below the asymptotic
value of the potential on the right-hand side, but above the
minimum of the potential inside the bulk on the left-hand
side. Physically, it is clear that we require the boundary
conditions

GE(Q, Q') -expI —[2) I
E—U(Q)

I
]'"Q I Q~ ~

GE(g, g') —Bloch wave, Q —+ —oo . (2.1)

lations can be carried through, almost analytically, using
the present method. They illustrate the implementation of
the method. Section IV contains the generalization of this
method to three dimensions.

and

Pr(go) =1 0'r (Qo) =0

42(go) 0 02(go)

(2.7)

(2.8)

With these initial conditions at Qo, we integrate Pr(Q) and
$2(Q) over one period in the bulk to the point Qo+1. We
construct s (Q) as a linear combination of 11jr and f2,

s (Q) =p —pr (Q)+ 112(Q) (2 9)

Here Q is in the bulk and 1 is the periodicity of the solid.
For an arbitrary energy E within a band there are two
periodic solutions. We seek the solution which decays as
one moves further into the bulk from the surface, if a
small absorptive part is added to the potential,
U(Q)~ U(Q) ice—, co & 0. That is, the wave function sat-
isfies Eq. (2.6) for co &0.

The solution h (Q) can be easily obtained by integrating
the Schrodinger equation from outside the bulk into the
bulk, beginning the solution at two adjacent values of Q as
the exponential function in Eq. (2.5).

The wave function s(Q) can be constructed in the fol-
lowing manner. At a given point well inside the bulk
where V(Q) is minimum, for instance, Qo, we can con-
struct two linearly independent wave functions 11 r(Q) and
rj'j2(Q), such that

Now, for an arbitrary potential, the GF satisfying two-
point boundary conditions at Q, and Qb with Q, &Qr, Ls

given by"

GE(Q, Q') =2@W '[s (Q)h (Q')e(Q' —Q)

where a and p are chosen so that

s (Q+1)=As (Q),
s'(Q+1) =As'(Q) .

(2.10)

(2.11)

~=s (Q)h'(Q) —s'(Q)h (Q), (2.3)

where W is a constant, i.e., independent of Q, as can readi-
ly be shown by differentiating 8' and using the
Schrodinger equation for s and h. GE(Q, Q ) then satisfies
both of the boundary conditions, and is a solution of the
equation

[E—H(Q)]GE(Q Q') =@Q—Q'» (2.4)

where 5 is the Dirac function.
In our case, Qb is in the vacuum region, and asymptoti-

cally the wave function

h(Q)-exp(iI2)LL[E —U(Q)]jr~2Q), Q~ao . (2.5)

Q, is deep in the interior of the bulk. Thus the wave
function s(Q) is a periodic wave function inside the bulk,

+h (Q)s (Q')e(Q —Q')], (2.2)

where p is the particle mass, 8 is the Heaviside unit-step
function and s and h are solutions to the Schrodinger
equation at energy E s(Q) satisf. ies the boundary condi-
tion at Q, and h (Q) satisfies the boundary condition at
Qb. W is the Wronskian of s and h, viz. ,

These equations, evaluated at Q =go, yield two equations
for a/p and A, which can be solved simultaneously to give

rt 2(go+ 1)
a/p=

A —Pr(go+1)
'

Ll'r(go+1)+ Pz(go+ 1)
A+=

2

~r(go+1)+~, (go+1)
2

1/2

(2.12)

(2.13)

In obtaining (2.13) we have used the fact that the Wron-
skian of gr and p2 equals unity.

One can now determine which of the roots A, in Eq.
(2.13) is greater than unity in magnitude for small co. A
useful relationship is

k+ ——1/A, (2.14)

Taking the limit co~0, enables us to determine the
correct root at the energy E. Substituting A, into Eq.
(2.12), setting p= 1 (an arbitrary choice of a multiplication
factor, which does not affect the GF), and using Eq. (2.9),
gives the solution s (Q) over the region Qo & Q (go+1.
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To obtain s(Q) over other regions, where the potential is
periodic (i.e., inside the bulk), Eq. (2.10) is merely used re-
peatedly; s(Q+2l) =A, s(Q), etc. When we approach the
surface, the potential looses the periodicity of the bulk.
We can then begin integrating the Schrodinger equation
through the surface region into the vacuum. Having
found s(Q) and jI (Q), we substitute them into Eq. (2.2)
and the required GF with the appropriate boundary condi-
tions is obtained.

We shall now discuss applications to the model poten-
tials in Figs. 2 and 3, in order to gain some physical in-
sight into the nature of the simplest surface problems.

III. ADATOM ON A SEMI-INFINITE SOLID

In order to become familiar with the above method of
constructing the GF and with the dependence of surface
DOS's upon the width and depth of the atomic potential,
the distance of the adatom from the surface and the depth
of the bulk potential, we consider the potential shown in
Fig. 2.

The wave function in the region j (= I, II, III, IV) at
any given energy E may be written as

(3.1)

derivative at the boundary regions determines the others.
We require

—ik)Qs(Q)~e as Q~ —oo (3.3)

where the proportionality constant is unimportant and is
taken as unity.

An easy wasy to see the validity of Eq. (3.3) is by con-
sidering energies E such that E & VI. Then kI i——

~

kI
~

and

s(Q)~e ~0 as Q~ —~Ikl )Q

as it should.
Similarly, one requires

h(Q)~e as Q~ooik4Q

(3.4)

(3.5)

thus satisfying the boundary condition on the right-hand
side.

These conditions result in the following relationships:

A, ,=o, a, ,=1

A4, ~=& &4,~=0.
(3.6)

The A, B coefficients in the other three regions are ob-
tained using the transformation

where fz~(Q) =sJ(Q) or hj(Q), for p =s or h, respectively.
The momentum in region j is

k, = [2p(E —Uj )]I~2, (3.2)

which can be either real or pure imaginary (for Uz real).
The boundary conditions determine some of the coeffi-

cients AJ and Bz. Matching the wave function and its

Aj+I»I =(T)j+IjA

where

J~PA ~

AJP ——

JP

and

(3.7)

(3.8)

(T).—j+I,j 2k I(k +k. &)I.
J+1 j+1—j e

j+1 j
(3.9)

which arise from matching the wave functions and their
derivatives across the boundaries of the regions. In Eq.
(3.9), lj is the coordinate of the boundary between region j
and j+1.

The Wronskian in any region j, is given by

W(s, h) =2ikj(Bj,AJ h BJ hAj, ) .— (3.10)

In region I or IV, one obtains a particularly convenient
form

W(s, h)=2ikIAI h=2ik4B4, . (3.1 1)

It is now easy to calculate the DOS and any local DOS us-
ing Eq. (1.3) and the GF for this case.

For demonstration purposes we calculate the local DOS
in each of the four regions taking the function p(Q) of
Eq. (1.3) to be of the simple form

ties GJ, which are the integrals of the diagonal
G@(Q,Q) in the region j. The DOS in that region is given
by

pj(E) = —m 'ImGJ,

where Gj = fdQ pj(Q)G(Q, Q) In region I., we obtain
—1

Q 1 8 81 h 2ik
1
a

1"=2k, + 2k,
' ' '' "

(3.13)

(3.14)

In region IU, we find

re —1 Aa 4 ~~ A 4,~ 2ik4(a3+a2) 2ik4a4

2ik4 2tk4
(3.15)

aI and a4 being the lengths of the domains probed in re-
gions I and IV, respectively.

G in regions II and III is given by

1 in region j
0 outside region j .p( )= (3.12)

GII ~ [(B2, A2h+B2hA2, ) 2

+A2,A2 h(e ' ' —I )/2ik2

Equations (3.14)—(3.17) give the results for the quanti- B2, B2,h(e (3.16)
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Gjtt ~ [(B3,~3,h+B3,h~3, )+3

2ik3a3 2ik3a2+23,A3 h(e —1)e l2ik3

B—3,B3 h(e
' ' —1)e ' '12ik3] . (3.17)

The main contribution for energies E ~ Ui to the DOS
in region I is

-l2-

-16-

OENStTY OF STATES,p (eV )
I 05 0

ai
pg(&) ~

2k)
(3.18)

SOLI Q POT EN T I AL WELL

BOUND STATE
-24-

which leads to the well-known one-dimensional DOS per
unit length of a particle in a box, 1/k&. The factor —,

' in

Eq. (3.18) stems from the semi-infinite nature of the solid
we consider here. The second term on the right-hand side
of Eq. (3.14) for the DOS in region I is due to the presence
of the surface. Its contribution is clearly negligible for
large a &.

In region IV there is no bulklike DOS for E ( U4. , since
k4 is a pure imaginary. However, the surface term in
(3.15) manifests itself by decaying away from the surface.

We present below the results of our calculation of the
DOS in region III for the full potential as shown in Fig. 2.
We chose, as a standard case, a set of parameters which
sustains two bound states in the isolated atomic potential
well. One is a deep state, which is below the level of the
(uniform) metal potential well. It therefore remains bound
also in the adsorbed configuration. The second bound
state is degenerate in energy to levels in the solid. The
standard parameters are Ui ———20 eV, Uz ——0 eV,
U3 ———30 eV, U4 ——0 eV, a2 ——2 bohr, and a3 ——3 bohr.

The calculation itself is divided into three separate
parts. First we calculate the (bound) states of the isolated
atom, i.e., for a potential of the form U) ——U2 ——U4. ——0
and U3&0. ' The second and third phases of the calcula-
tion pertain to the adatom situation, as shown in Fig. 2.
We compute the bound-state energies by searching for the
roots of the Wronskian function. Then we calculate the
DOS in the energy region above Ui. All energy units are
given in eV and DOS in units of eV

In Fig. 4 we show the bound-state energies and the DOS
as a function of energy in region III. The solid line indi-
cates the DOS, whereas the dashed line indicates its loga-
rithm. The position of the isolated-atom energy level is
also marked.

Iog ipP

-32 I

-0 -2
log lpp

FIG. 4. Density of states in region III and its logarithm—
standard case: U& ———20 eV, U2 ——0 eV, U3 ———30 eV, U4 ——0
eV, a2 ——2 bohr, and a3 ——3 bohr. Solid line shows DOS.
Dashed line shows logarithm of DOS.

The atomic state which remains bound even when the
atom is adsorbed on the surface is only slightly modified
by the interaction with the surface. It is slightly stabilized
as expected by about 0.009 eV (its energy is 23.1 eV). The
stabilization energy peaks dramatically when the depth of
the metal potential energy is near the isolated atom energy
(Table I). For example, when Ui is changed to —22 eV
from —20 eV, and all other parameters are left constant,
the stabilization grows to 0.012 eV.

Upon adsorption the higher-energy state of the atomic
well turns into a resonance, with full width at half max-
imum (FWHM) of about 0.4 eV (lifetime of about 10
sec), the line shape is asymmetric with a slower decreasing
tail on the high-energy side. This is understood in light of
the growing tunneling probability with increasing energy.

The center of the resonance state is shifted in energy as
compared to the isolated atomic state. Interestingly, the
shift is toward higher energies (destabilization). In the
standard case this shift is 0.15 eV.

Perturbation theory would predict downward shifts pro-
portional to Ui and the tunneling probability. However,
the repulsion between the atomic level and the "metal"
levels works in opposition to this expectation, at least in

TABLE I. State shifts and widths —uniform metal. U3 ———20 eV, U2 ——U4 ——0 eV, a2 ——2 bohr, and a3 ——3 bohr. E, is the "center

of mass" of solid levels (see text). E is the position of levels. 6 is the shift of the levels as compared to an isolated atom. 5& and 5&

are the high- and low-energy widths of the resonative states. U& is position of solid potential well.

UI
(eV) (eV)

E
(eV)

Resonance state
5&

(eV) (eV)
5)

(eV)
E

(eV)

Bound state
5g

(eV) (eV)
5)

(eV)

40
—30
—22
—20
—10
—6

—5.95
—5.90

—26.7
—20.0
—14.7
—13~ 3
—6.7
—4.0
—3.97
—3.94

—5.296
—5.340
—5.395
—5.415
—5.637
—5.893
—5.896
—5.896

0.267
0.223
0.168
0.148

—0.074
—0.330
—0.333
—0.333

0.284
0.315
0.345
0.355
0.353
0.067
0.043
0.004

0.296
0.330
0.461
0.464
0.482
0.537
0.113
0.025

—23.108
—23.116
—23.117
—23.114
—23.108
—23.107
—23.107
—23.107

—0.003
—0.010
—0.012
—0.009
—0.003
—0.002
—0.002
—0.002

0.019
0.015

0.019
0.015
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the standard case. This can be rationalized if one replaced
the metal levels by one level placed at their "center of en-
ergy" E, F. or the uniform (flat) solid

ISQLATEQ ATQ M

LEVELS
-5.563 e V
23.l05 e V

2 bohr
10eV

E, =2U(/3 . (3.19)
-7.986 eV

Thus, roughly, only (isolated) atomic levels which are
higher in energy than E, will be shifted upwards, while
atomic levels more stable than E, will be further stabilized
on the surface.

This prediction should hold as long as the interaction
with the metal levels is not strong (i.e., for high and wide
barriers in region II). For state energies near E„ these
predictions will not hold, because interactions with
higher-energy metal levels are stronger than with lower-
energy levels.

Figure 5 shows the dependence of the position of the
resonance state and its width on the depth of the metal
potential-energy well U&. A11 the parameters are those of
the standard case, except U~ which varies between —40
and —5.90 eV. The main results are summarized in Table
I.

Table I also shows how the widths change. The DOS is
limited below by U&. On the high-energy less stable side,
no such restrictions occur. Indeed, in Fig. 6 we see that
the energy-level density extends smoothly into the contin-
uum.

The nature of the discontinuity in the surface DOS is
interesting. We find that a power-law behavior in the en-
ergy above threshold does not fit the cutoff of the DOS
near U&.

In Fig. 6, we plot the DOS as a function of a2, the dis-
tance of the atom from the surface. All other parameters
are those of the standard case. The cutoff of the surface
DOS at U& is especially noticeable for small a2. For these
small values of a2, the bound-state energy is significantly
affected as well.

The widths of the resonance state are exponentially
dependent on a2. In Fig. 7 we plot log 5 (where 5 is half
of the FWHM) as a function of a2 arid compare it with
the function

-24.308 eV -23.225eV

p2= Q. l bohr p2= I bohr

—-5.520 eV

-- —— -23.1 l4 eV -23 l06eV

p2=2 bohr p2=3 bohr

is taken as that of the resonance state. The slope of the
two plots differ by less than 4%. Figure 8 summarizes
the dependence of the system behavior on U2, the height
of the barrier.

In this section we applied the direct CrF formalism to a
simple, flat potential-energy (one-dimensional) metal
model. We computed the density of bulk and surface
states and discussed their dependence on various system
parameters.

IV. ADATOM ON SEMIFINITE
KRONIG-PENNEY SOLID

We turn now to the model potential shown in Fig. 3 to
illustrate the technique for treating a periodic bulk poten-

FIG. 6. Bound states and DOS in the atomic well (region III)
for uniform solid. Densities are normalized in each case to their
maximum value. Potential parameters are Ul ———20 eV,
U2 ——U4 ——0 eV, U3 ———30 eV, a3 ——3 bohr, and a2 ——0. 1, 1,2, and
3 bohr.

Q

log exp —2J dg[2p(U2 —E)]'

This function is proportional to the tunneling probability
through the barrier of region II at energy E. The energy

0

STABILI Z E 0
res xgt O

O

—04-)
IS03-

02-

OI-
DESTABIL IZ EDI Eres

- -55 v)

-54

4 6 8
g, (bohr)

10

I

-IO -20
U, (ev)

-50 -40

FIG. 5. Resonance eriergy shift (dashed line) and high-energy
width 64 (solid line and &() vs Ul for uniform solid.

FIG. 7. Logarithm of the level half-width 6 vs a~ (solid line)
and tunneling probability vs a2 (dashed line) for uniform solid.
Potential parameters are a3 ——3 bohr, Ul ———20 eV, U2 ——U4 ——0
eV, and U3 ———30) eV.
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ISOLATED SYMMETRIC LEVEL
-5.563 eV----

I SOLAT E D AS Y MME TRIG LE VE L

ADSORBED STATE LEVEL

—~P.I68 eV
-6568 eV

IO V

~ -6599 eV~ 7.270 eV

The wave function P~ and its derivative g~ are continuous
across Q= 2—1 —a~. These two conditions are sufficient
to determine (A ~,B, ). Similarly,

k& 'sin[k& (Q —Qo)], —31&Q( —21—a&

42(Q) = '
ik, g -ik, g (4.3)

Aqe ' +Bze ', —21—a& &Q( —21

u =-4eV
2

u =-6eV
2

M -6772 eV
—.595 eV -8.96OeV

u =-675 eV U =-15eV
2

FIG. 8. DOS in the atomic well (region III) for different U2
values for uniform solid. Densities are normalized in each case
to their maximum value. Potential parameters are Ul ———20
eV, U3 ———30 eV, U4 ——0 eV, a2 ——2 bohr, a3 ——3 bohr, and
U2 ———4, —6, —6.75, —15 eV.

el(Q) =cos[kl'(Q —Qo)] ~ kl = I2p[E —(UI —i~)]j'
(4.1)

( —31,21 —a ~), while forin region I' between
( —21 —a ~, —21) we have

11)(Q)=A)e ' +B)e ', k) ——[2P[E—(U, iso)]I'~—2

(4.2)

tial. The wave function hz(Q) for Q H( co,O) is identical
to the previous model potential. The wave function sE(Q)
must be periodic when E lies within a band, whereas it de-
creases as one recedes into the bulk when E is within a
band gap. In order to treat all energies in the same
fashion in constructing the wave function s (Q), it is con-
venient to add an arbitrary small absorptive part to the
bulk potential U(Q)~ U(Q) ico-

As discussed in Sec. II, we construct the two linearly in-
dependent solutions P&(Q) and $2(Q) of Eqs. (2.7) and
(2.8). For simplicity we choose Qo ———31, where!=a&+a, . Owing to the simple form of the potential,
the integrations yielding 11', and gz may be performed
analytically. The wave function satisfying (2.7) is then
given by

L =2@(Ui E), —

K =2p, (E—Ui ) .
(4.5)

Energies such that the left-hand side of Eq. (4.4) is outside
of ( —1, 1) are in the band gap, all other energies are
within the bands.

The DOS in the solid is given by

p(E) =p(k)(dE/dk) (4.6)

where p(k) =2, and dE/dk can be extracted from the dif-
ferentiation of Eq. (4.4) with respect to k,

and (A2, B2) are determined by continuity of g& and P',

across Q =21—a&. Since 11 ~(Qo+1) and 112(Qo+1), where
Qo+1= —21, are easily determined, the roots A, of Eq.
(2.13) may be obtained. We choose the root whose magni-
tude is greater than unity (for infinitesimal m), substitute
into Eq. (2.12) to obtain a/13 and then form s(Q) from
Eq. (2.9).

To obtain s (Q) in region II we need to know the values
of s(Q) and s'(Q) at Q=O which are easily found using
Eqs. (2.10) and (2.11). In region II, s (Q) can be written as
in Eq. (3.1), where (A2 „B2,) are obtained from the con-
tinuity of s(Q) and s'(Q) across Q=O. A similar pro-
cedure is employed to go from II to III and then from, III
to IV. Now we have sE(Q) and hz(Q) in all the regions
and the GF is easily formed. The DOS in each of the re-
gions can be obtained from the expressions given in Eqs.
(3.13)—(3.17), where the'Wronskian is given by Eq. (3.10).

In this section we describe the effect of the bands and
band gaps of the solid on the bound states and the DOS of
region III, the "adatom" potential-well region. We first
compute the bulk DOS of the solid in order to locate the
bands and their edges. Our model potential for the solid
is the Kronig-Penney potential. ' The secular equation
for the Kronig-Penney potential is given by

[(L2—K~)/2LK]sinh(La& )sin(Ka~ )+cosh(La~ )cos(Ka& )

=cos[k(a)+a) )], (4.4)

where

dE
dk

(a)+a) )
sin[k(a&+a& )]

(L+K)— a)
sinh(La ~ )sin(Ka, )+

2(LK)
r

L —K
2I K I K+ cosh(La, sin(Ka ~ )

a)~

L
sinh(La ~ )cos(Ka ~ )

(4.7)

With the use of Eqs. (4.6) and (4.7), and the dispersion re-
lation k (E) from Eq. (4.4) the DOS in the bulk metal can
be obtained.

We can now easily calculate both the metal bulk DOS
and the DOS at the position of the adatom. In the follow-
ing figures we show the results of such calculations.



28 GREEN'S-FUNCTION CALCULATION OF SURFACE PROPERTIES. . . 4133

Throughout these calculations we took U2 ——U4 ——0 eV,
U3 ———30 eV, U& ———20 eV, a2 ——2 bohr, a3 ——3 bohr,
a~ ——4 bohr, and allowed a& and U~ to vary. U3 and a3
were chosen, as in the standard case of Sec. III, to support
two states. One bound state remains bound and the other
turns into a resonance. a2 was chosen to facilitate signifi-
cant interaction (tunneling) between the metal and ada-
tom. Figure 9 shows the DOS in region III, for
U~ ———10 eV and a

&
——20 bohr. p is plotted on a logarith-

mic scale to encompass the whole range of energies
( —20 eV, O). The positions of the bands of the solid are
indicated in Fig. 9. One sees that the atomic state be-
comes a resonance within the band energy region. The
shape of the resonance is quite asymmetric. The peak of
the resonance is shifted to —5.50 eV from the position of
the isolated atomic state (at —5.56 eV). The FWHM of
the resonance is 0.41 eV, compared to 0.8 eV for the reso-
nance interacting with the uniformly flat potential solid,
which indicates reduced interaction in this case. Note, in
Fig. 9, the tunneling of the bulk DOS into region III. The
contribution of the bulk states is rather small. However,
it is still noticeable, even for the relatively high and wide
barrier used here. For comparison, the DOS of the bulk
itself is shown in Fig. 10.

It is interesting to note that when the bulk states
penetrate the barrier of region II and "spill over" into re-
gion III, the bands change their shape. Higher energies in
the band have higher tunneling probabilities. Consequent-
ly, the bands are skewed towards the high-energy side.
Only near the resonance state does this picture change.

CI

O

-20 -(5
I

-IO

E NERGY (eV}

-5

FKJ. 10. Logarithm of DOS vs energy. Potential parameters
are U~ ———20 eV, U~ ———10 eV, a~ ——20 a.u. , and a& ——4 a.u.
Heights of the sharp bands as shown here are not significant,
only their positions.

Similar effects were discussed by Kalkstein and Soven
and by Haydock et al.

In Fig. 11 we show the effect of increasing the barriers
inside the metal, i.e., U& ———5 eV. The dashed lines in
Fig. 11 show the positions and widths of the bulk bands.
A significant narrowing of the bands occur, as compared
to the previous calculation. A striking feature of this fig-
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FICx. 9. Logarithm of DOS in region III. Potential parame-
ters are U& ———20 eV, U& ———10 eV, U2 ——U4 ——0, U3 ———30 eV,
a~ —20 bohr, a

&

——4 bohr, a2 ——2 bohr, and a3 ——3 bohr. Dashed
lines show positions of bulk solid bands.

20 IO 0
ENERGY (eV)

FIG. 11. Logarithm of DOS in region III. Dashed lines
show position of bulk bands. Potential parameters are
U~ ———20 eV, U&

———5 eV, U2 ——U~ ——0, U3 ———30 eV, a& ——20
bohr, a~ ——4 bohr, a2 ——2 bohr, and a3 ——3 bohr. Height of sharp
structures are not significant, only their positions.
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V. THREE-DIMENSIONAL GENERALIZATION

In the preceding sections, we detailed the construction
of the GF G~(Q, Q') with the appropriate boundary condi-
tions for one-dimensional surface problems. We explicitly
constructed the CzF for the potentials of Figs. 2 and 3, and
presented results of calculations for the local surface DOS
and bound states of these potentials. Clearly, once
G~(Q, Q') is formed, we can form I;(co), I; (boa, co), etc. All
single-particle properties can be obtained from the GF.

We now turn to the three-dimensional generalization of
the one-dimensional results. We consider a one-particle
potential (or pseudopotential) U(x), which is periodic
parallel to the surface directions perpendicular to the nor-
mal of the surface (z direction). The bulk periodicity in-
side the material is broken at the surface. A wave func-
tion 4( x ) in the surface region can be written using the
Laue representation in which the Fourier expansion in the
parallel coordinates is combined with the coordinate rep-
resentation in the normal direction. '

4- (x)=gg- (z)e
~lt

(5.1)

where the number of g ~~
components retained in the sum

is denoted by X and where k~t is the component of the
momentum parallel to the surface. The Schrodinger equa-
tion for 4- ( x ) at energy E then becomes'

]tt

—(2p) ' + + U0(z) g (z)
dz' 2p g

II

~ (z)y (z) .
gtt

These equations can be written in matrix form

[El—A (z)]%(z)=0

(5.2)

(5.3)

where the rows and columns of the matrices are labeled by

ure is that when the bound state is within a band gap it
remains almost bound. The width of the resonance state
formed is very small. Its width, in this case, is smaller
than 0.0002 eV (the resolution of our calculation). We
find the density to change from 40 eV ' at E=5.2612 eV
to 0.2 eV ' at E=5.2610 eV. The shift from the bound
atomic state is 0.3 eV to higher energies. This can be
compared to a shift of 0.15 eV for the fiat bulk potential
model and 0.06 eV for a periodic metal model with
U& ———10 eV. Another feature in Fig. 11 is the broaden-
ing of the high-energy bands of the solid, which manage
to penetrate the barrier. Also evident are some very sharp
structures near the higher-energy side of most of the
bands. These sharp states are not present in the DOS of
the pure bulk. %'e attribute them to surface states pulled
out of the bulk. These surface states penetrate region II
under the barrier in region II. In fact, these states appear
regardless of the nature of the potential in region III (e.g.,
they are still present when U3 ——U4 ——0). They originate
from the solid, as can easily be seen by their dependence
on the width of the barrier a z.

the N normal momentum vectors. This is a multichannel
Schrodinger equation in which each column is an equation
of the form (5.2) where the incident term is labeled by the
column vector g~t.

It can be shown' ' that the GF G(z, z'), of the equa-
tion

[El—A (z)]G(z,z')=5(z —z')I, (5.4)

where the Wronskian matrix 8'given by

W(S,H ) =8+(z)H'(z) S+ (z—)H(z),

is a constant matrix (as can be demonstrated using the
Schrodinger equation). The symbol + indicates transpose
for the type of boundary conditions we need here. In the
present case, S(z) is such that, within the bulk,

S(z+i) =XS(z)

H(z) expi V-2@[EH. U(z)]—as z~ oo .

Thus the multichannel momentum representation of the
three-dimensional surface problems can be easily written
in terms of G - (z,z'). If the probe process is sensitive

F., k
tt

only to one momentum component k t~, this is the GF we
need. If all the momentum components contribute to the
probe process, we need to take the sum over k~~ of G

E, ktt
For example, Raman amplitudes can be written in the
form

Jdk~~ fdz J dz'[+g (z)]~+(z)G~ - (z,z')k(z')2 (z')
II

where +. and 4'y are for the initial and final states, X are
the photon-matter matrix elements ((k ~'j

t
X

t
k ~~) ) and

the sum over kt~ is over all possible parallel momentum
vectors. If the initial state

~

i ) has well-defined parallel
momentum kz;, then kit equals the sum of k~~; and the
parallel component of momentum of the incident photon,
so there is no need for the sum over k

~
t.

We have demonstrated the utility and efficiency of the
present GF approach for one-dimensional surface prob-
lems. Calculations with simple step-function model po-
tentials as simple examples have been presented. The gen-
eral trends observed for the surface DOS for an adatom
on surface have been determined. If the isolated-adatom
state lies within a band, its resonance width is large,
whereas, if it lies within a band gap, the resonance state is
quite narrow. Contribution to the surface DOS from the
bulk DOS is skewed to higher energies. Surface states are
pulled out of the bulk near the high-energy band edges.
These trends were physically reasonable and predictable at
the onset, but with the present GF method quantitative re-
sults are easy to obtain. This method can be used for

satisfying two-point boundary conditions, can be written
in terms of the solutions S(z) and H(z) of the Schrodinger
equation (5.3) with these boundary conditions, i.e.,

G(z,z') =2p[S(z)( W+ ) 'H(z)B(z —z')

+H(z) W 'S+(z')B(z z')],—
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field-emission studies, low-energy electron-diffraction
studies, etc. Detailed calculations in the three-
dimensional case using this method have not been carried
out as yet. It is of great interest to do so.
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