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Eigenenergies and eigenfunctions are evaluated. Different localized eigenstates are proven to
have exponentially different mobilities. This leads to exponentially high and exponentially narrow

resonances of the conductance at eigenenergies. The probability distribution of resonance resis-

tances is determined. The height and the width of a resonance allow one to evaluate the localization

position and the localization length of an eigenstate. The phase correlation length is proven to be

~ Lo, where Lo is the wave-function localization length. The latter strongly depends on the analyti-

cal nature of disorder. The dependence of Lo on energy 8' may vary from algebraic to exponential.
In the latter case a weak localization is achieved at reasonable energies g' ~ [1n(L /Lo)]', where L is

the length of the system. Different one-dimensional problems are reduced to the Schrodinger equa-

tion. In particular, at low frequencies co, acoustic phonons and electromagnetic waves in a random

media are localized. Their localization length is Lo ~ co

I. INTRODUCTION: LOCALIZATION IN PHYSICS

Anderson' was the first to prove that a quantum parti-
cle in a random potential may be localized, so that its
probability density may exponentially decay outside a cer-
tain "region of localization. " Following Anderson, one
usually considers localization in a macroscopic system. It
is instructive, however, to explore a more general idea of
localization: a finite motion in classical mechanics, an ex-
ponential maximum of the probability density in quantum
mechanics, or an exponential maximum of the intensity of
any wave. The maximum may be reached in a real space,
in the momentum space, or with respect to any other vari-
able. Such a localization is one of the most common phe-
nomena in physics. As we shall see later, it exposes a deep
similarity between phenomena very different in other as-
pects, and allows one to understand important features of
localization by studying very simple models.

The simplest case of such a localization is the trivial lo-
calization of a free particle in a momentum space. (The
localization is related to the conservation of momentum. )

In a general case, in virtue of the conjugation of coordi-
nate and momentum, localization in real space always im-
plies an extended momentum state, and vice versa. Fur-
ther, I consider the localization in real space. Some exam-
ples: (a) Particles in nucleus, electrons in atoms, atoms in
molecules are localized in "microworld. " The violation of
the localization is correspondingly manifested in radioac-
tivity of nuclei, ionization of atoms, and dissociation of
molecules. (b) In "macroworld" ions, atoms, or molecules,
or domain walls, are localized in solids and may be "delo-
calized" while melting. A strong localization of charges
in amorphous and disordered semiconductors, inversion
layers, and field-effect transistors (FET's) leads to the ac-
tivated conductivity o.. Its temperature T dependence
may be related to the thermal distribution rather than to
inelastic collisions. [This is obvious from the indepen-
dence of rr(T) of the inelastic mean-free-path time. ] In
Mott three-dimensional (3D) case Incr(T) cc —T '~ . In

the case of the nearest-neighbor hopping
o ( T) =oo exp( —AE Ik~ T), where b,E is the activation en-

ergy and kz is the Boltzmann constant. According to the
Meyer-Neldel rule, rro ooo e——xp( hE!k~ T, ), where o oo

and T, are constants. Brodsky suggested that this depen-
dence may be related to localization. He also suggested
that the tunneling and breakdown in insulators may be re-
lated to the localized states, which are related to impuri-
ties. This seems to be confirmed by B. Ricco et al.

In metals the localization at very low temperatures
leads to the insulator-type behavior of rr(T), which in-
creases with T, In inversion layers and FET's the locali-
zation leads to giant oscillations of o. with the gate volt-
age: o may change at least by 2 orders of magnitude
when the gate voltage changes by 0.01%. A quantum
particle in a quasiperiodic potential, a Bloch electron in a
magnetic field, sound and electromagnetic waves' (in the
absence of energy dissipation) may also be localized. (c)
In "cosmoworld" planets in star systems, stars in double
stars, matter in black holes, in a sense the whole universe
in the closed model is also localized. The phenomena,
which may be reduced' '" to the Schrodinger-type equa-
tion, and thus related to the localized solutions, are heat
transfer, classical diffusion, 10 Ising model, and poly-
strand polymer thermodynamics.

In the absence of inelastic collisions, where an external
potential does not change, the problem reduced to a one-
@article problem. In the case of a charged quantum parti-
cle, this is clearly demonstrated by the Landauer formu-
la. ' It reduces the dimensionless resistance R (i.e., a ki
neric characteristic of a random system) to a transmission
coefficient r (i.e., a one-particle quantum-mechanical
characteristic),

One-particle quantum mechanics yields the eigenstates.
In 1D all eigenstates are localized. ' ' Thus, their
probability density at the ends is exponentially small with
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L /Lo when L~ oo (here L is the length of the system and
Lo is the localization length). Therefore, localized parti-
cles have exponentially small chances to run away from
the random system. Uice versa, a particle with any energy
different from an eigenenergy stays out of the random sys-
tem, since its probability density exponentially decays in-
side the system, and has exponentially slim chances to get
well inside it. Only an incident particle with the resonant
energy equal to an eigenenergy has a better chance to get
through the system. ' ' This leads to exponentially
(with respect to L /Lo) high and exponentially narrow res-
onances' ' of t [and therefore, by Eq. (1), of the conduc-
tance Gj with the energy 8' and to the long-range correla-
tion at the eigenenergy of a finite system. ' The reso-
nances are clearly seen on different scales in the numerical
experiment in Figs. 1—5. The correlation function is
presented in Fig. 6. (The details of the numerical experi-
ment are described later. ) The decrease in the resistance at
least by 2 orders of magnitude, when the relative change
in the Fermi energy is -0.01%%uo, was observed in the ex-
periments on accumulation layers.

The knowledge of the position, height and width of a
resonance allows one to determine the eigenenergy, its lo-
calization in the random system, and its localization
length. Figure 7 demonstrates the (numerically calculat-
ed) probability density for the resonance eigenenergy in
Fig. 5. The spectroscopy according to the "experiment"
in Fig. 5 leads to the 1ocalization at the distance 29 from
the end and to the localization length I.p =2.2. The "ex-
act" values in Fig. 7 are correspondingly 31 and 2.2. Such
a spectacular agreement is an accident [the relative accu-
racy should be -(Lo /L)'/ ] but it does demonstrate the
efficiency of the method. Resonances in the case of a
weak localization are presented in Fig. 8. The dependence
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FIG. 2. Same as in Fig. 1 but for L =100. Dashed arrows in-

dicate the true value of lnR at the corresponding resonance
values of k.

of the localization length on the Fermi energy is related to
the nature of disorder and varies from linear to exponen-
tial.

If a nonmonochromatic set of particles hits a random
system, then those outside the eigenenergy halfwidth
(which is exponentially small with L/Lo but still finite in
a finite random system) are practically completely reflect-
ed. This may be denoted as a "junction reAection, " since
it is little dependent on the properties of a random system.
The particles with the energies within the eigenenergy
halfwidth are transmitted according to the resonance
properties of this particular eigenenergy. The total num-
ber of transmitted particles is the product of the number
of the "resonance*' particles and their resonance transmis-
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FICx. 1. The dependence of lnR (R is the dimerisionless resis-
tance on the dimensionless wave vector k—see Eq. (48). The
strength of the dimensionless impurity potential is U =6; its con-
centration is c=0.5. The number of sites in the system is
L =5000. The "step" in k is 0.01.

57

52—

l.40
I

l.44 t.48 l.52
WAVE' VECTOR k

I

l.56

FICx. 3. Same as in Fig. 2 but for b k =0.001

l.60



4108 M. YA. AZBEL

l 026

lp25

l02~
Xn-Lo

L

4'n q(0, n)

1023

) 022
LIJ
K

l
021

l020

l 019 I 1

I.44906
I I I

l.44907
WAVE VECTOR k

l.44908

FIG. 6. Phase correlation at the eigenenergy (schematically).
The correlation function between the initial phase and the phase
at the nth site is q(0, n). It is minimal at the localization point.
The correlation function at the distance 1 is q(l). The localiza-
tion length is Lo, the total length is L.

FIG. 4. Same as in Fig. 3 but for hk =10

sion through the random system. Thus the total transmis-
sion coefficient is the product of the junction and reso-
nance transmission coefficients. In the case of charged
particles this implies that the total conductance is the
product of the junction and resonance conductances. (The
multiplicativity of conductances in series is characteristic
of localization. ) A two-point measurement (when the po-
tential drop is measured outside the barrier resistor) yields
the total conductance, while a four-point measurement
(the potential drop is measured inside the barrier resistor)
yields the resonance conductance.

The localization by a 1D disorder is characteristic of
the elastic propagation of any wave: electromagnetic,
acoustic, etc. The presented approach is applicable to
practically any linear 1D problem: Anderson model (with
or without off-diagonal disorder), phonon eigenstates,

quasiperiodic potential, Ising thermodynamics, classical
diffusion, percolation, or chaos in any of these systems.
In this paper I consider the strong localization (L ~~La).
However, the resonance tunneling will manifest itself
under all circumstances (see, e.g. , Fig. 8) if the resolution
is high enough. This may explain why for almost two de-
cades different authors reported irregular oscillations with
the electron density of a resistance ' and 1/ f noise
in various FET s and Si inversion layers. Characteristical-
ly, these oscillations were reproducible only at a given
sample.

The above reasoning is obviously applicable to any ran-
dom system with no inelastic scattering and to any reso-
nance tunneling. The resonance tunneling may be related,
e.g. , to the complete reflection in geometrical optics (Fig.
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FIG. 7. Resistance, proportional to the probability density, as
a function of site, for the random sequence and eigenenergy of
Fig. 5. (L = 100 is the total length of the system. )
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FIG. 8. Resistance R as a function of the dimensionless wave
vector in the case of a weak localization. The impurity potential
strength is U =0.05; its concentration is c =0.5; the length of the
system L = 100; "step" in k is Ak =0.01.

9, Brodsky's suggestion) and to the tunneling through and
the breakdown in an insulator with impurities (Fig. 10,
Brodsky's suggestion, verified by Ricco et al. ). Platz-
man noted that the localization resonances of elec-
tromagnetic' and acoustic" waves may be easier to ob-
serve in a random media with artificially created large-
scale imperfections.

II. PHYSICS OF LOCALIZED EIGENSTATES

is low, then a "strong" 5-function potential leads to the
transmission coefficient t ~ 8', while a quasiclassical po-
tential (with a finite width and height) leads '"" to
lnt cc 8'. A high-energy particle has (1 t) cc 1/8' i—n the
case of a 5 function; (1—t)~1/8' when the potential
barrier U(x) is rectangular, (1—t) cc 1/8' when the po-
tential energy has a discontinuity in the first
derivative, "' (1 t) ~1—/8' +~ when U'i' "(x) is con-
tinuous and U'r '(x) has a discontinuity, and
ln(1 t ) cc —8'~ d —when U(x) is an analytical
function "' ' and d is a characteristic width of the poten-
tial. Note that in the latter case d~ao (i.e., an infinitely
wide potential) leads to no scattering: t +1. —

A. A single barrier

In classical mechanics localization is absolute. Every
particle with the energy above all potential barriers is nev-
er reflected, and every particle with the energy below the
surrounding potential barriers is completely localized. In
quantum mechanics only an infinitely high and/or broad
barrier leads to a complete localization. Otherwise the
quantum scattering is almost always finite and nonzero.
Its characteristic feature is its remarkable dependence on
the analytical nature of the potential. When the energy 8'

V

FIG. 9. Resonance transmission (via V) in the case of a corn-
plete reflection from A. Arrows denote incident, reflected, and
transmitted waves.

B. Model of localization

The main specificity of quantum mechanics, which
leads to the special properties of localized eigenstates, is
related to a nonadditivity of potential barriers. Important
features of localization are demonstrated already by the
simplest case of a one-dimensional (1D) potential well be-
tween exponentially little transparent barriers. If the 10
barriers are infinitely high and/or broad, the well yields
eigenstates; they are completely localized in a finite re-
gion, and their probability density exponentia11y decreases
in the barriers. Other energies are forbidden in the well.
Finite, but little-transparent barriers allow for the tunnel-
ing of a quantum particle to + oo. The tunneling leads to
a finite, but an exponentially long lifetime of a particle at
a quasilevel, and thus to a finite width of the level 58'.
The particles in the energy range 58' stay in the well dur-
ing the lifetime (although they do not "belong" in the well
completely). The particles with other energies may
penetrate into the well, but with exponentially little proba-
bility. They belong in the world outside the barriers and
the well. (An example of this situation is a radioactive
nuclei. ) Such a well has "quasilevels" (E' in Fig. 11).
Their halfwidth 58' is related to the tunneling through the
more transparent barrier: 58'/8'-t~', ti is the transmis-
sion coefficient through this barrier. It determines the
long lifetime ( cc1/ti) of a particle in the well at the
quasilevel. Long lifetime implies that the probability den-
sity p at the quasilevel is very high inside the well and de-
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C. Localization in a random system

An infinite set of barriers with different eigenenergies
generally leads to a "true" localization of a particle with
the given eigenenergy, since the lnt's of all outside barriers
add up. This leads to the idea of the localization in mac-
roscopic random systems. At zero temperature ( T=0)
one may see that the localization of an eigenstate always
leads to the resonance tunneling. By the very definition,
the localization implies that the probability density p de-
creases from the localization region (LR) towards the ends
of a conductor " ' (see Fig. 12). So, at the ends
p, z cc exp( 2L, z

—/Lo), where Lo is the localization
length of the wave function and L] ——A, L2 ——L —A are
the distances from LR to the ends. The transmission
coefficients and therefore' the mobility and conductance

G ~p2 Ip~ ~ exp( —2
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FIG. 11. Tunneling through potential barriers {a). Probabili-
ty density p [ib), semilogarithmic scale] at "ordinary" energies
(dotted line) and eigenenergies {solid line).

cays in the barriers [the solid line in Fig. 11(b)].
Consider the scattering of a particle with the energy

E&E" by two potential barriers [Fig. 11(a)] with ex-
ponentially small transmission coefficients t] and t2, with
t» t2. The total transmission coefficient t]z is easily cal-
culated (see Sec. IV) and equals t&z-t&tz. The probability
density p exponentially decreases in each of the barriers
[the dotted line in Fig. 11(b)]. The lnt's for the barriers
add up: lnt&2- lnt&+ lnt2, so the infinite set of barriers
leads to lnt~ —ac and t~O (since t&, t2, . . . , (1).

The scattering of a particle with the energy E' is com-
pletely different. Inside the well it finds itself at the
quasilevel and stays there for an exponentially long time.
Correspondingly, its probability density has an exponen-
tially high maximum inside the well, exponentially de-
creasing in both barriers towards their ends [Fig. 11(b),
solid line]. Its transmission coefficient equals t&2=tz It&.
It may be even t]2—1, when t] —t2, i.e., when the barriers
have the same integral characteristic-transmission coeffi-
cients. (In particular, periodic potential barriers, where all
t's are equal, have completely transparent eigenstates,
which form the allowed bands. ) Such a resonance tunnel-
ing is characteristic of any system of little-transparent
barriers and may be of importance in various physical sys-
tems.

Introducing the distance from LR to the middle point:
L] ———,

' L —A, L2 ———,L+A, where 0 & A & —,L, one ob-
tains t, G CC exp( 4AILo). —The distance between the ad-
jacent eigenenergies is b, S'=1/L p, ( 5' ), where p, ( 8' ) is
the density of states per unit length. The vth eigenstate
width 58' is related to the tunneling distance A = —,

' L —A
to the nearest end of the system; thus
5@„~exp( —2A /Lo). In a random system, where there
can be no long-range order, LR's and therefore A's are
randomly distributed. So, typically among s LR's, which
divide , L into a (—s+1) segment, there will be a minimal
A -L /2(s+ 1). Its G cc exp[ 2L /(s+ 1—)Lo]. When
s -L ILo, then G —1, despite the localization of this state.
The distance between these "transparent" energies is
AS'* 68'(L /Lo) 1/p Lp =kg To (ks is the Boltzmann
constant). Outside the Lifshitz tail of "fluctuation states, "
p, ( 8') —I/hVF, where VF is the Fermi velocity. Since68'= Vzfihk, k is the Fermi wave vector, so outside the
I.ifshitz tail b,k -n./L and 6k*-m IL&. Thus the depen-
dence of the resistance R on k should look as in Fig. 13, in

2h/Lo

I-
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o 4h/Lp

FICs. 12. Localization in a random system {schematically); p
is the probability density, I. is the length: A and A are, corre-
spondingly, the distances from the localization point to the
nearest end and to the middle of the system.
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agreement with Figs. 1—5. The knowledge of R( 8'„) and
58'„allows one to determine A and Lo, i.e., the localiza-
tion region and the localization length. This is possible
because of the exponentially narrow resonances, which are
specific for each system. In fact, they present a kind of a
"micropicture" of the localization regions, which (in

agreement with experiments) is perfectly reproducible for
any (microscopically) given sample, but is not reproduci-
ble from sample to sample. When L ~ oo, the picture is
self-similar and is a perfect example of chaos.

According to the previous considerations, at the
eigenenergy, lnR =4A/Lo. So, A= 4 Lo lnR. The proba-
bility d W of A (equally distributed at L /2) in the interval
dA is

d W=P(A)d A =d A/(L/2),

FIG. 14. (a) Histogram for resonant A= 4LolnR. Here Lo is

the localization length, R is a resonant resistance; L =100,
c=0.5, v =4, k =2.88. The number of samples is 100; the
number of resonances per sample is 4. (b) Same as in (a) but
only for 0(A (5.

lo'

4i.e.,

P(A)=2/L . (2a)

Therefore, the probability of lnR in the interval d 1nR is

d W = ( 2/L )d A = (L0 /2L )d 1nR . (2b)

Thus, the probability density of lnR at an eigenenergy is

loo

LLJ

P( lnR ) =La /2L, (2c)

i.e., independent of R.
A numerical calculation (by DiVincenzo) for 400 reso-

nances (at 100 different samples) is in good agreement
with this statement —see Figs. 14(a) and 14(b).

At the resonances, the particle probability density looks
as in Fig. 7, or (in the case of a transparent eigenenergy
presented in Fig. 15) as in Fig. 16. An exponentially small
(with respect to L/Lo) shift from the resonance energy
smears out the localization (Fig. 17) and then leads to a

lO-~
l.5379

I

l.5380l2
WAVE VECTOR k

1.538l

FIG. 15. One of the deepest resonances of the resistance R in
a random system of the length L =100 with 50 impurities. Irn-
purity potential strength is v =1.7; the "step" is Ak = 10
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FICs. 16. Resistance R, proportional to the probability densi-

ty, for the resonance of Fig. 15.

FIG. 18. Same as in Fig. 17 but for k=1.4, i.e., at the dis-
tance 5. 10 from the resonant k.
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FIG. 17. Same as in Fig. 16 but for k=1.4491, i.e., at the
distance 3. 10 from the resonant k.

"conventional" probability density, exponentially increas-
ing from one end to another (Fig. 18). The resonances and
localization could be computed only in virtue of a relative-
ly small L, /L, o. Ten times larger L/I. o would be un-
resolvable at a computer.

The states of particles in a random system demonstrate
the simplest example of an irreversability. Any "regular"
wave function of the type presented in Fig. 18 has the
conjugate wave function, increasing in the opposite
direction. (Physically, it corresponds to the exponentially
decreasing probability density, generated by an incoming
wave. ) Whenever the exponentially increasing p is present
in the wave function, it dominates. So, the exponential ac-
curacy in the initial condition is needed to eliminate it and
obtain the exponentially decreasing solution.

D. Special eigenstates

Various special cases of a 1D localization are related to
special eigenstates. On a lattice with a unity spacing,
k =me, m is an i.nteger, implies no phase shift between
lattice sites and in certain cases (5-function potentials, va-
cancies on an underlying periodic set with one type of the
potentials) is always an eigenvalue. '' This eigenstate is
slowly decreasing: po:1/L . Even more important, the
localization length diverges at k =m m. as
Lo~

~

k mar
~

' or —as Lace ~

k —mar
~

' (for more de-
tails see Refs. 34 and 15), and the region of "anomalous"
eigenstates near this "mobility point" (where Lo= oo ) is
rather broad —see Fig. 19. Another special eigenenergy is
at the middle of the band in the case of off-diagonal disor-
der. According to Stone and Joannopoulos, there
lnR crL '~, Lo ——lim(2L/lnR) = ao. In the case of the
Schrodinger equation, k=~/2 anomalously often is also
the eigenvalue. By Mel'nikov, there the ensemble aver-
age of (R ) leads to ln(R ) ~L, while (G) a:L ~2. The
latter relation demonstrates that anomalously often
G )L r at k =rr/2. This G dominates (G), but makes
exponentially small contributions into (R ). Finite L
shifts this eigenvalue from k =sr/2 (see Fig. 20).

E. Localization length

A 10 scattering obviously reduces to "individual"
scatterings. The individual scattering by a single potential
strongly depends on the analytical nature of the
potential. "' At low energies 8', the dependence of an in-
dividual transmission coefficient t& on the energy changes
from linear to exponential. At high energies, the depen-
dence varies from 1 t~ ~ 1/8' to (1 t, ) expo—nentially-
decreasing with 8'. An exponentially small (1—t~ ) leads
to the exponentially large Lo~(1—t~) ' (see Sec. VII).
When t, is exponentially small, Lo ' cc lnt, (see Sec. VII).
Then a particle is mainly localized in the region between
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where R V/2m is the potential energy and A' k /2m is
the total particle energy. Suppose (see Fig. 11) x& and x-.
are the minima of V(x), where V(x~), V(x2)&k . Sup-
pose the function %&(x) satisfies Eq. (3) and the boundary
conditions

60 +,(x))=1, +)(x))=ikt, k, =k(x)),
k(x) = [k —V(x)]'

(4a)

3.0 5.I 3.2
WAVE EVECTOR k

These boundary conditions imply that %&(x) has the same
probability and current densities as exp[ik&(x —x&)]. A
simple calculation demonstrates that in the vicinity of x],

4~(x) —exp[ik, (x —x, )] cc (x —x, )

(For more details on any statement in this section see Ap-
pendix A.) If V'(x) has a discontinuity at x =x&, or x& is
a regular point rather than the point of a minimum, then

%&(x)—exp[ik &
(x —x

& )] ~ (x —x
&

)

FIG. 19. Resonances and the resistance in the vicinity of the
extended eigenstate k =m. Here I.= 100, U = 10, c =0.5,
hk =0.0015.

Any solution to Eq. (3) can be presented as a linear
combination of independent solutions 4

&
and 4 ~ (a bar

denotes the complex conjugation):

%(x)=A)%)( x)+B)'P(( x).

the adjacent potential barriers, while the wave-function
decay length I.o is related to t&, i.e., to the barrier. In the
Lifshitz tail there is also the third length —the (exponen-
tially decreasing with 8') distance between the localized
(fluctuation) eigenstates. Thus, already in 1D there may
be different characteristic lengths rather than one assumed
by one-parameter scaling, ' and there may be no universal-
ity. "

Similarly,

e(x) =22% 2(x)+82%'2(x),

where 42 yields Eq. (3) and the boundary conditions

qiz(x2 ) = 1, 4 2(xq ) = ik2, k2 —k(x2 ) .

Introduce the transfer matrix 0 from x2 to x
&

..

(9)

III. TRANSFER MATRIX

Consider the Schrodinger equation

A2
0=

2

~11 12

z] 22
(10)

4 "+[k —V(x)]4=0,

37—

(3) If 4 is a solution to Eq. (3), then 4 is a solution too.
Since the current is conserved, it must be the same at
x=x] and at x =xz. These two conditions lead to the
following form of 8 in a general case [cf. Ref. 13(b)]:

cosh(S) exp(ia) sinh(S) exp(i P )
8=(k2 /k) )'~

sinh(S) exp( iP) cos—h(S) exp( ia)—

The transmission t and reflection r coefficients to xq for
the wave, incident from x „equal

27 t =(k~ /k2) sech (S), r = tanh S . (12)

22—

l7— )~p
Thus, S characterizes the reflection by the potential.

When the barrier is symmetric (thus, in particular,
k& ——k2), and its center is at x =0, then

l2
l.5

I l I

l.6
WAVE VECTOR k

t

l.7
(13)

FICx. 20. Resonances in the vicinity of k =m /2. Here
I =100; U=3.0; c=0.5; 6k=0.002. Finite length removed
eigenvalues from k =n./2.

The matrix 0 can be evaluated exactly for 5-function and
rectangular potentials. The former case is special at low
and high energies; the latter case is special at high ener-
gies. The approximate formula for 0 can be derived in a
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I
x) x2—a)- k xdx+ k xdx.

I

(15)

Naturally, when k »V,„, then a,P~O together with

k~ op.
According to Eq. (12), transmission and reflection are

related to S. Thus, in a general case any individual
scattering is related, by Eq. (11), to three real parameters
with a clear physical meaning. The description of the
scattering by Eq. (11) is in fact much more convenient
than by the initial Schrodinger equation with the function
V(x) (rather than with three numbers S,a,13). Of course,
a similar three-parameter transfer matrix can be intro-
duced when, say, k

&
& 0 (see Sec. VIII).

In the special case of the 5-function potential v5(x),

general quasiclassical case, which is very instructive phys-
ically.

The quantity ( 13 7r—/2) characterizes the asymmetry of
the barrier. In a quasiclassical case, when k & V „,then

x2
P=pi ——= f „k(x)dx —f k(x)dx . (14)

2 x1 x)

The quantity o. is related to the total phase shift at the po-
tential. When k & V „,then in a quasiclassical case

«=(Vp /64kp )(A, ,
' —A, 2

'
) al/8' (20a)

r 1/8' +~ .

Finally, an analytical V(x) leads to "' '

(20b)

r= exp —4Im f k(x)dx
xm

where x is the point where V(x) is maximal:
V(x ) = V,„and x is the complex point where
V( x ) =k . Typically Eq. (21a) yields

(21a)

(21b)

i.e., leads to the exponential dependence of r on 8'.
A good guide to the scattering by an analytical potential

is provided by

V(x)= Vp /cosh (x/A, ) .

This potential leads to

t = sinh (irk', }Isin (nkX)+ cosh'[m(A, Vp ——,
' )' ]]

(22)

(23a)

A quasiclassical potential with a discontinuous V'I'(x) at
x =xo leads to

t=(1+v /4k ) (16a) When A, ~VO &&k,A,2, 1, then

t~k ~8',
while a particle with high energy has

r= 1 t cc 1/k cc I—/8' .

(16b)

(16c)

Thus, a high barrier or a deep well with v ~&k lead to t

linearly increasing with the particle energy 8' ~ k:
t cc sinh (rrkl, )= sinh (nA, Ã' ),

when k k ~~ Vo/, 1

1 t ~ e—xp( —2~k', ) = exp( —2~A, S'~2) .

In all cases when 1 t « 1 and k—2 =ki, by Eq. (12),

S=&2(l —t) .

(23b)

(23c)

(24a)

t= I 1+ ,' [(lc/k) —(k/lc)] —sin (lcd) }

Ic=(k —Vp)'

When k~ao, then

(18a)

(18b)

A tunneling through a quasiclassical barrier [see Fig.
11(a)] leads in Eq. (11) to ""'

II II
x) XI

S, = f '
~k(x)~dx= f '

[V(x)—k']'"dx, (17)
x', x)

where V(x', )= V(x," )=k . By Eqs. (12) and (17) the
transmission coefficient exponentially increases with the
particle energy —cf. Eq. (16b).

A quasiclassical scattering above the barrier or well,
when k & V,„and r « 1, crucially depends on the
analytical nature of V(x). By Eq. (16c), the 5-function
leads to r cc I/8'. A symmetric rectangular barrier of the
height Vo and the width t leads to

Every symmetric potential is reduced to an "effective 6-
function potential" V,tt5(x), which leads to the same 8 as
Eq. (11). One should choose

V ff —2k sinh[S(k)] (24b)

Naturally, Vd~ and o. depend on the energy. The length
a/k also depends on k. As long as the distance between
the centers of actual potentials is larger than a/k, such a
presentation may be useful.

and present the wave function in the form

3& exp(ikx ——,ia)+Bi exp( ikx+ —,'ia) —for x &0
(24c)

&2 exp(~'kx ——,
' ia)+82 exp( ikx+ ,'ia) for——x&0.

r =1 t ~I/5'— (18c) IV. RESONANCE TUNNELING

Vp[1 —(X —Xp)/A, i] if x &Xp
V(x) = '

Vp[1 —(x —xp)/1, ,] if x &xp

leads "' to

(19)

A quasiclassical potential with a discontinuity in the first
derivative at x =xo,

Now consider a tunneling through two barriers of Fig.
11(a), denoting them by subscripts "1" and "2" corre-
spondingly. The transfer matrix through both barriers is
the product of their transfer matrices. The direct calcula-
tion, which accounts for Eqs. (11) and (12), leads to the
transmission coefficient tiz (see Appendix B for all the de-
tails},
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t» ——
~

coshS& coshS2+ sinhS& sinhS2 exp(ice)
~

where

(25) determined by Eq. (17). Outside the resonance at the lev-
els, by Eq. (25),

ro =k —4—ai —a2 ~

t~2 ~ exp[ —2(S~+$2)] .
(26)

The width of the levels, by Eq. (25), is

(30)

The quasiclassical tunneling, by Eqs. (14) and (15), yields
I

x2
co=2 J k(x)dx .

I

(27)

The Bohr quantization determines quasiclassical levels in
the well between the barriers "' '

6co oc [ exp( —
2S& )+ exp( —2S2)] .

V. RECURRENCE RELATION

(31)

x2J k(x)dx =(Q+ —,
' )m,

xi
(28)

t&z
——1/cosh (S& —Sz) =4 exp( —2/

i S& —S2 i
) . (29)

In particular, S~ ——S2 leads to t&2 ——I. Here S~ 2 &~1 are
I

where Q is an integer. In this approximation at eigenener-
gies co =(2Q+ 1)n, and Eq. (25) leads to

Now it is convenient to consider the wave, incident
from x =+ ao, and the transfer matrix from xz to xz in
Fig. 11(a). The same reasoning as in Sec. III leads to the
same form of the transfer matrix as in Eq. (11) with the
same S and a, but with the factor (k& /k3)'~ rather than
(k2 /k& )'~, and P replaced by (m 13)—:P—(see Appendix
8). Also, it is convenient to introduce cos(h)= sech(S)
with 0&h &n./2 and tan(h)= sinh(S). Finally [cf. Refs.
11 and 13(b)]

A3
=(k2 /k3)'

3

exp(ia2) sec(hz) exp(iP2) tan(hz)

exp( —iPz) tan(hz) exp( ia2)—sec(hz) B,

The Schrodinger equation is linear. Therefore, it is suffi-
cient to consider currentless (i.e., real) wave functions,
with

where superscripts (+) correspond to Xo ——+1. The Lan-
dauer formula' for the dimensionless resistance
R =t ' —1 yields

+A„%'„, a =2,3, (33) &~= [ exp(g++] )+ exp(g++ f ) 2] /4, (41a)
in Eqs. (7) and (8). Choose

A„= exp( —,g„—, i/„) . — (34)

Then the transfer matrix 8„ from x„ to x„+~ leads to the
recurrence relation (for details see Appendix C):

where X is the total number of scatterers. According to
Eqs. (33), (34), and (41a) the resistance at a given length is
approximately equal to the probability density p. By Eqs.
(41a) and (36) when L ~Do, then

P„=2F„a„~ P„&,—F„=a—rctanX„, (35) gL, +) -LH, „, H,„= lim L
L~oo @=1

(41b)

g„+)——g„+ ln(k„/k„+))+H„= g H„+ ln(k/k„+, ),

H„= in[(1+X„)/(w„~+w„'~X„)],
X„+~

——w„(X„—r„)/(1+r„X„),
where

w„= tan ( —,'m ——,h„),
r„= tan[(a„—f3„+a„&+/3„&)/2] .

(36a)

(36b)

(37)

(38)

Obviously, this recurrence is valid for any ~. To the left
of all barriers one may chose

Xo=+1, ao=ho ——0~ Po=~/2 . (39)

t =4[ exp(gx 1)+ exp(go+I )+2] (40)

The knowledge of two independent solutions relates the
incident and reflected waves to the transmitted waves and
leads to the transmission coefficient'

Thus, typically the resistance and the probability density
exponentially increase from one end to another, The aver-
age localization length of the wave function is determined
by the ensemble average (H,„) of H,„, namely
Lo ——2/(H„). The localization length determines the de-
cay of the wave functions, thus determines the overlap-
ping of different eigenfunctions and the correlation be-
tween wave functions localized at the distance I. from
each other. At the distances I.&~I.O wave functions and
the corresponding contributions H, in Eq. (36) are in-
dependent. Thus, when v &~Lo, g„+& in Eq. (36) consists
of -a./Lo independent terms. Therefore g's yield to the
Gaussian distribution. The corresponding exponentially
rare fluctuations of g„are related to the eigenstates (cf.
Appendix 8). Their g's increasing from both ends [cf.
Figs. 11(b) and 12] match each other and yield exponential
)ocalization of all states. The exponentially 1ow probabili-
ty of the eigenstates leads to their exponentially small
"width" (cf. Appendix 8).
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The determination of R as a function of the particle en-
ergy (from the recurrence relations) allows one to deter-
mine the eigenenergies (i.e., the energies where R is
minimal) and their eigenfunctions (again from the corre-
sponding recurrence relations). This method, as well as
the corresponding recurrence relations, are applicable to
phonons, " and to any kind of the waves: acoustic, elec-
tromagnetic, ' '" spin waves, hydrodynamic ones, as well
as to the random Ising" and diffusion problems.

VI. PHASE RANDOMIZATION

It is natural to expect that the phase P„ in Eqs. (33) and
(34) is randomized ' ' in a random sequence and becomes
independent of the initial phase Pp. Any wave function
can be decomposed into the independent wave functions,
introduced in Sec. V, with Xp ——+1 [and thus, by Eqs.
(39) and (35), Pp+ ——0, Pp = —m]. Therefore, it is suffi-
cient to demonstrate that the corresponding P; yield
AP„=P„+—P, ~0 when ~~ cc.

In this section I demonstrate, following Ref. 19, that
b,g„exponentially decreases with v. More specifically (see
Appendix D),

b,P„cc 1/R, , (42a)

where R„ is the resistance of ~ scatterers. Thus, the corre-
lation length of bP„ is L p /2 [since R(L) = exp(2L/Lp)].
So, if the "initial" phase at x„ is P, then in a given ran-
dom system the phase P, at x, will be independent of P,
with the exponential accuracy, and will depend only on
the sequence between x, and x, . That is, when
changes from 0 to 2~, then P„changes by cc 1/R(x—x„). Only this change contributes into the phase corre-
lation between x„and x . Therefore,

cc (I/R(
i
x —x„

i
))

cc exp( —2 )x„—x„~ /Lp) . (42b)

The angular brackets denote the ensemble averaging. The
ensemble averaging may be replaced by the averaging over
different initial positions. In all cases, the most con-
venient quantity to study correlation function is (cf. the
Ising model in Ref. 37)

q (x,x„)=P, (P,+)—P„(P ),

where P (P„—) is the phase at x„, generated by the phase
P —,where /+=0, P = vr are independent pha—ses. The
quantity q (x„,x„) describes the phase correlation specifi-
cally between the points x and x ~ in a given random se-
quence, and allows for the detailed analysis of the phase
correlations. Since q ~ 1/R, the extensive quantity which
may be scaled and whose average has regular ( cc 1/V L )

fluctuations, is lnq. However, the correlation at the dis-
tance I is described by the ensemble average
q, (l) —= ( q (x„,x„+I) ). Alternatively, it can be related to
the average over all possible initial positions. For instance
in the case of a disorder on a lattice with unity interlattice
spacing (and x =v) the correlation at l is related to

q (n, n + l ) ~ exp( —2l /L p )

is exponentially small when I &&I.o. However, a fraction
-Lp /L will have n -A —I/2 and q (n, n+I)-1. Thus

q;(l) —exp( —2l/Lp)+(Lp /L ) .

When L~ cc, then lnq;(l) cc i, as should—be expected.
However, at large 1 & —,Lp ln(L/L p) the correlation satu-
rates to (Lp /L )—see Fig. 6(b).

VII. PHYSICAL IMPLICATIONS:
CONDUCTANCE AND ITS RESONANCES

Equations (41a), (41b), and (36)—(38) relate the localiza-
tion length to the characteristics of an individual scatter-
ing. Two cases are of special interest.

When the scattering is weak, the individual reflection
coefficient is close to 1. By Eq. (32), this means h„=0.
Thus, w„=1, by Eq. (38), and one can expand H, „ in Eq.
(41b) with respect to

j
1 —w

~

&&1. On the other hand,
H„does not change when w„~w ', because Eqs. (36)
and (37) are invariant to w„~w ', X„~—X„'. If
w„= 1+w', where

~

w„'
~

&&1, then w„=l —w'. There-
fore, the H, „decomposition is even in m,':

H„cc (w' ) —1 t—(42c)

where t is, by Eqs. (12), (38), and (32), an individual
transmission coefficient. The dependence of t on the
analytical nature of the potential when the energy is high
was discussed in Sec. II. Thus, the localization length
strongly depends on the analytical properties of an indivi-
dual potential. At high energies the analytical potential
leads to the exponential dependence of Lo on the energy:

L —I
q;(1)= g q(n, n+1) .I. —I „

For almost all energies, lnq, lnq„and lnq; are related to
lnR, 1n(R), [L 'Q„R(n, n+l)] and have the same or-
der of magnitude' ' '; all correlations exponentially van-
ish. But eigenenergies drastically change the situation.
According to Sec. II, the resistance at the eigenstate is
proportional to the probability density and has an ex-
ponentially high maximum inside the system, at the local-
ization point. Therefore at the eigenenergy the phase
correlation between ~=0 and a given sc first exponentially
decreases with K then reaches an exponentially deep
minimum in the localization region and then exponential-
ly increases with ~—see Fig. 6(a). The correlation between
the point with approximately equal values of R (which are
located at approximately equal distances from the locali-
zation region), is —1, no matter how far off these points
are from each other. The phase, which has already ex-
ponentially well forgotten its "origin, " after the localiza-
tion point starts "rediscovering" it. When the localization
region is close to L/2, the correlation q may be the
highest between the ends.

A more meaningful characteristic of the system is the
correlation q;(l) at the distance 1. Most of initial n's and
the corresponding (n+l)'s will be on the slopes of R(L).
Their



EIGENSTATES AND PROPERTIES OF RANDOM SYSTEMS. . . 4117

Lo L——ooexp(a8' '~ ), a is a constant. This means, that
even in 1D the localization becomes weak at moderate en-
ergies,

l700

l500
8' ~ [ ln(L/Loo)]

and implies an incredible

R = exp[(2L/Loo) exp( —a 8' '~ )],

(42d) l300

l loo

i.e., the exponent in the exponent, when L ~ ao.
A strong individual scattering means, by Eq. (32),

h=+7r/2 and thus, by Eq. (38), w « 1 (when h =a/2) or
w »1 (when h = —m/2). When w «1, and r —1, then,
by Eq. (37), X„«1.So,

X +1——w„r

900

700

500

300
and

H,„—[ 1n( 1/w„)]„.
When w »1, then X„»1,

X +1—w /r„,
and

(44)

(45)

IOO
l.0

l

l.2
I t I

l.4 l.6
WAVE VECTOR k

l.8 2.0

FIG. 21. Resonances for L =5000 U = 17; c =0.5; Ak =0.01.
At such a scale resonances are very little pronounced.

H,„-(lnw„),„.
Equations (44) and (46) can be combined into

H,„-( 1nt„'),„,

(46)

(47)

when t «1. Thus, when t «1 exponentially increases
with 8', and lnt cc 8' '~ (at low 8'), then the localization
length depends on 8' as Lo~8''~. In various limiting
cases, Lo can be evaluated analytically (see Ref. 15 and
Appendix C). In a general case, Eqs. (41) and (36}—(39)
allow for easy numerical experiments. In the case of 5-
function potentials they were derived in Ref. 15; in the
case of arbitrary nonoverlapping potentials in Ref. 11.
Consider the simplest case of 6 functions on a lattice. The
corresponding Schrodinger equation is

eigenenergy), Fig. 17 (very close to the eigenenergy; note
the "future" localization maximum), and Fig. 18 (an "or-
dinary" energy).

The knowledge of the height R„and the width 5k of the
resistance resonances in Figs. 5 and 15 allows one to
determine the localization position A for the correspond-
ing eigenenergies. According to Sec. IIC the distance
from the localization position to the nearest end equals

L
2+

j
lnR, /1n5k

~

The directly determined probability densities for these
eigenenergies in Figs. 7 and 16 yield the exact values of A.
The results are for u=1.7: "evaluated" A=50, "exact"
A =47; for u =6.0: evaluated A =31, exact A =29.

Figure 14(a) represents a histogram of the distribution

L
'0 "+ x. —g v„5(x n) %=0,—

n=1
(48) IPI4

where U„ is U with the probability c and is zero with the
probability (1—c). Further on everywhere e=0.5. Then
Fig. 8 demonstrates a weak localization for a weak poten-
tial U =0.05 at the length L =100. Figure 21 presents the
case of an intermediate potential U =1.7 at a large length
I.=5000. The same potential at a shorter length L =100
is demonstrated by Fig. 22. The deepest resistance mini-
ma in this plot is resolved in Fig. 15. By Eq. (16a), a rela-
tive strength of the potential is determined by u/2k. A
strong potential u =6 (at the same sequence as u = 1.7) at
a large length L =5000 is presented in Fig. 1. [Note an
"unusually" deep minima. Note also that R —exp(7500)
is easily calculated. ] For a shorter length L = 100, R (k) is
presented in Fig. 2 and (on the finer scales) in Figs. 3—5.
The calculated R =R(L), which according to Eqs. (41),
(33), and (34) is approximately equal to the probability
density p, is demonstrated for v =6, L = 100 in Fig. 7 (at
the eigenenergy} and for u =1.7, L = 100 in Fig. 16 (at the

Iol2 =

I08:'

CA

V)
LLI
lL

IOo =
1.04 t.14

i/p

I

1.24 1.34
S'AVE VEC TOR k

I

1.44 1.54

FIG. 22. Same as in Fig. 21 but L = 100 and Ak =0.002.
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of A =
4 I p lnR for 400 resonance minima of R at

L, = 100, U =4. One hundred random sequences were
chosen (with c=0.5). In each sequence four R minima
closest to k =2.88 were chosen. Within the normal fluc-
tuations, the distribution is in agreement with Eq. (2c),
where L0-4.5. The "tail" in Fig. 14(a) at A &L/2 is re-
lated to the fluctuations in Lp ~ Also A l. /2 is close to
the ends which somewhat affect the distribution. Note
that resonance R —1 and R —exp(40) are equally prob-
able. In the most interesting region of small lnR & 5 the
histogram is presented in Fig. 14(b). Fewer peaks (-40
of them) lead to larger fluctuations, but again within nor-
mal limits.

The derived equations allow also for other applications.
It was suggested ""' that a representative resistance
has the same order of magnitude as the ensemble average
resistance, if the number of impurities is kept fixed The.
latter average can be analytically evaluated, ' and numeri-
cal experiments' verify the suggestion of Refs. 41 and
10a. Numerical experiments similar to those of this sec-
tion allow one to test the relations'"' ' between the
representative and ensemble average resistances and the
limitations on the universality. "

The paramagnetic spin splitting of the energy accounts
for the effect of a static magnetic field in a 1D system.
Finite electric field changes the potential,
U(x) —+ U(x) eEx, and—shifts its minima. (See the
straightforward calculation in Ref. 43.) It may be easily
accounted for in the suggested scheme. The generaliza-
tions to acoustic" and electromagnetic waves, ' "' ' ' to a
quasiperiodic potential, to a 1D Ising model "' poly-
mer thermodynamics, and classical diffusion in a random
media are also straightforward (see below). But the scope
of possible applications may be even wider [e.g., to
charge-density wave (CDW)].

VIII. ACOUSTIC PHONONS,
ELECTROMAGNETIC WAVES, ETC.

2—Q q» =AJ(qj+] —qj)+A. ](qj ] —q. ) . (49)

The units are such that XJ
——1 has the highest concentra-

tion. In the continuous case, when qJ. , XJ. slowly change
with j, Eq. (49) reduces to the equation for sound waves.

Introduce

f» XJ ( lqJ + ] lqJ )

Then Eq. (49) leads to

—0 g» /J]J =gj+]—2(j+gj
Introduce

'=1+g, 0 =2(1—cosk), —m. &k &vr .

Then Eq. (51) yields

gz+] —2 cos(k)g +g. ] ———2(1—cosk )gjg» .

(50)

(51)

(52)

(53)

Two real quantities gj ],g'j can be expressed through one
complex "amplitude" 5J.

g =5» exp( ikj)+—5» exp(+ikj) =d»+d»,

g +, d»K+dj——K;K= exp( ik), —
(54a)

(54b)

where a bar denotes the complex conjugation. By Eqs.
(54a) and (54b),

Kj —] j—]+dj —]

gj dj ]K+dj ]K

According to Eqs. (54a) and (54d)

dJ. +dJ =dJ ]K+dJ. )K .

(54c)

(55)

Substituting gj+],gj, and gj ] from Eqs. (54b), (54a), and
(54c) into Eq. (53), one obtains

d» [ K —4g» sin (k /2)]+ d» [K—4g» sin (k /2) ]

=d» ]+d» ] . (56)

A harmonic chain with force constants kj, displace-
ments q» exp( idiot) (t is tim—e), and equal masses yields
the dimensionless equation,

Equations (55) and (56), after simple algebraic transforma-
tions, lead to the transfer matrix from 6J & 6J &

to 5J,5J ..

6J.

5J.

0 1 ig» tan(k—/2) ig, tan(k/2—) .
K

—] 0 5»

0 K ig» tan(k/2) 1+ig» tan(k/2) 0 K (57)

4' "+ k —g u»5(x —j) 4=0, (58)

This transfer matrix is equivalent to the transfer matrix
for the Schrodinger equation

was calculated in Ref. 15. A straightforward application
of the corresponding formula for Lp to the case of acous-
tic phonons with k ~&1 leads to the localization length
Lp

where Lp 1 jk (60)

u» 2kg» tan(k/2) . —— (59)

The last equation rigorously maps" the phonon problem
onto the problem of a quantum particle in Eq. (58). (Dif-
ferent masses of atoms may be considered similarly. ) For
instance, the localization length for a quantum particle

As it should be, Lp~oo when k~0, i.e., when phonon
frequency Q —+0.

The harmonic chain equation describes a number of
other systems. For instance, in the case of diffusion, q-Jin Eq. (49) can be interpreted as the Laplace transforma-
tion of the density pj(t),
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p (t)=. J qj(co)e 'de, (61)

and AJ. as the hopping probability from the jth to the
(j+1)th site. The same type of the equation describes the
Bloch electron in a magnetic field. An electromagnetic
wave in 1D also reduces to the Schrodinger-type equation.
(This is the case, e.g., in Fig. 9.) For instance, suppose a
dielectric constant e= const, a magnetic permeability

p =p, (x), and a magnetic field H, is

is of the Schrodinger type for each of the H components.
As in the case of phonons, 1.0 cc/co for Eq. (63). A 1D
Ising problem can also be mapped" on the Schrodinger
equation. Consider, for instance, the Hamiltonian A,

Z(j = ~ 0(j Z(j )
s ~ ss ss

S
(65)

~=—g (Jjsjsj i+Hjs~. ), sj =+1, JJ & ) H~ ~
. (64)

The partition function Z,' ' for j sites with the spin s at
the jth site yields the equation

H, =H(x) exp(idiot i k—, r ), (62) Here

where t is time and r denotes the transverse coordinates.
Then the equation

8,'J'= exp( Jjss'+Hjs ):—2 sinh(2JJ )8„

Jj Jj /kg T Hj Hj /kg T (67)

H "(x)+(—k, +epco /c ) H(x) =-0 (63) ks is the Boltzmann constant, T is temperature, and

exp( JJ. +HJ )/2sinh(2JJ ) exp( —Jz+HJ )/2sinh(2J&)
(j)

exp( —J& HJ ) /2—sinh(2J&. ) exp( JJ H/ ) /2 sinh—(2J& )

Now consider potential energy, presented in Fig. 23. The corresponding dimensionless Schrodinger equation is

(68)

4 "+ k —g U„s [x (n ——1)]s(n —x ) 4=0,
n

(69)

1, x)0
0 x&0, x„=n .

Present + in the region x„&&x &x„ in the form

4=A„exp[ i »„(x—x—„)]+B„exp[+i»„(x—x„)],
where

(70)

(71)

K~ =U~ —k

A„ Kn+1

The sign of K„will be chosen later. A simple calculation leads

—,
' (»„ /»„+, )' (1+»„+)/»„) exp(Z„+i)

to

—,(»„ /»„+ i )
'

( 1 —»„+i /»„) exp( —Z„+i ) g „+,

(72)

z (»„ /»„+&)' (1 —»„+& /»„) exp(Z„+i) 2 (»„ /»„+~)' (1+»„+i/»„) exp( —Z„+~) n+1

(73)

The 2X2 matrix in Eq. (73) is identical to 8'"', from Eq.
(68), if

Z„+i
—— H„, »„+i /»„=—tanh( J„+H„).

IX. SUMMARY

The problems of phonons, electromagnetic waves, clas-
sical diffusion, Ising thermodynamics, and Bloch electrons
in a magnetic field reduce to the Schrodinger equation
with the determined potential. The Schrodinger equation
in a general case is reduced to a three-parameter transfer
matrix. The recurrence relation for the exponents in the

components of the transfer matrix is derived. The locali-
zation and correlation lengths and their dependence on the
parameters of a random system are determined. Eigenen-
ergies and eigenstates are determined and analyzed. Their
localization is proven to be uniquely determined by the
dependence of the resistance on the Fermi energy.
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for arbitrary Az, B2. Comparing Eq. (A6) and Eq. (A7),
one obtains

11 12

012 11
(A8)

l

I

I

I

I

I

I

I

I

I

I

I

t

I

I

I

I

I

I

Xp (

E=k

Another general relation is the current conservation:
[%(d%'/dx) —'l(d 4/dx)] must be the same at x=x&
and x =x2. By Eqs. (A3)—(A5) this implies

kl(
I

~ i I

' —
I
Bi

I
')=k2( I~2 I

' —
I
B2

I

') .

Now Eq. (A8) leads to

k2
' cosh(S) exp(ia) sinh(S) exp(i p )

sinh(S) exp( iP) —cosh(S) exp( ia—)

(A9)
FIG. 23. The Ising thermodynamics maps on such a potential

V(x) in the Schrodinger equation. I shall also use another presentation of Eq. (A9). Intro-
duce cos(h ) = sech(S), where 0 (h (m /2, and
sinh(S) = tan(h). Then

APPENDIX A: TRANSFER MATRIX

4 "+(k )
—V) )4=0,

where

k )
——(2m/fi )E V(x) ), V)(x)—= V(x) —V(x) ) .

(A 1)

Consider a general form of a transfer matrix through an
arbitrary 1D potential barrier (or well) —see Fig. 11(a).
Present the Schrodinger equation in the form

exp(ia)/cosh(h) exp(i P ) tan(h)
0=

k, exp( i P ) ta—n(h) exp( —ia)/cos(h)

(A 10)

This form of the transfer matrix in the case of V1 2
——0 in

the infinitesimal vicinity of x=x1,x2 was presented in
Ref. 11. The above derivation makes no assumptions
about the potential.

The transfer matrix from x1 to x2 is 0~..

q')(x ) ) = 1, 4 '( (x ) ) = ik, . (A3)

( fi /2m )V(x) is a potential energy, E is a total energy of
a particle, V~(x~ ) =0, and x~ is, e.g. , the point of a local
minimum where E) U(x~). If V&(x) =0 in some region,
any point in this region can be chosen for x1. Choose the
solution 4& to Eq. (A2), which yields

B2 B1

k1
0) ——

k2

~11 12

12 11

It is easily related to 0:

(Al 1)

(A12)

Consider in the vicinity of x1 the wave function

'0 =A ) +)(x)+B) %)(x) . (A4)

By Eq. (A12), the transmission coefficient of the
current is the same from the left to the right and vice ver-
sa. The solution to Eqs. (Al) and (A3) can be presented as

A bar denotes the complex conjugation. Similarly, in the
vicinity of x2 consider

4=A q+2(x) +B2%2(x),

where +z yields Eqs. (Al) —(A3) with the subscript 1 re-
placed by the subscript 2, and x1 replaced by x2. Intro-
duce a transfer matrix from A2, B2 to A1,81.

r

A1 A2 |11 612

B B ' 0 6t (A6)
1 2 21 22

The complex conjugated 4 yields the same Schrodinger
equation as O'. Therefore, B2%'2+32'P2 generates
B&%~+A&%&. Thus, according to Eq. (A6),

B] B2
=0 (A7)

A1 A2

+,(g)=l+ik, g+ f (g —g')[Vl(g') —k) ]V)(g')dg',

(A13)

g=x —x), Vi(0) =0 . (A14)

4'~(x) = exp[ik &
(x —x, )] . (A15a)

Elsewhere the difference between 4', (x) and this plain
wav~ is, in virtue of Eq. (A13), of order of
g f V&(g')dg'. Generally the best choice for xt, x2 are
the points where V(x) has local minima. In the vicinity
of, e.g., x],

4 ) (x)—exp[ik ) (x —x ) )]—(x —x ) ) (A 1sb)

If V, —=0 in some vicinity of x &, then 4&, by Eqs. (Al) and
(A3), is a plain wave. There,
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[At any point other than the minimum, this difference is
-(x —x, ) . ]

If at x & x2 there is no barrier and thus there is only a
transmitted wave B2 ——0, then

P=B1 ~~ 1 21 ~~11 (A16a)

The current transmission t and reflection r coefficients
equal

r= l&i I'/I ~i I'=
I
pl'

t=kz/A z/ /k, fA,
/

=kz[rf /k, .
(A16b)

If a barrier is symmetric (and, in particular,
k& ——kz =k), then the Schrodinger equation allows for odd
and even (with respect to the middle of the barrier) solu-
tions. This leads to

(A17}

in Eq. (A9). Thus m. /2 —P—:P characterizes the asym
metry of the barrier. To elucidate the physical meaning of

I

the quantities S,a,P in Eq. (A9), consider several special
cases.

In a quasiclassical case, the comparison of Eq. (A16a)
to the formulas 31(al) for r, p leads to

S=S,= f k(x)dx
Xi

I
X) x2—a= J k(x)dx+ I k(x)dx,

l

—P=—+ J k(x)dx —f k(x)dx,
1

k(x) = [(2m/Az )Z —V(x)]'" .

(A18)

(A19)

(A20)

Thus, AS is the absolute value of' the classically unavail-
able phase area (action).

The straightforward calculations in the case of a rec-
tangular barrier, V(x)=0 at x &x~, V(x)—:(k~+~ )fi /
2m at x~ &x &xz and V(x)—:(kz+~ ) at x ~xz lead to 8
with

cosh(S) exp(i a ) = —,
'

exp(ikod ) I (1+kz /k ~ ) cosh(ird ) —i [(a/k ~ )'—(kz /x')] sinh(ad ) I,

sinh(S) exp(i p ) = —,
'

exp( —,
' ik'd ) [—(1—kz /k

& ) cosh(xd ) —i [(Irlk & ) + (kz /Ir) ] sinh(ird )J,

(A21)

(A22)

ko ——(k)+kz )/2, k —kz key d xz x1 (A23)

a =n+kod (A24)

A 5-function potential energy,

V(x) =v5(x —xo),
allows us to choose x1 ——xo —0, x2 ——xo+0, and leads to

(A25)

cosh(S) exp(ia) =1—iv/2k, P=—
2

' (A26)

APPENDIX B: RESONANCE TUNNELING

Consider a transfer matrix O~z through two consequent barriers [see Fig. 11(a)] with the transfer matrices 8~ and Oz.

Then

6'12= 12 (Bl)

Denote S,a,P by the subscripts 1 and 2 for the first and the second barrier correspondingly. Consider beyond the

second barrier only a transmitted wave function. Then one obtains

0
cosh(Sz }exp(iaz)

k, sinh(Sz ) exp( ilaz)— (B2)

S~PPo~~ Sz & St ))1. Then the probability density p at x=xz is —exp(2Sz) times higher than in the transmitted wave
function, whatever is the particle energy. Now consider x -x &. By Eq. (B1),

exp(iso~ }[coshS~ coshSz+ sinhS& sinhSz exp(i~)]
"P( iroz)[ sinhS~ cos—hSz+ coshSi si hSz P(iso)] (B3)
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where

co=p] —Pz a] az ~]—a]+a2 ~2 131 a2 ' (B4)

Fig. 11(a)] of the resonances and of the eigenenergies
~' = (2Q + 1)]r. In the resonance

I

&can
= k xdx= +T 7T'.

. Z)
(B5b)

An asterisk denotes the values at the eigenenergy and Q ]s
an integer. When co is not too close to (2Q+ 1 }m, then the
probability densities in the incident and reflected wave
functions are —exp(2S]) higher than in the vicinity of
x=xz and —exp(2S, +2Sz) higher than in the transmit-
ted wave [see Fig. 1(b), dotted curve]. The current
transmission coefficient t ~2 through both barriers is

t] tz, w-here t ] 2 —exp( —2S] 2 ). However, when

Q) —Q7 +@7» CO —(2Q+ 1 )77» CO (( 1

In the case of interest (Sz&S]»1), by Eqs. (A19} and
(A20),

I

co=2 f „k(x)dx,
X)

I I
Z2 X,

~]——,
' ~+ J k(x)dk+ J k(x)dx,

X) 1

I
Zp X3

~2- ,' (~ n—) f— k—(x)dx+ „k(x)dx .
X) X2

The quasiclassical eigenenergies in the potential well are
determined by the Bohr quantization, 3"' '

APPENDIX C: RECURRENCE RELATION

Equations (A12) and (A10) lead to the transfer matrix
of Eq. (32) for an arbitrary wave function, described by
Eqs. (A4) and (A5). But any wave function reduces to two
independent currentless (i.e., real) wave functions, e.g. ,

~ )'P)+B)4] ——
A)+B) A]+B)

2
+)+

2

~) —B)+i
2l —2l

(Cl)

Since the Schrodinger equation is linear, it is sufficient to
consider only currentless wave functions. (The current is
conserved; therefore, then the wave function is everywhere
currentless. ) Present such wave functions in the form

t ],2 t2 «] —exp( —2 lS] —S2

Particle density accumulates at the quasilevel which is lo-
calized inside the potential well, and the probability densi-
ty of incident particles with such an energy is —exp(2S] )
times less than in the vicinity of x=xz. When S] ——Sz
and co'=0, then t&2-1. This is the origin of an allowed
energy band (with no scattering) in a periodic system.

then the particle density is

—exp(2Sz —2S] )[1+co exp(4S] )]

Ck%'k+Ckl k at x=xk

ck = exp( —,gk ——,i4k) .

(C2)

(C3)

in the incident and reflected waves. Thus,
co'( exp( —2S] ) determines the width [dashed lines in

Now the transformation from, e.g., x2 to x3 by the
transfer matrix from Eq. (32) leads to

exp( —,'g3 ——,
'
i/3) =(kz /k3)' [ exp( —,'gz —,'i /2+ —,

' iaz) sechh—z+ exp( —,'gz+ ,'i/2+i —pz)tanhz],

where az, Pz, hz describe the barrier to the right of xz. Introduce

w = tan ( , n. —,h ) . ——1 1

Then

(C4)

(C5)

sech =(I+w)/2v w, tanh =(1—w)/(2v w ),
and Eq. (C4) can be rewritten as

exp( —,
'
g3 ——,

'
i/3) =(kz /k3 }' wz

' exp[ —,gz+ —,
' i(az+pz)] I cos[ —,($2 —az+Pz)] iwz s]n—[ z~ (42 az+Pz)] I

(C6)

(C7)

or as

exp( —,'g3 iF3)=(kz /k3)' w—z
'

X exP( 2 gz)( cosD2 iwz sinD—z),
(C8)

where

fz (a2 Pz+al+Pl ) '

By Eq. (C8),

exp( —,'g3) cosF3 (kz /k3) wz exp(T'gz) cosD2

exp( —,
'
g3 }sinF3 ——(kz /k3)' wz sinDz .

(C10)

(Cl 1)

(C12)

F3 =
2 (1t 3+az+Pz)» D2 =

2 (42 az+Pz) —F2 kz»

(C9) tanF3 wz tanDz wz tan(Fz —k—z)—— (C13)
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g3 —g2 + ln[w2 '( cos D2+w2 sin D2)]+ ln(k2 /k3 )

=g2+ ln[(w2 '+w2 tan D2)/(1+ tan D2)]

+ ln(k2/k3) .

By Eq. (C13),

(C14}

g3 —g2 + ln[( 1 +X3 )/(w2 +w2 'X3 )]+ ln(k2 /k3 )

(C15)

Some general remarks on the recurrence. The recurrence
equations (36) and (37) are invariant with respect to the
change w„~w„', r& ~( —r„), X„~X„'. The first
change is equivalent to h~ —h in Eq. (38). Another in-
variant change is X&~—X&, r& ~—r&, which is
equivalent (in virtue of the previous change) to
X&—+ —X& ', w&~w& '. Consider the last change in Eq.
(38),

and

X3 w2(X2 2}/(1+r2X2) i

where

(C16)

(C17)

X&+ &

——w&(X&+r„)/(1 r„X—„),
and rewrite it as

~p =X„+i—X„=[(w„—1)/(1 r„X„—)]X„
+rq(wp+X„)/(1 r„Xp) .—

(C23)

(C24)
Obviously, Eqs. (C15)—(C17) are valid for the recurrence
from any x„ to x„+1. In the case of 5-function potentials
Eqs. (C15)—(C17) were derived in Ref. 1S; in the case of
nonoverlapping potentials in Ref. 11. The knowledge of
X„determines, by Eq. (C17},F„=arctanX„+Q~„where
Q is an integer. By Eqs. (C9), (C2), (C3), and (C15), the
wave function is thus determined, except for its sign
[which is unimportant, but can be derived from Eqs. (Cl 1)
and (C17)].

For an arbitrary number of barriers, Eqs. (C15) and
(C16) provide the recurrence relations,

g„+& ——g 1n[(1+X„)/(w»+w& '|X„)]+ln(ko /k +, )
p=1

K—= g H„+ 1n( ko /k„+, ), (C18)
@=1

Xp+ i w„(Xq rq——)/(1+ r„—X„) . (C19)

t =4[ exp(gL+'& )+ exp(gL, +'& )+2]
By Landauer, ' the dimensionless resistance

R = t ' —1 = [ exp(gL +'i ) + exp(g L+'& ) —2]/4 .

(C21)

(C22)

Suppose that to the left of the first barrier (it is x.= 1,
k

&
——k ) there is only a transmitted plain wave

exp( ikx }= cos—(kx ) i sin(kx) . —

By Eqs. (C2) and (C3), cos(kx) corresponds to $0——0,
—sin(kx) corresponds to Po ——m. It is convenient to intro-
duce formally the barrier at x =xo+0 with 00——1. By Eq.
(A10), its ho ——ao ——0, ko ——k. Choose its po ——+ ,'vr, in-
agreement with Eq. (A17). Then the initial conditions for
g„' —+' read

Xo ——+1 . (C20)
To the right of the last barriers (it is a.=L ), by Eqs. (C2)
and (C3),

4t. +i = exp( TgL+ i ) cos«x ——,PL+1)
(+) (+)

+i exp( —,'gL +'i ) sin(kx ——,
'
Pz'+, ) .

Now the current transmission coefficient t is easily related
to gL

—' and equals'

When
i X&

~
&&r„, then X„~—1/X„ leads to

X„+&——(1 w&)X„+r„=—w& X„+r„. (C26)

The regions
~
X&

~

&&1/r„and
i X& i

&&r„overlap when
r„«1,while Eqs. (C25) and (C26) are easily solved. For
instance, in Eq. (C26) the change X„=Q„p„,
0&——wz 1wz 2 leads to

jM

)1~+1 =p~+r~Q~+i =pi + g r Q (C27)

APPENDIX D: PHASE RANDOMIZATION

To derive Eq. (42), present Eqs. (35) and (38) in the
form

X„=tanF„, F„= ,' (p„+a„+p„ i), —
1r„=tan p„, p„= —,(a„—p„+a„ i+p„ i ) .

Now Eq. (37) can be rewritten as

(Dl)

(D2)

tan E&+1——wz tan F&, F& ——F& —pz .

Therefore, by Eq. (Dl), 1+X&——sec F&, and by Eq. (D3),

(D3)

Suppose r& )0, w& ) 1 and 0 (X&(rz '. Then

X„+i—X„&Q„X„,Q„=(w& —1)/(1 r„X„)&0—,

and X& & (I+Qz)X& exponentially increases with p, until
X& becomes larger than rz '. Then X„+1becomes less

P& |M i P]
than 0, and the first term in (C24) becomes negative.
However, this negative value cannot become too large,
since a large enough negative X& leads, by Eq. (C23), to
X&+ &

——w„ /r&. Thus X„may change only between cer-
tain largest and lowest values, except for the special
points, where X& ——1/rz implies

~
X„+i i

= oo. The next
value, however, by Eq. (C23) is a regular
X„+2———w& /r&+ &. When, e.g. , w„= 1+w„and w„',
rz « 1 (weak narrow potentials), then the analytical solu-
tion to X& is possible. In the region where

i X&
~

&& 1/r„,
in the leading over w&, r& approximation,

X„+&-wz(X„+r& )(1+r&X„)=(1+w„'+r„)X„+r„.
(C25)
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w& ~+w&,X& w——z, (1+ tan F& t)=w& t sec F„—1 2 2 = 2

Therefore, Eq. (36) leads to

b ttpp+ t I cos F~+t —wp5P~ I cos Fp

Therefore,

(D7)

k
g]c+1 —In

v+1

cos Fp
2

w~ t cos Fp

cos Fp
2

o w~ cos Fp+ )

(D4)

QP„+, cc Q w„cos F„+tIcos F„

cos FI,P1= exp — 1n
2

wp GOS Fp+1
(D8)

On the other hand, by Eqs. (Dl) and (D3),

b, F„= 2 bp„.

The comparison of Eqs. (D4) and (D8) yield

(D9)Attt„+ ta exp( —g&+2) .

In virtue of Eq. (41), where" gL++~ —gI +t~ const (be-
cause the memory of the initial conditions vanish),

~hen b,P„&&1, then Eq. (D3) yields b, ( tan F„+,)
=w&h( tan F~), i.e., accounting for Eqs. (D5) and (D6), bPq+tal/Rq+t . (D10)

*On leave of absence from Tel-Aviv University, Tel Aviv 69978,
Israel.

'P. W. Anderson, Phys. Rev. 109, 1492 (1958).
2N. F. Mott and E. A. Davis, Electronic Processes in non-

crystalline Materials (Clarendon, Oxford, 1971); N. F. Mott,
Metal-Insulator Transitions (Taylor and Francis, London,
1974).

3W. Meyer and H. Neldel, Z. Tech Phys. C4, 3167 (1978); H.
Fritzsche, Solar Energy Mater. 3, 447 (1980).

4M. Brodsky (private communication).
5B. Ricco, M. Azbel, and M. Brodsky (unpublished).
D. J. Thouless, Phys. Rep. C13, 94 (1974).

7A. B. Fowler, A. Hartstein, and R. A. Webb, Phys. Rev. Lett.
48, 196 (1982), and private communication.

~M. Ya. Azbel, Phys. Rev. Lett. 43, 1954 (1979).
9M. Ya. Azbel, Zh. Eksp. Teor. Fiz. 44, 980 (1963) [Sov.

Phys. —JETP 17, 665 (1963)];46, 929 (1964) [ 19, 634 (1964)];
Dokl. Akad. Nauk SSSR 159, 703 (1964) [Sov. Phys. —Dokl.
5, 1549 (1964)].
(a) M. Ya. Azbel, Phys. Rev. B 25, 849 (1982); (b) F. Delyon,
H. Kunz, and B. Souillard, J. Phys. A 16, 25 (1982).

11M. Ya. Azbel, Phys. Rev. B 27, 3901 (1983).
R. Landauer, Philos. Mag. 21, 863 (1970).
(a) E. Abrahams, P. W. Anderson, D. C. Licciardello, and T.
V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979); (b) P.
Erdos and R. C. Herndon, Adv. Phys. 31, 65 (1982).
P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fish-
er, Phys. Rev. B 22, 3519 (1980).
M. Ya. Azbel and P. Soven, Phys. Rev. Lett. 49, 751 (1982).
M. Ya. Azbel and P. Soven, Phys. Rev. B 27, 831 {1983).
M. Ya. Azbel, Solid State Commun. 45, 527 (1983).
I. M. Lifschitz and V. Ya. Kirpichenkov, Zh. Eksp. Teor. Fiz.
77, 989 (1979) [Sov. Phys. —JETP 50, 499 (1979)].

M. Ya. Azbel and M. Rubinstein, Phys. Rev. Lett. 51, 836
(1983).

W. E. Howard and F. F. Fang, Solid State Electron. 8, 82
(1965).
J. A. Pals and W. J. J. A. Van Heck, Appl. Phys. Lett. 23, 550

(1973).
2 J. M. Voschenko and J. N. Zemel, Phys. Rev. B 9, 4410 (1974).

R. J. Tidey, R. A. Stradling, and M. Pepper, J. Phys. C 7,
L353 (1974).

24G. Voland and H. Pagnia, J. Appl. Phys. 8, 211 (1979).
M.Pepper, J. Phys. C 12, 1617 (1979); Philos. Mag. B 42, 947
(1980); Surf. Phys. 98, L218 (1980); M. Pepper, M. J. Uren,
and R. E. Oakley, J. Phys. C 12, L897 (1979).
R. G. Wheeler, A. Goel, K. Choi, R. Wisnieff, and D. E.
Prober, Phys. Rev. Lett. 49, 1674 (1982).
F. F. Fang (private communication).
W. J. Skocpol, L. B. Jackel, R. E. Howard, E. L. Hu, and L.
A. Fetter, Physica 8+ C, 117-118, 667 (1982); Phys. Rev.
Lett. 49, 951 (1982).

~9R. F. Voss, Proceedings of Symposium on 1/f Fluctuations,
Tokyo, Japan, 1977 (Institute of Electrical Engineers of Japan,
Tokyo, 1977), p. 132; J. Phys. C 11, L923 {1978).
P. Platzman (private communication).

3t(a) L. D. Landau and E. M. Lifschitz, Quantum Mechanics,
3rd ed. (Pergamon, Oxford, 1977) (1) tt 50; (2.) problem 3 to tt

52; (3) tt 52; (4) problem 4 to tt 25; (5) tt 48. (b) In fact, Fig. 12

does not account for the fluctuations. Their relative value at
the length L is, as usual, aV'L p/L (since Lp is of order of the
correlation length and thus the number of independent regions
is L /L p). Thus A =0 may in fact correspond to
lnGa —V LLp/Lp = —V L /Lp (cf. the results of Ref. 35),
while 6 & 1 may correspond to the fluctuation-shifted
A-LV Lp/L —V LLp This is the ac.tual accuracy of the lo-

calization spectroscopy. Fluctuations may also decrease
L ( 8') and make 6 and even resonance 6 at certain
(-V Lp/L ) energies less than exp( 2LILp). Further o—n I
disregard the fluctuation correction.
D. P. DiVincenzo (unpublished).
Two independent solutions +~ and O2 of the Schrodinger equa-
tion yield (O&8+2/Bx )—+284[/Bx =const. Thus the conju-
gated solution can be obtained from 4' =c ~%']

+c20[ dx/4], where c[ and cq are constants.
M. Ya. Azbel, Solid State Commun. 37, 789 {1981);46, 113



28 EIGENSTATES AND PROPERTIES OF RANDOM SYSTEMS. . . 4125

(1983);Phys. Rev. B 27, 3852 (1983).
A. D. Stone and J. D. Joannopoulos, Phys. Rev. B 24, 3592
(1981). See also C. M. Soukoulis and E. N. Economou, ibid.
24, 5698 (1981);C. M. Soukoulis, I. Webman, Cx. S. Crest, and
E. N. Economou, ibid. 24, 1838 (1982).
V. I. Mel'nikov, Fiz. Tverd. Tela 23, 781 (1981); Zh. Eksp.
Teor. Fiz. Pis'ma Red 34, 471 (1981).

(a) M. Ya. Azbel and M. Rubinstein, Phys. Rev. B 28, 3793
(1983); (b) A. D. Stone, D. C. Allan, and J. D. Joannopoulos,
ibid. 27, 836 (1983). See also C. J. Lambert and M. F.
Thorpe, ibid. 26, 4742 (1982); 27, 715 (1983).

388. S. Anderek and E. Abrahams, J. Phys. C 13, L383 (1980).
See also E. N. Economou and C. M. Soukoulis, Phys. Rev.
Lett. 46, 618 (1981); C. M. Soukoulis and E. N. Economou,
Solid State Commun. 37, 409 (1981}.
At a regular energy, fluctuations lead to local minima in the
regions of the length {Ref. 17) &Loin(L/Lo). Thus regular

energies lead to similar correlations at the length
l (Loin(L /Lo).

M. Ya. Azbel and M. Rubinstein, Phys. Rev. B 27, 10 (1983).
M. Ya. Azbel, Phys. Rev. Lett. 47, 1015 (1981).
M. Ya. Azbel, Phys. Rev 8 26, 4705 (1982).

~3V. N. Prigodin, Zh. Eksp. Teor. Fiz. 79, 2338 (1980) [Sov.
Phys. —JETP 52, 1185 (1980)]; J. Flores, J. V. Jose, and Cr.
Monsivais, J. Phys. C 16, L103 (1983); C. M. Soukoulis, J. V.
Jose, E. N. Economou, and P. Sheng, Phys. Rev. Lett. 50,
764 (1983).

~H. Schmidt, Phys. Rev. 105, 425 (1957).
4~S. Alexander, J. Bernasconi, R. Orbach, and W. R. Schneider,

Rev. Mod. Phys. 53, 175 (1981). See also J. Kori, Spectral
Properties of Disordered Chains and Lattices (Pergamon, New
York, 1981); K. Ishii, Prog. Theor. Phys. Suppl. 53, 77
(1973); Physics in One Dimension, edited by J. Bernasconi and
J. Schneider (Springer, Berlin, 1981).


