
PHYSICAL REVIE%' B VOLUME 28, NUMBER 8 15 OCTOBER 1983

Light emission from tunnel junctions: The role of multiple scattering of surface polaritons
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{Received 22 April 1983)

Calculations of light emission intensities from Al-A1203-metal tunnel junctions with randomly
rough metal {Ag or Au) surface are presented. Multiple scattering of surface polaritons is taken
into account by solving a previously derived Bethe-Salpeter equation for the averaged two-photon
Preen's function. The calculated intensities and the angular dependence of the emitted s- and p-
polarized radiation are in good agreement with the experiments. We also point out that our nonper-
turbative treatment of roughness is essential for this good agreement.

I. INTRODUCTION

In 1976 Lambe and McCarthy' reported a new method
for the generation of light using a tunnel junction. A
metal-oxide-metal (MOM) tunnel junction consists of two
metal films separated by a thin oxide layer. One metal is
usually Al or Mg and the other is Ag or Au. The surface
of the latter is usually rough. When a dc voltage is ap-
plied the junction starts emitting light. Owing to the ap-
plied voltage, electrons tunnel through the oxide layer and
excite the surface polariton modes associated with the
MOM layered structure. These local modes are nonradia-
tive. In the presence of a rough surface they can, howev-
er, decay into radiative modes and thus cause the emission
of light.

Since the first observation of Lambe and McCarthy
there has been increased interest both experimentally
and theoretically' ' in the microscopic understanding of
this phenomenon and in giving quantitative results for the
emitted intensity. The problem can be treated in two
steps:

(i) The calculation of the coupling of tunneling elec-
trons and surface polaritons (SP).

(ii) The calculation of the efficiency of the decay of
these excited polaritons into radiative photons due to the
roughness.

The first step has been discussed by Davis' for two semi-
infinite metals separated by an oxide barrier and also in
Refs. 11 and 16. The second step has been treated in a
series of papers by Laks and Mills" ' and by Scalapino
and co-workers. ' ' The former authors" consider a ran-
domly rough Ag (or Au) surface, and the emitted intensity
is calculated by taking a statistical average over all physi-
cal equivalent surface profiles. The distribution of these
profiles is assumed to be Gaussian and specified by a
root-mean-square roughness amplitude 6 and a transverse
correlation length a. Using a Green's function technique,
they derive an expression for the emitted intensity which
involves the calculations of the averaged two-photon
Cireen's function. Assuming roughness as a weak pertur-
bation over a flat surface, the intensity of the emitted light
is calculated using first-order perturbation theory. Scala-
pino et aI. ' consider light emission from a spherical par-

ticle put on top of an oxide layer formed on a flat metallic
surface. They calculate the emitted intensity by directly
solving the Maxwell equations neglecting retardation ef-
fects.

Both of these approaches do explain some of the experi-
mental results. However, there remain serious disagree-
ments. For instance, (a) the calculated emission intensities
of Laks and Mills, " for experimental values of the rough-
ness parameters (5-50 A, a —300—400 A), are much too
small compared with the experiments. The observed in-
tensities can only be obtained for unrealistic small values
of a (a &100 A). The model of Scalapino et al. ' predicts
the correct magnitude for the emitted light intensity. (b)
In regard to the polarization and angular distribution of
the light, neither calculation is able to explain the experi-
mental results. For instance, experiments of Adams,
abyss, and Hansma find both s- and p-polarized com-
ponents present in the emission. The s-polarized light has
maximum intensity along the normal to the metal surface
and then falls smoothly to zero in a direction along the
surface. The p-polarized light, whose intensity is equal to
that of s-polarized light along the normal, shows a lobe
structure in a direction that makes roughly an angle of 50'
with the normal. Laks and Mills find that the emitted
light has both s- and p-polarized components. The angu-
lar distribution of s photons is in agreement with the ex-
periments, however, the p-polarized light does not show
any maxima off the normal. The calculations of Scalapi-
no et al. ' do not give any s-polarized light. The @-
polarized light shows a lobe structure around 50' with the
normal, however, its intensity becomes zero along the nor-
mal in disagreement with the experiments.

In this paper we consider a tunnel junction with a ran-
domly rough metal surface. %'e use the same formula for
the calculations of the intensity of the emitted light as
used by Laks and Mills. " The difference between our cal-
culations and theirs lies in the different approximations
for the averaged two-photon propagator. In an earlier pa-
per, ' we have shown that this quantity satisfies a Bethe-
Salpeter equation whose kernel is given by a functional
derivative of the self-energy of the averaged one-photon
propagator. If terms proportional to 5 alone are retained
in the self-energy, then the corresponding integral equa-
tion represents the ladder summation that includes multi-
ple scattering of the surface polaritons at the rough sur-
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face. Within this approximation we have solved the
Bethe-Salpeter equation exactly for the averaged two-
photon Green's function. The results of Laks and Mills
correspond to a lowest-order perturbation treatment to the
solution of this equation. We, however, find that for the
experimental values of the roughness parameters 5 and a
and, in particular, for the values used in Ref. 11, it is
necessary to use our nonperturbative treatment for the
roughness. The multiple scattering of SP increases the ef-
fective interaction of SP with the roughness and thus
leads to large emission intensities in agreement with exper-
iments. We include in the calculations both the slow as
well as the fast SP. The contribution due to fast SP,
which has been neglected in Ref. 11, is found to be partic-
ularly important for large values of a.

In Sec. II A, we introduce our notations and the expres-
sion for the intensity of emitted light in terms of an aver-
aged two-photon Green's function. Section II B contains
the main part of this paper. First we derive a Dyson
equation for the averaged one-photon propagator and give
explicit expression for the self-energy to the lowest order
6. The corresponding Bethe-Salpeter equation represent-
ing the ladder summation is then solved in order to calcu-
late emission intensities. The calculated intensities for
various values of roughness parameters 6 and a are given
in Sec. III.

is defined by the relation z =L +d +g(r~~) with
r

~ ~

=xx+yy. The function g( r
~
~) thus describes the

roughness profile on the outer surface.
Let a dc voltage V be applied across the junction and

J(r, t) be the fluctuating current density due to the tun-

neling electrons in the junction. The electric field E(r, co)
due to this current can be written as

where

d;~(r, r ', co) is the photon Green's function which satisfies
the following Maxwell's equation:

—& X V'Xd(r, r ', co)+(co /c )e(r, co)d(r, r ', co)

=4vr6( r r')I, —(3)

where

II. THEORETICAL FRAMEWORK

A. Intensity of emitted light

~(r, ~)= ~3(~)e( —z)+ e,(~)[e(d —z) —e( —z) ~

+E (~)[e(L+d+g(r~~) —z) —e(d —z)]

+6(z L —d —g( r
I I

)—) (4)

Let us consider a semi-infinite metal substrate with
dielectric constant e3(co). The substrate is overlaid with
an oxide layer of thickness d and this by a metal film of
nominal thickness L (Fig. 1). The dielectric constant of
the oxide layer and of the metal film are assumed to be
ez(to) and e&(co), respectively. In general E&(co), ez(co), and
e3(co) can be complex. The z axis of the coordinate system
is normal to the surface of the substrate, and its surface
coincides with x-y plane. Finally, the surface of the metal
film is roughened. The location of a point on the surface

is the dielectric function of the layered structure (Fig. 1).
In the solution of Eq. (3), for fixed r ' the outgoing wave
boundary condition is used when

j
r

~

~ao in the vacu-
um. d,z goes to zero when

j
r

j
~oo into the substrate.

We define Fourier transformations with respect to the
coordinates parallel to the surface as follows:

dj(r, r ', co)= et II rll II
r

II

(2m ) (2m )

Xd J(k~~, k j~, co
I
z,z') .

Z=L+ Q

z=d

z=0

METAL FILM

OXIDE LAYER

METAL
SU BSTRATE

FIG. 1. geometry of the considered tunnel junction. e;(co)
are the corresponding dielectric functions and g(r~~) the profile
function for the rough surface of the metal film.

With the use of the outgoing boundary condition on d,z it
can be shown that for z~op in the vacuum, one can
write

d~(k~~, k j[ ~ lzz')=e "y,, (k~~, k
j~

to lz')

where
1/2

k = ' +'&' —k'
II

In Eq. (7), g is positive infinitesimal and the square root is
chosen with Im(ko) ~ 0 always.

Knowing d J(r, r ', co) and hence E;(r,co) from Eq. (1)
one can calculate the energy flux (d W/dQdcodt), i.e.,
the energy radiated per unit time, per unit solid angle d Q,
and per unit frequency d~. This has been discussed in de-
tail in Ref. 11, and here we quote that result:
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d 8
dQ des dt

icos 04 2

f d gii f dz' f dz" g 1'&~(kii, Qii, co lz')y&~(kii, Qi[, co Iz")g~~'«ii, co lz', z"),
32& c p, A, , A,

where
I kii I

=(co/c)sin0, ko=(co/c)cos8, and 0 gives the direction of the energy flux with respect to the z axis.

g ~~ (Qiico I

z'z") is a correlation function that is related to the frequency spectrum and spatial correlation of the tunnel-
current fluctuations. An expression for g~~ was derived by Rendell and Scalapino' using the method of the tunneling
Hamiltonian. Laks and Mills" included spatial decay of current correlations in the exponential form, and we use their
expression. As discussed in Ref. 11 only g (Qiico I

z', z") is taken to be nonzero and a phenomenological form for this
1s

eI (1 Acr)—/e V) b.(z,z')
2 (1 +g2 g2)3/2

where I is the static current flowing in the junction, go is a correlation parameter, and b, (z,z ) is taken to be unity. Equa-
tion (8) is written for a given surface profile of the rough metal surface. For any physical quantity to be compared with
the experimental results, one must take the statistical average over all different surface profile functions. Furthermore,
for comparison with the experiments, it is convenient to define the following dimensionless quantity:

dg(co) e V d W
dQ $ ~1 dA dc&) dt

CO

Physically the integral f dco(co, ) 'dg/dA, where co, =eV/A' is the upper cutoff frequency, gives the probability per
unit solid angle that one electron that has tunneled through the oxide barrier emits a photon in a given direction. Thus
from Eqs. (8)—(10), we have

dg(co) e eV co cos 0
, , f, d' dz" X (y.,(kii. Qii ~ lz')r„*.(kii Qii ~ lz") &

1

d f), Pic Ra) 16m'e' (2~)' „"' "' (1+g ii
$0)' '

(10)

A. —+

(dj( kii, k ji,co
I
z,z')d ki( kii, k ii, co

I
z&, z'& ) )

Note d;1 is related to y,z through an exponential factor [Eq. (6)]. A general, self-consistent method based on the func-
tional derivative approach of Baym and Kadanoff' ' to calculate this quantity has been given in Ref. 17. In the follow-
ing section we specify the results of this general treatment to our case.

(11)
where ( . . ) denotes the statistical average over the ensemble of all profile functions. The problem is thus reduced to
the calculation of the averaged two-photon Green's function, i.e.,

B. Averaged photon propagators

We split the dielectric function e(r, co) in Eq. (4) into two parts,

e(r, co) =e' '(z, co)+[ei(co)—1]V(r, co), (12)

V(r, co) = [8(L +d +((rii) —z) —B(L +d —z)] . (13)

Here e' '(z, co) is the dielectric function for the three-layer structure with smooth surfaces, and the second term in Eq.
(12) gives the change in e due to roughness. Let dz '(r, r ', co) be the Green's function for the structure with a perfectly
smooth surface, i.e., a solution of Eq. (3) with e( r, co) replaced by e' '(z, co); then Eq. (3) can be converted into an integral
equation

dj(r, r ', co)=d 1 '(r, r ', co) —A g f d r "dk'(r, r ",co) V(r ",co)dkj(r ",r ', co),
k

(14)

A=(co /4~c )[ei(co)—1] .

Substituting Eq. (13) into Eq. (14), we have

I. +d+g( r ")
d;J(r, r ',co)=d,z

'(r, r ', co) —Ag d r" dz "d,k '( r, r ",co)dkj ( r ",r ', co ) .L+d

(15)

(16)

To perform the z" integration, we take the limit g( r ii) —+0, assuming the field varies smoothly close to the metal sur-
face As discu. ssed in Ref. 11, one should be careful in taking this limit, as d,'k'(r, r ",co) has a jump discontinuity across
the surface z"=I +d for the index k to bez. Following Ref. 11, we have

II
d J(r, r ', co)=dz '(r, r ', co)+A+ d rjjd,"

'(rkii, z;r jj, (L +d)+;co)g(rii)dkj(r jj,(L+d) —;rji,z', co),
k

(17)
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where (L+d)+ means slightly outside and inside the surface z =L+d, respectively. With the use of the Fourier
transformations

(2m )

g(rll)= f ' e' " '"g(k
(2n )

Eq. (17) can be written as

(18)

d,q(kll, k jl~co I
z,z') = (2m. ) 5(kll+ k jl)dh~)~'(kll, m

I
z,z')

II

I,(L+d)+}f 2 0( Ikll —kll f)dkj(kllk II
~ f(L+d) —,z') .

k (2'�)2 (20)

Equation (20) is for one surface profile function. The averaged Green s function can be obtained by taking the statisti-
cal average over a distribution of these profiles, which we here assume to be Gaussian. The averaging is defined as

(g(kll)) =0,
(g(kll)g(k II)) =(2m) 5(kll+k Il)5 g(

I kll I
)

g (
f kll f

) =naexp( —. klla /4),

(21)

(22)

(23)

where 6 and a denote the root-mean-square roughness amplitude and transverse correlation length, respectively. With
the use of Eqs. (21)—(23) in Eq. (20), the averaged one-photon Green's function

(d J(kll, k jl, co
I
z z')) =(2m) 5(kll+ k jl)d J(kll, co

f

zz') (24)

can be expressed in terms of a Dyson equation

d;z(kll, co
f
z,z') = dh~j~ (kll, co

f
z,z')

+ g dh, '(kll~m
I
z, (L +d)+ )Xkk (kll, ~

I
(L +d) —,(L +d)+)dk J(kII, m

I
(L +d) —,z') .

k, k'

The self-energy X,J in comparison with Eq. (20) can be written as

g Xh„(kll, co
f

(L +d) , (L +d)+ )dh)(kll, ~—f(L +d) —,z')
k

d k
/(

d kii —+=A f 2 f z (g(kll —k I'j)dj(k I'j, k jl, co
I
(L+d) —,z')} .(2' ) (2n)

Equation (26) can be used to generate an expression of X in powers of d and g. The lowest-order term in 5 is

d k
(L+d) , (L+d)+)=5'A' f —pg(

I kll —k
II I

)d,)(k Il, co
I
(L+d) , (L+d)+) . —

(2'�)

(25)

(26)

(27)

Figure 2(a) illustrates the Dyson equation (25) for the averaged one-photon Green s function where the thin line denotes
d;hjo' and the thick line d;J. Figure 2(b) shows the first two terms in the self-energy. The dashed line stands for the in-

teraction term 5 &'g(
I kll k

The averaged two-photon Green's function can be written as

(dh, (kll, k jl, ~ Izi, z2)dkh(kII, k ll~~ Iz'iz2)) =(2m) 5(k
II
—k I'I')Ljkh(kll, k jl~co Iz&,z'i, zz, zz) . (28)

In Ref. 17 it was shown that

Lhjkh(kll, k Il~~ I
(L +d) —,(L +d) , (L +d)+, (L +d)—+) =L Jkh(kl, kll, ~)

satisfies a Bethe-Salpeter equation with a kernel given by the functional derivative of X (kll, co
f
(L +d) , (L +d)+)—

with respect to dye (kll, co
f
(L+d) ,(L+d)+). If only the l—owest-order term proportional to 5 is retained in X

[Eq. (27)], the corresponding Bethe-Salpeter equation corresponds to the ladder summation as illustrated in Fig. 2(c).
Analytically we have
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Lj«(k„,k jl, ~)= gd, .(kll, ~
f
(I. +d) —,(I. +d)+ }d„*~(kll,~

f
(I +d) —,(I. +d)+)

a, P
II

X (2~}'5(kll+" II)5J~5rp+5'I A I' J 'Ig(
I "II—"I'j

f )L~je&(" I'j "II ~}
(2m )

(29)

For the intensity calculations we need L Jki(k
I
I, k jl, co

f
z&,z&,z2, zz ) with general coordinates z&,z& lying anywhere out-

—+~

side and z2, z2 anywhere inside the layered structure. This general case can be expressed in terms of Ljk~( kll, kll, co) by

Lljkl(kII, k jl~~ I zl, zl z2,Z2)= (2~) 5(kll+ k jl)d~j(kll~ I
zi, z2)dkt(kll~~

I

z'i, zz )

+5
I
A

I g d' (kll ~
I zi, (L +d)+ }dk (kll, u

f
zy, (L+2)+)

a, a'

Xg(
I kll+ k

II I
)d.,( —k jl, m

I
(L+d) —,z2}d~'i( —k jl, m

I
(L +d) —,z2)

+5
I
A

I g d' (kll ~ Ized, (L+d)+)dk~(kll, ~ fzg, (L+d)+)

dkll — d k
X 2g k/J k ~'~'

2 L~p~p k f'J', k ['~",co g k
//

k
(2m. ) (2m. )

&(d@(—k
jingo I

(L +d) —,z2}dp g k II'~ I
(L +d) —,z2 } .

(30)

The solution of the integral equation (29) was discussed in detail in Refs. 17 and 20 where the dominant contribution to

dz(kll, co
f
(L +d) , (L +d)+ ) —due to surface polariton alone was included. In Eq. (30) all those d J functions with z~

and z
&

as its coordinates must correspond to extended s- or p-polarized photons, whereas others correspond to SP. To
solve Eq. (30) one can write in a general way

d~~j~'(kll, co
f
z,z') =d~~j~'(kll, co

f
z,z')+d~j~ '(kll, co

f
z,z'),

where the superscripts s and p denote s hand p polarizations, respectively,

d'j'(kll ~
I
z,z')= [Ey (kll m

I
z)Ey (kll, co

f

z')B(z —z')
8'i(k ll, co)

+E, (kll I
}E,'«ll, ')B( ' —)](kll X");(kll X")j,

(31)

(32)

d '(kll'~ Izz )= [e; (kll'~ fz)B(z z)+e; ( —k

X[e (kll ~
I
z')B(z' —z)+e ( —kll, co

f

z')B(z —z')]+I (z)5(z —z')5;,5,, (33)

(kll, co
f
z)=E„(kll,co

f
z)kll+E (kll, co

f
z)z,

e (kll, co fz)= E„(kll,co fz)kll+E, —(kll, cu fz)z .

The expressions for E '(kll ~
I
z) ~~ kll ~) ~ii(k ll

~), »d 1 (z) are give»n Ref. 11.
Using Eqs. (25)—(27) and only surface-polariton modes, we obtain

d, (kll ~ l(L +d) —,(I. +d)+)=d(kll, ~)e, (kll ~
I
(I-+d) —)ez (kll, ~ I(L+d)+}

22 z
dk ( —+

d(kll, co) = +ma 5 A J e (kll, co
f
(L +d)+} e (k jl, co

f

(L +d) —}
4m. (2'�)

(34a)

(34b)

(35)

& e '("
jl ~

I
(L +")+) e '("ll ~

I
(L +")—)

Wll(k jl,co)

The solution of the integral equation (29) can thus be written as' '

(36)
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L; kl(kll, k jl, co)= e; (kll, co (L+d) —)ek "(kll,
col�(L+d)

)—e. ( —k jl, co I(L+d)+)
&«i'*( —k

ll
~

I
(L+d)+)L(kll, k jl,~), (37)

where kll and pk are the radial and angular components of Ill, I =0, 1,2, —,—,and
r

I., (k ll, k ll, ~)=
I
d(k ll, ~)

I

' (2~/k
ll

)6(k
ll
—k

ll
)

In Eq. (39)

+m'a 5
I
A

I I d(kjl, co)
I g (a„a„) f„(kll)g„(kjl)I[1—p (co)]

n, n'

P„'„,(~)=~a'S'I A I'(a„'a„' )'"f kl, Id(kll, ~) I'g„'(kll)f. (kll),2'
where f„(kll ), g„'(kll ), and a„can be derived from

g( I "ll —"
jl I

)
I

e '("ll co I (L+")+)'e '("
jl co I (L+")—) I'=~a'Xe " " Xa f (kll)g (kll) .

I n

(40)

(41)

Explicit expressions of f„(kll ), g„(kll ), and a„are given in the Appendix of Ref. 17.
The integrals over k l'l' and k l'l" in Eq. (30) can now be simplified. We first substitute Eqs. (37)—(39) for

L~p ~(k l'l', k l'l", co) and Eq. (33) for d J in Eq. (30). [For s-photon emission use Eq. (32) instead of (33) for all d& with

z&,z'& coordinates. ] This gives terms depending only upon the relative angle between k
ll

and k
ll

and between kll and

k l'l'. Thus the angular integration can be carried out by using the following partial wave expansion:

g( I
"l'j'+"

jl I
)

I
e '(" jj'co

I
(L+")+)'e '(" llco I

(L+")—) I'=~a'Xe " " Xa.f'(kij )g. (kll)
I n

« I kll —k l'il ) I
e '( —kll ~

I
( +d)+) ' '( l'i ~

I
(L+d) —) I'=~a'Xe " "" Xa'f '. «ll)g.'«jj)

l n

where the functions f „(kll) and g„(kll) are listed in the Appendix. The integrals over radial parts can be carried out by
using the following identity'

dkll - dkll & & &n &ma 5
I
A

I
kl'l' kl'l" (a„a„)' g„(klj)f„(kij' )L~(kl'j, klj, co)= {[1—P (co)] ]an' &nn2' 2m'

(44)

Thus Eq. (30) can be simplified by using Eqs. (42)—(44). Substituting the result in Eq. (11) and using the expressions of
Ref. 11 for E (kll, co

I
z), we have after some minor simplifications for p-polarized emission as follows:

2
dQ(co) e eV co cos8 1 I dQll Qll I &+d

dQ Mc fun c~ sin8 Wll(kll, co) " 2m (1+Q g )
1, J f dzE, (Q, co Iz)

n, n'
X &(kll —Qll)+~a'5'

I
&

I

' g (a„'a.')'"f.'(kll) I [1—P'(~)] 'I..g.' «ll) I d«ll, ~)
I

'
II

Note that kll =(co/c)sin8 and in writing Eq. (45) only the
dominant contribution due to I =0 term in the summation
is retained. ' ' A similar expression holds for s-photon
emission. It is obtained by omitting the first term in the
second set of large parentheses in Eq. (45), by using the
expression for f„(kll) for s photons from the Appendix
and by «placing the factor

I
(cos8/»n8)[1/W

In Eq. (45) the first term in the second set of large
parentheses corresponds to the direct p-photon emission,
i.e., from the smooth surface. The second term propor-
tional to 5 is due to the rough surface. The lowest-order
perturbation results of Ref. 11 can be obtained by substi-
tuting P (co)=0 in Eq. (45). Thus the nonperturbative

t

factor [1 P(co)] ' in Eq. (45) —gives contribution due to
multiple scattering of SP modes at the rough surface. Our
numerical calculations show (see next section) that this
term is, in general, not small for realistic roughness pa-
rameters.

III. RESULTS AND DISCUSSION

%"e now give numerical results for the photoemission
intensities calculated from Eq. (45). The main contribu-
tion comes from the roughness-dependent second term in
the second set of large parentheses of Eq. (45). The first
term corresponding to the direct coupling of the tunneling
electrons to the photons is usually very small. The follow-
ing parameters for the tunnel junctions are chosen: thick-
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FIG. 2. (a) Dyson equation for the averaged one-photon
propagator d,, (k~~, co

~
z, z'). (b) Self-energy diagrams; the dashed

line denotes the interaction 6'A'g{
~ k{~—k

t~ ~

) due to rough-
ness. (c) Bethe-Salpeter equation for the averaged two-photon
propagator.
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ness of the oxide layer d =30 A, thickness of the metal
(Ag or Au) film L =200 A, dielectric constant of oxide
layer eq ——3. The dielectric function et of the metal (Ag or
Au) is taken from the experiments of Johnson and Chris-
ty and e3 of Al from Ref. 23. In all these calculations
go

——100 A.
Figures 3(a) and 3(b) show total (s- and p-) photoemis-

sion intensities from Al-Alz03-Ag as a function of the
emitted photon frequency m. The applied voltage is 4 V
and 0=45'. Figure 3(a) has been calculated for a =300 A
and 5=35, 50, and 70 A. The dashed curve is the result
of perturbation theory. For frequencies co(2.3 eV, the
photon yield 10 (dg/dQ) lies between 1 and 15 and then
falls rapidly to values -0.2. Figure 3(b) is for 5=50 A
and a =200, 300, and 400 A. In each curve the intensity
drops again rapidly at a frequency which depends on the
value of a.

These results can be understood by considering the con-
tributions from different SP modes. For MOM layered
structure with smooth surfaces, the dispersion curves for
the surface polaritons are obtained from Eq. (33), i.e., by
W{{(k~{,tu) =0. There are three solutions: (i) the slow or
junction mode in which the fields are concentrated in the
junction, (ii) the fast Ag-vacuum interface mode, and (iii)
the fast Al-oxide interface mode (for more discussions see
Refs. 6 and 24). In the visible frequency range the phase
velocity of the fast modes is quite close to the velocity of
light in vacuum, whereas that of the slow mode is much
smaller. With the above parameters for Al-A12O3-Ag, the
upper cut-off frequency for the slow mode is -3.2 eV
and for the fast Ag-vacuum interface mode -3.5 eV.
Our numerical calculations [see Eqs. (40) and (45)] include
contributions from all these modes. For lower frequencies
the dominant contribution comes from the slow SP mode
because of a large phase space available for its scattering
at the rough surface. For higher frequencies the wave
vector k~~ of the slow mode becomes large and the ex-
ponential factor exp( —k{~a /2) in the Gaussian distribu-
tion reduces its contribution rapidly. This explains why in
Fig. 3(b) the drop in intensities occurs at lower frequencies

(a)

A{-A{203-Ag
8=45'
6=50A

-a =200A

t

a=300A
a =400A

hm {eV)
32 3A

FICs. 3. Roughness-induced emission spectrum from Al-
A1203-Ag tunnel junction at an angle 0=45' with the normal,
and an applied voltage of 4 V and different values for 6 and a.0
Curve for 6=70 A is multiplied by a factor 3 . Dashed curve in
(a) corresponds to lowest-order perturbation theory.

for larger values of a. For still higher frequencies the con-
tribution to emission comes from the fast Ag-vacuum in-
terface mode. The small increase in the intensities with
frequency (less than or equal to 3.5 eV) is due to the in-
crease in phase space available for the roughness induced
scattering of fast mode.

The comparison of the dashed and the solid lines for
5=50 A in Fig. 3(a) also shows that multiple scattering of
surface polaritons leads to a substantial increase in the in-
tensity of the emitted light over a broad-frequency region.
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FIG. 4. Same as in Fig. 3 for Al-Al203-Au tunnel junction
0

and 0=60. Scale factor for the curve with 5=70 A is —, .

This implies that our nonperturbative treatment of rough-
ness is absolutely necessary for the used parameters in or-
der to obtain quantitative results.

Figures 4(a) and 4(b) show similar results for Al-
A1203-Au. Following Ref. 4, we have used bias voltage to
the junction =2.7 V and 0=60'. Figure 4(a) is for
a=300 A and 6=35, 50, and 70 A. Figure 4(b) is for
5=50 A and a =200, 300, and 400 A. The photon yield
10 (dg/dQ) lies between 0.2 and 2.5 for fico(2 eV in
agreement with experiments of Ref. 4. The main contri-
bution in this frequency range is due to the multiple
scattering of the slow SP mode. The fast SP modes con-
tribute very little in the high-frequency range because of
large damping due to the large imaginary part of the
dielectric function e~ of gold. For the roughness parame-
ters, the calculated emission intensity shows a broad peak

arbitrary units

FIG. 5. Angular distribution of s- and p-polarized light (solid
lines) where the angle 0 is measured with respect to the normal

0 0
to the surface. (a) For Al-A1203-Au and a =300 A, 6=50 A,
fur=1. 9 eV, and a bias voltage of 2.7 V. Dashed curves are the
result of first-order perturbation; (b) for Al-A1203-Ag and
a =400 A, 5=70 A, %co =3.3 eV, and a bias voltage of 4 V; (c)
experimental results of Ref. 4 for Al-A12O3-Au tunnel junction.

around 1.8—1.9 eV. This is also in agreement with exper-
iments. Comparison of the dashed and solid lines for
6=70 A in Fig. 4(a) shows again the important role of
multiple scattering: The photon yield increases by this ef-
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feet over a broad region around the maximum by about a
factor of 6.

The angular distribution of the emitted light is plotted
in Figs. 5(a) and 5(b). Figure 5(a) is for Al-A1203 Au with
6=50 A, a =300 A, Ace=1.9 eV and bias voltage =2.7
V. Figure 5(b) is for Al-A1203-Ag with 5=70 A, a =400
A, Ace=3. 3 eV, and bias voltage =4 V. The calculated
intensities have both s and p components [solid lines in
Figs. 5(a) and 5(b)]. By symmetry the intensities of s and

p components are equal along the normal to the surface.
The intensity of the s component smoothly decreases as
one goes away from the normal and then becomes zero
along the surface. However, the p component shows a
lobe structure around an angle of 50'—60 off the normal
and then falls to zero along the surface. The calculated
curves for Al-A1203-Au [solid curves in Fig. 5(a)] agree
well with the experimental curves of Ref. 4 which are
reproduced in Fig. 5(c). The dashed curves in Fig. 5(a) are
the results of first-order perturbation theory. The s corn-
ponent is nearly unchanged. However, the perturbational
p component shows only a weak maximum off the normal
which is also in disagreement with experiment. The ob-
served pronounced maximum is therefore due to the mul-
tiple scattering of SP.

The experiments of Ref. 2 show that the emission inten-
sity first increases with the roughness amplitude 5 and
then gets saturated. In our theory the roughness ampli-
tude enters in two ways. (a) The coupling of SP with pho-
ton increases with 6 and hence the photoemission intensi-
ty. The intensity, however, is not proportional to 5 as in
the perturbation results of Ref. 11 but depends in a dif-
ferent way through the presence of 6 also in the matrix
elements P„„(co) [see Eq. (40)]. (b) The self-energy of SP
increases with increasing 5 [see Eq. (27)]. The increase in
the imaginary part of the self-energy decreases the life
time of SP and hence makes the coupling with photons
weaker. The result should be a decrease in the emission
intensity. Figures 3(a) and 3(b) show an increase in the in-
tensity as 5 varies from 35 to 70 A. In this range of 5
values the width of SP increases, but this increase is not
sufficient to saturate the intensity. The saturation may
start occuring for larger values of 6 which, however, can-
not be treated adequately within our approximations:
Higher-order terms in the self-energy (e.g. , second dia-
gram in Fig. 2(b)] as well as the corresponding contribu-
tions to the kernel of the Bethe-Salpeter equation [leading
to crossed diagrams, in addition to the ladder diagrams in
Fig. 2(c)] must then be included. However, for the rough-
ness parameters reported in this paper, we have checked
that the contribution to the self-energy from the second
diagram in Fig. 2(b) is small compared to that from the
first diagram. Contributions due to crossed diagrams in
the Bethe-Salpeter equation can therefore also be neglect-
ed.
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APPENDIX

~In this appendix we give expressions for g„(QII) and

f„(kII) derived from Eqs. (42) and (44), respectively. The
derivation is similar to that given in the Appendix of Ref.
17 for g„(k

II
) and f„'(kII ). We thus omit any details here

and give the final expressions

(Al)

—2v (,L +d) —Q
2 a ~/4

(A2)

(A3)

f )(kII)= I
n( kIcIo) I

e (A5)

f z(kII) =ikoan, (kII,co)n„(kII,co)e

f 3(kII) =
I (ko/kII)n„(kII, co)

I
e (A7)

kII =(co/c)sinH, ko ——(co/c)cos8, and co is the frequency of
the emitt d ph ton n~ kllco and n, kIlco) a«defined by
Eqs. (2.34b) and (2.34c) of Ref. 11, respectively. For
n &3, f „(kII) are given by a relation similar to (A4).
However, because of the factor (kIIa/v 2) ~ which is very
small for photon frequencies of interest, the f „(kII)'s are
very small for n ~ 3 and are neglected.

For s photons, e ( —kII, cu
I
(L +d)+) in Eq. (43) is to

placed by &» kII co
I
(L +d)+) "II X~) and we find

f i(kII)=0, (A8)

f q(kII)=0, (A9)

f 3«II ) =
I ny(kfI ~)

I

'e (A10)

where n~(kII, co) is defined by Eq. (2.34d) of Ref. (11) and

kII
——(co/c)sinO. The f „(kII )'s are again neglected for

n)3.

g3 + (QII ) =g~(QII )(Q IIa /v 2) ~, (A4)

q=l 2 3, and p=1 2, —,—,—. Also vo ——(QII —co /
c )'~, where QII ~ co/c for the SP mode. As in Ref. 17 we
have neglected small imaginary parts of e~ and e3 for sim-
plicity.

There are two different expressions for f „(kII) corre-
sponding to p- and s-polarized emission. For p photons,
using Eq. (34) for e ( —kII, co I(L+1)+), we find from
Eq. (43)
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