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The influence of critical quantum (phonon) fluctuations on a one-dimensional model of fluctuating-

valence electrons locally coupled to dispersionless phonons at T =0 K is studied. Near the insulator-metal

transition of the half-filled band case the electronic correlation length diverges and induces long-range fluc-

tuations of the boson field. These fluctuations suppress the standard polaronic effects, i.e., the relaxation

shift and lifetime enhancement. For these results scaling is essential, which is treated within a real-space

renormalization-group scheme.

Recently, the electronic theory of fluctuating-valence
(FV) solids has been a subject of considerable investiga-
tion. " One challenging difficulty in these solids stems
from the simultaneous presence of both extremely localized

f electronic states and delocalized band (d) states in the vi-

cinity of the Fermi level. Besides strong interactions
between local f ( = 10 eV) and f and d band ( = 1 eV)
electrons, large degeneracies prohibit the application of
standard perturbation theory. Important progress has,
therefore, recently been achieved in studies of the single-

impurity Anderson model by use of the Brillouin-Wigner
perturbation theory and nonperturbative renormalization-

group (RG) methods. ' Finite-cell simulations of the
periodic Anderson model, ' as well as renormalization-

group studies of a spinless model containing, however, addi-

tionally the f dCoulomb intera-ction, and of a Kondo lattice
model, ' have revealed significant differences, if the con-
centrated case of interacting impurities is considered.

This Rapid Communication deals with the second charac-
teristic difficulty of FV: The energy splitting between the
quasidegenerate f" and f" ' ionic configurations is of the
order of phonon energies. Therefore strong and nonadia-
batic electron-lattice coupling may arise and the relatively
slow valence fluctuations may influence the loca1 lattice dis-
tortions. This can considerably reduce the frequency of
valence fluctuations and thus effectively increase the life-
time of the individual configurations. Additionally, it can
introduce a relaxation shift in the f level. This level, which

is usually assumed to be very close to the Fermi level E~,
has recently been found in several FV systems to be a few
eV below EF."" The nonadiabatic electron-phonon cou-
pling so far has mostly been dealt with within the small po-
laron model' "and for the single-impurity limit. "

In this Rapid Communication we want to discuss a one-
dimensional (ID) FV model in which a concentrated model
of f and d electrons is locally coupled to a boson field of
Einstein oscillators. Particular attention is paid to the ques-
tion of how the electronic properties of this FV model are
affected by coupling to the lattice at T =0, where quantum
fluctuations come into play.

For a rough estimate of the consequences of (f)
electron-lattice coupling, the two limiting cases of adiabatic
and "antiadiabatic" coupling may be considered' In the
adiabatic limit the frequency coo, and therefore the isotropic

H =H, )+Hph,

with the electronic part

H [Egega dI r $(dI' dj+] + H c ) +Ef gfj~f~

+ V $ (fI d; + H.c.) + U $nd nf (2)

Here dI denotes the creation operator of the band (d)
states with hopping matrix element —t and f; the creation
operator for a localized f electron at site i

The ground state and gap properties of this 1D spinless
model of FV have previously been studied employing a
real-space RG block method. ' ' For the half-filled band
situation the ground state has been found to be insulating
for all nonzero values of U. That the Coulomb interaction
between the f electrons probably plays a similar role may be
inferred from recent 1D finite-cell studies of the periodic
Anderson model: These studies also display the existence

"breathing" motion of the surrounding ions, is low. Here
the lattice cannot respond to the hopping of an f electron
into the band and its immediate recapture. The charge fluc-
tuation rate or effective width I of the f level, from
Fermi's golden rule, is just proportional to the square of the
hybridization V. On the other hand, in the antiadiabatic
limit (coo)) I'), the lattice can follow the electronic config-
urations. Here, one expects the electron-lattice coupling to
favor a positive radial displacement of neighboring atoms in

the FV lattice, if the f level is occupied. ' This argument is

consistent with a polaronically reduced hybridization and

charge fluctuation rate and a band shift. Our primary result
is that, near the vanishing Coulomb gap (i.e., when the
Coulomb interaction U between f and d electrons goes to
zero), the long-range electronic correlations and the related
phonon quantum fluctuations, in fact, suppress the standard
polaronic effects. Hence, near U=O in our RG study, no
reduction of the FV frequency with accompanying lifetime
enhancement and no relaxation shift occur. It is shown that
this suppression crucially depends on scaling and would not
appear for finite-sized cells. Implications for other FV elec-
tronic models and possible extensions to higher dimensions
are discussed.

Our Hamiltonian is of the form
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of the insulating gap which increases with the Hubbard U.
The phonon and electron-phonon contribution H, h is

Hph= cupX(a; a;+ 2 ) + h. $(a; + a;)nf (3)

where a; creates a local phonon of frequency cop, coupled to
f charge fluctuations only. '4 t defines our scale of energies
and is set —= 1 from now on. Thus the Hamiltonian is
characterized by the energies (U, V, cup) and the polaron
binding energy Ett= X'/ppp, as a measure of the coupling
strength. For simplicity, we consider in the following
Eq= Ef in Eq. (2).

First, we introduce the scaling equations of the electronic
mode1 for small U and V. This follows closely our earlier
RG work for general U and V. ' To this, the chain is

dissected into blocks of N = 3 sites, which are coupled via
the hopping term ( —t) The H. amiltonian is then diagonal-
ized for each block making use of the conserved quantities,
i.e., parity and number of particles. Since we are working in

the half-filled band case, only the (N —I)- (=2), N-, and
(N + I)-particle subspaces have to be considered. Only the
four 1owest-energy states of the 4 b1ock states are retained
to reexpress the Hamiltonian. They are denoted by IO'&,

I + '&, I
—'&,

I + —') and are the lowest states in the
(N —I)- and (N + I)-particle subspaces, and the two lowest
states in the N-particle subspace. In momentum-space
description they are given by' '

The coefficients c, d, and e are computed for the case
N =3. For the Bose system we closely follow our earlier
work on the RG method for the polaron effect in the Hub-
bard Hamiltonian. " The renormalized harmonic oscillator
(HO) in the N =3 sites block is constructed, making use of
the equivalence between three independent 1D HO's and
the isotropic 3D HO. Keeping the two lowest block Bose
states and building the complete Fermi-plus-Bose block
states out of the direct-product states, we can now also com-
pute the renormalized phonon coupling with respect to
these states, and obtain"

Z'= N~Z (9)

and

L =exp(lp) —exp[ /p(U/ )t] (12)

(10)

Here N»= I/J3.
Equations (8), together with (9) and (10), then constitute

the complete scaling relations.
From Eq. (8.1) follows the integrated relation

V(l)+dU(l) =ct(l)

where I denotes the continuous scale change. " The correla-
tion length is a function of (U/t), and solving Eq. (8.2) is

given by

I0'& = g ak 10),
jv

I+'& =Pktl0 ) I+ ) Pktak~l0'& .
(4)

where nk, (pk, ) with kt=nl/(N+I), I ~ I ~N, denotes

the creation operator of a lower (upper) band state of the
diagonalized Hamiltonian (U=O) of Eq. (2).' ' The re-
normalization of the interaction

Here Ip is the final length of the RG iterations and is related
If

pto the final block size by (N = 3) = exp(lp).
In particular, we can infer from (12) that scaling is to-

wards localized behavior for any nonzero value of U, and
hence the hopping t(l =lp) goes to zero. This will enable
us, in the following, to always make use of the standard
small polaron results if we just replace the usua1 polaron
parameters by their scaled counterparts.

From (11), the hybridization gap is given by V(l = lp):

Ht Ugn~;nf;—— (5) V(l =lp) = dU(l = lp) = dk (13)

follows for small U ( t from perturbation theory, i.e., from

U' =
&

+ —'IH tl + —'& + &0'IH tl0'&

where 5 denotes the Coulomb gap.
Using Eqs. (8.3) and (11), we further obtain

dU/dl = —zU (14)
—&+'IHil+'& —

&
—'IHtl -'& .

Similarly, the change in the hybridization V due to U is

a v= (&+'IH)l+'& —
&
—'IH&l —'&)/2 .

(6)
and, therefore,

I = U (I = Ip) = U exp( —zl p) —A exp [ —z j'( U/t ) ]

(15)
Adding this to the change in V, which is already due to the
new block states in Eq. (4), we arrive, after tedious but
straightforward calculations, at the scaling relations of the
purely electronic 0,[ for small U and V:

with z =In4/c'In3 and the constant A slightly depending on
U and V. The constant (z) is of the order of l.

Equation (9) gives for the scaled coupling

V'/t' = c d( U/t), -
U'/t'= U/t + k( U/t )',
U'= —,U(V/t)' .

(8.1)

(8.3)

h (I IQ) = X exp( —ylp) = XL (16)

Now, making use of the fact that scaling is always such that
the interblock hopping t(lp) vanishes, we have for the
scaled Hamiltonian the local form

H (I = lp) = X [E (Ip) (cd;cg; + cf;cf;) + k(lp) (b; + b )nf, + V(lp) (cd, ;cf,; + H c.) + U (lp) n4nf; + trpb; b ]

The usual displaced oscillator transformation, with H'= U HU and U =exp[ —(k c/up)(b —b)ng] eliminates the phonon
coupling, i.e.,
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4) '(I,)H'(I = Ip)=$ E(lp) — cj;cf;+E(lo)cd,;c4;+ V(lo)exp—
I Q)p

I (Io)
(b; —b;) (c4;cf,;+ H.c.) + cuob; b;+ U(IO)n4;nf, ;

6)p

(18)

In H' we can perform the local phonon averages, since the
hopping term is missing, and obtain for the effective hybrid-
ization

V,r((IO) = (exp —Z(lo) (b' b)/o—)p) V(lo)

= V(IO)exp—
2I '(I,) l

CUp
2

= V(lo)exp —
2

L
2x
Cdp

(19)

where L '~ is close to L ' (y = 0.5).
Thus we have all the standard results of previous polaron

studies, however, with the crucial difference being that the
polaronic reduction of the hybridization energy V and the
relaxation shift X2(IO)/~0 depend on the correlation length
L.

Hence, near the insulator-metal transition, i.e., when U

goes to zero, the diverging correlation length L suppresses
the polaronic effect. On the other hand, for larger U, L
tends to one and we recover the small polaron result.

At this point arises the question of the relevance of this
result for other models of FV and for higher dimensions:
Apart from the fact that our model Hamiltonian is rather
idealized in that it is only local in the coupling and spinless,
it is, of course, limited to the half-filled band case and to
one dimension.

This clearly puts limits on any direct application to experi-
mental observations. Nevertheless, we believe that our
model calculation demonstrates the importance of quantum
fluctuations for the low-temperature critical behavior of
correlated fermion systems, like FV systems, coupled to a

boson field: Whenever the system undergoes an insulator-
metal transition the correlation length will diverge. This will

change the local and dispersionless character of the
electron-phonon coupling in Eq. (3), and long-ranged pho-
non quantum fluctuations can affect ground-state and low-

excitational properties. We have just considered an over-
simplified model which demonstrates this in a special case.
Other 10 models in the half-filled case, like the Anderson
model or the Kondo-lattice model, ' give also an insulating

gap as a result of the coherence of states on different sites
in a periodic system. Here, similar results for the electron-
lattice coupling are to be expected. These results certainly
cannot be directly extended to higher dimensions where,
even in the half-filled case, one expects the gap to vanish
for a certain range of parameters (example: Hubbard
model). However, also in higher dimensions, the phonon
quantum fluctuations near an insulator-metal transition
should strongly influence any type of local Fermi-Bose cou-
pling. The importance of critical quantum fluctuations in

one, two, and three dimensions has recently been asserted
in a specific example of a noninteracting electron version of
the small polaron. "
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