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We report birefringence measurements of the field-induced commensurate phase in deuterated
thiourea in the whole modulated phase part of the (E,T) plane at atmospheric pressure. A simple
Landau-Ginzburg approach is shown to account, in a qualitative and semiquantitative way, for the

experimental observation.

I. INTRODUCTION

Deuterated thiourea [SC(ND,),] is well known to exhib-
it a modulated phase between T =190 K and T, =216 K
at ambient pressure and zero electric field. Above T}, it is
paraelectric and below Ty, which is a first-order transi-
tion temperature, it is ferroelectric. With varying pressure
and electric field, this interesting system exhibits a variety
of modulated phases, some of which are commensurate'2
with commensurability order 3,7,8,9. This paper reports
birefringence measurements of the phase diagram of deu-
terated thiourea and especially of the commensurate phase
of order 8, under an electric field parallel to the ferroelec-
tric axis, i.e., perpendicular to the anisotropy axis. It
should be noticed that it is a somewhat unusual way of
determining commensurate phases and commensurate-
incommensurate transition lines, since birefringence does
not measure a lattice Fourier transform as x-ray or
neutron-diffraction measurements do. However, after the
prediction of a field-induced commensurate phase of com-
mensurability order 8 determined by thermodynamical
measurements® was checked® by neutron-diffraction mea-
surements, we feel the method is a fully respectable one,
and a quite reliable one at that.

This paper also presents a theoretical analysis of the re-
sults within the framework of a very simple Landau-
Ginzburg approach. It had been noted previously* that
the overall shape of the modulated phase under field was
well accounted for by such an approach. We show here
that the peculiar tearshaped commensurate phase of order
8 described in Sec. II is also reasonably well accounted for.
Our approach is to take into account the (small) umklapp
term of a given order only if it has a physical effect in the
field and temperature intervals at hand. The success of
this simple theory might be surprising, since SC(ND,),
has been claimed to be a good example of a devil’s-
staircase behavior>% Rigorously speaking, this means
that the free energy of thiourea is a nonanalytic function
of, say, temperature, the modulation wave vector being a
continuous nonanalytic function which is constant in a
certain temperature or field interval for each rational num-
ber.” One might then think that a Landau-Ginzburg ap-
proach, based on an analytic expansion in powers of the
order parameter, with the underlying assumption that the
modulation wave vector is a smoothly varying function of
temperature and field, at most a piecewise analytic one,
would not be appropriate. What we show, in fact, is that
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in thiourea one need only consider a few finite steps in the
whole staircase, and that high-order commensurate steps
have an unphysically small width, and can be neglected.

This paper is organized as follows: Sec. II describes
new experimental results on the field-induced commensu-
rate phase of order 8; the complete phase diagram around
commensurability order 8 is determined. Section III sets
up the Landau-Ginzburg theory of modulated phases
under field appropriate to thiourea. Section IV is an ap-
plication of Sec. III to the case of SC(ND,),. Section V
discusses the meaning of our results and the limitations of
the theory.

II. EXPERIMENTAL PROCEDURE AND RESULTS

The experimental method used to measure the
birefringence has been explained in Ref. 8 and we shall
only mention that we use an acousto-optic modulator to
improve the sensitivity of the measurement. The light
beam is parallel to the a axis of the cleaved sample and the
electric field is applied parallel to this direction so that we
measure the birefringence Any, =n, —n,, where b is paral-
lel to the modulation wave vector g. Two methods have
been used: either at constant dc field by changing the
temperature with a constant cooling or heating rate (typi-
cally +3 mK/sec) or at given temperatures by sweeping
the field (stability better than 10 mK during a cycle); as
far as the diagram determination is concerned the two
methods give the same data.

The field-induced commensurate phase boundaries are
determined by plotting the locus of birefringence
anomalies. Those match with the locus of susceptibility
anomalies at low fields in the region where both methods
give observable anomalies. Typical examples of
birefringence measurements are shown on Fig. 1 for con-
stant field E=750 V/mm. Figure 2 shows the complete
phase diagram of the commensurate phase with ¢ =b*/8
(see also Fig. 3). This phase extends up to a maximum
field very close to the isolated critical point*® (E,,, T),).
Figure 4 shows the variation of the amplitude of the
birefringence anomaly as a function of field along the
commensurate phase boundary.

In the paraelectric phase (T >216 K) deuterated
thiourea is orthorhombic and optically biaxial. The
birefringence variation with temperature is due to the lat-
tice strain and the electron-phonon coupling, which we
write as (Anpe )Jo="np, —ne,.
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FIG. 1. Birefringence measurement at E=750 V/mm for in-
creasing and decreasing temperature around the commensurate

phase at ¢ =b*/8. The light propagates along the a ferroelec-
tric axis (A=6328 A).

In the modulated phase we have’
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FIG. 2. Phase diagram (E,T') of SC(ND,), for increasing and
decreasing temperatures. The solid and open triangles represent
the commensurate-incommensurate transitions of the g =b*/8

commensurate phase for increasing temperatures, the solid and
open circles for decreasing temperatures

. The solid and open
squares represent the commensurate-incommensurate transitions

for the ¢ =b*/9 commensurate phase, respectively, for increas-
ing and decreasing temperatures; at last the two plus signs on
the T axis refer to the positions of the g =2b* /17 susceptibility
anomalies for the two temperature variations. All these data
have been obtained by susceptibility or birefringence measure-

ments, and the error bars are of the order of the size of the
points. The solid lines are aids to the eyes

represents the theoretical result given by Eq. (14)

where P.(r) is the polarization density along the x axis.
As described later (Sec. II), it is sufficient to describe the
modulated phase with two nonzero Fourier components of

P.(r), i, P, and Py=P, _, (single-harmonic approx1ma-
tion); Eq. (la) holds because the light wavelength is much
larger than the modulation wavelength and we measure a
mean value of P.(r) and P}(r)—(1b) follows from (1a) in
the single-harmonic approximation. In (1a) and (1b)

r=4 3
=3(ngrs—nyra),
L3 3
R =5(n; Ry —nyRy)

where r;; and R;; are the elements of the linear and qua-
dratic optical tensors. R, r, and (An,, ), have slow mono-

J An (8)
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FIG. 4.

Birefringence jump at the commensurate-
incommensurate transition for ¢ =b* /8 for decreasing tempera-
ture as a function of the applied dc field. The large error bars
come out from the uncertainty of this determination as can be

seen on the inset in the upper right corner. The solid line has
been determined from Eq. (16).
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tonous variations with 7. The linear term is found experi-
mentally to be smaller than the quadratic term by more
than 1 order of magnitude. In the next section we discuss
a simple Landau-Ginzburg theory of commensurate
phases and commensurate-incommensurate transitions
under field.

F=F,+AF,

Fo=[ Ly P2+—BP4+—P6+l L3 oY

0 270 6 27| 4
and

AF= sz PP’y , (@)

where P, (r) is the uniaxial polarization and E is the elec-
tric field. 4,=(T—T,)/C, B, D,y, and ) are positive
constants and a(T,E) is negative. The sixth-order term
(D /6)P¢ is necessary to describe the modulated part of the
phase diagram for fields at and above the tricritical field
E,. The term proportional to 7 has been discussed in
Ref. 10 where it is shown to cause field and temperature
variation of the modulation wave vector even if a is taken
to be constant. It is also shown to lead to a reduced
domain of stability of the modulated phase as compared
with the theory with a=const and p=0. This term cer-
tainly should be included for consistency, even though it
was suggested in Ref. 10 not to be very important in
thiourea. In order to derive the simplest possible theory
for the shape of the commensurate phases under field, we
set in the following D =7 =0, so that quantitative agree-
ment should be poor. The limitation of our results due to
this simple approximation will be discussed in Sec. III.

In principle, all terms in Eq. (4) with p > 3 should be in-
cluded; they give rise to the umklapp terms. However, we
are interested in describing a commensurate phase within
the modulated region at a definite p value; we shall assume
in the rest of the paper that umklapp terms may be treated
one at a time and that a pth-order term does not have
physical effects on a pth-order commensurate phase. This
assumption is not a serious loss of generality.

A crucial step to simplify further the theory is to con-
sider that, in the absence of umklapp terms, the phases of
the system are described by a uniform component of the
polarization Po=P (¢ =0) and a polarization P, of wave
vector ¢.19712 As discussed in Refs. 11 and 10 this is not
a bad approximation (except maybe in the lowest-
temperature part of the modulated phase).

The main term of the free energy (with D =71n=0)
reduces to

B
Fo=+A40Pi+A4(q) | P(q)|*+ ?Pg
+3BP}| P, |*+ 3BP, —EP, , (5)

where 4, =Ao—a*/2y with go=(—a/y)'%. P, and P,
are determined from dF,/0P;,=0 and 0F, /3P, =0 so that

3’P,

az?
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III. LANDAU-GINZBURG THEORY OF MODULATED
PHASES UNDER FIELD

We start with the following free energy* for a uniaxial
system, with the field geometry appropriate to the experi-
ments discussed here:

2)
ap, |’
—;L a—z" P2_E.P, |d% , 3)
[
To—T +q*7/2
1P, 2= p2 (®)

3T, -0

and P, is the appropriate solution of the following equa-
tion:

Po(Ag—24,)—5T P, =CE (7)

in (6) and (7), 7=Cy and the coefficients are chosen so
that Py(T =0,E =0)=1. In the remainder of this paper,
polarizations are expressed in units of Py(T =0,E =0).

In the vicinity of the equilibrium modulation wave vec-
tor qo(T,E), Fy can be expanded as

Fo=Fg min+4790[q —q0o(T,E))* | P, | * . ®)

In metallic modulated structure with fixed chemical po-
tential, qo(T,E) is independent of temperature (of order
2kg). In that case, there exists a critical value ( q) such
that if &P | > | Py |, the commensurate phase is more
stable.!>!* The situation is different when go(T,E) has a
noticeable variation in temperature, and goes smoothly
through a commensurate value, say g, =27/pb, at a tem-
perature T, (b is the lattice constant). Let us linearize ¢
around g, and write

dq
T-T,)
+ ») dT
Then the umklapp term of order p in (4) stabilizes a com-
mensurate phase of order p within a temperature interval
AT on either side of T,. Provided b, pP? <<BP:, AT is
given by

qqu [l] qp+‘..

2
b, | P, |P=172—yq2(AT)2g2|Pq |2 )
so that
AT = \/ibl/Z —1/2 é-q -1 |Pq I(p—2)/2
with
_4aq
b=ar la=q,

(& will be assumed independent of field).

The curve q(T,E)=gq, in the (E,T) plane thus deter-
mines the contours of the commensurate phase through
(9). To a first approximation, they are symmetrical in T
with respect to the equal —gq curve. [Corrections due to
the fact that 3P,(7)/3T+0 are unsymmetrical.] There is
a small change in |P, |2 at the commensurate-
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incommensurate transition, which for high commensura-
bility order p, is given by (also in the limit that
b, P? << BP})

pb
S|P, |2y =L |p,|P2. 10
[Py %) 6T, | P, | (10)
The width of a discommensuration wall'*!* associated

with a commensurate-incommensurate transition of order
T
pis

2 172
_1|__29%
4 p prPq!p—Z
172
=ﬁz_ E‘K |qu(2—p)/2’ (11)
p b,

where [, is finite at the commensurate-incommensurate
transition and varies with 7T and E.
Indeed, combining (11) and (9), we have

l}

p:%@gu)—‘ . (12)

(This simple relation, derived within the molecular-field
picture, may be more general.)

Depending on the symmetry properties of the crystal, it
may happen that certain umklapp terms vanish when
Py=0. For example, in thiourea,! bg=byP, when the
electric field is applied along the direction of the ferroelec-
tric polarization. Take b,=b,P;. Then the umklapp
term is equivalent to an applied field Es=b, | P, |?, so
that a nonzero polarization Py, exists in zero external
field:

PO,p:XEeffZXb;; |Pq |p’ (13)

where X is the polarizability in the absence of the umklapp
term. For high commensurability order, P,, is small;
Egs. (10) and (12) hold provided b, is replaced by
b, X(E +E ). Neglecting E¢ [which can be typically of
order 1V/mm for p=8 and for (T —T)/3T ~ 5, where
T, is the disordered modulated transition temperature] we
have, in this special symmetry case,

AT:b;/zEl/z | Pq I (p—Z)/Z(gq)—l . (14)

Note that this formula breaks down for E <E.g. In zero
external field, AT(E =0) is not zero, even though it may
be small. Thus

AT(E =o>=—?(b,;XEeff)‘”y—”z(gq,,)-‘ | P, | =272

V2

=Tb[;xl/2y_1/2(§qp)—l|Pq|p_l . (14")

IV. APPLICATION TO THIOUREA

The Landau-Ginzburg approach outlined above can be
used to interpret the data provided one remembers that the
symmetry of thiourea imposes' by =b3P,. To account for
the overall shape of the b*/8 commensurate phase, one
needs the hypothesis that the equal —gq line in the E,T
plane at ¢ =b* /8 in the absence of the umklapp term is

T} +€E*~Ts[1+(E/E,)?] (15)
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with €=2.5X10"° K V™2 mm?, or Eg~0.9X 10* V/mm.
One may think of this field dependence as due to the field
dependence of the coefficient a. In fact, it is naturally ac-
counted for by the 7 term,'© which we have neglected
here.

We now use |P,(T3,E)|? and Po(T%,E) calculated
from (5)—(7) with T, =216 K and T;,=199 K. This
determines 7¢*/2=17, E,=1200 V/mm, T,=212 K,
Ej =1400 V/mm, and T),=208 K to be compared with
the experimental values: E, =2050 V/mm, T\ =212 K,
Ej;=2285110 V/mm, and T, =210£0.2 K.

As expected, taking a=cst yields poor agreement with
the low-temperature part of the modulated phase: One
has Ty =124 K instead of the experimental value 190 K, a
discrepancy which is accounted for by the 7 term. The re-
sult for the shape of the + commensurate phase is shown
in Fig. 3, with one parameter adjusted to the low-field part
(E~100 V/mm) of the curve to fix the parameter bg; the
theoretical curve has been rescaled so as to let the experi-
mental and theoretical points (Eys,T)s) coincide. As can
be seen, the theory accounts for the overall shape of the
commensurate phase, as well as for the order of magni-
tude of AT although the experimental result gives a re-
duced domain of stability compared with the theoretical
curve. A number of reasons can account for that
discrepancy. Probably the most important one is the
neglect of the n term, but one should also note that we
have neglected the higher-order harmonics of the modu-
lated phase, which start having a noticeable amplitude
below 203 K; critical fluctuations, which occur probably
in the whole modulated part of the phase diagram have
been shown to reduce somewhat the stability of the com-
mensurate region.16 Finally, walls near the commen-
surate-incommensurate transition have thermal fluctua-
tions which lower their free energy and lower the stability
of the commensurate phase, in a way which should depend
on the wall width. Figure 5 exhibits the wall width varia-
tion with field along the + commensurate phase boun-
dary. The continuum approximation is valid all along the

lg/b

100

1 1 1
500 1000

2000
E(V/imm)

1500

FIG. 5. Variation of the width /3 of discommensuration walls
at the  commensurate-incommensurate transition as a function
of field. The value at zero field corresponds to AT ~0.1 K in
zero field.
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phase boundary, since the wall width is always significant-
ly larger than the interatomic distance. Therefore, wall
fluctuations are insensitive to the lattice potential. We
cannot evaluate at present the relative contributions of the
various terms we have just discussed to the corrections to
our simple theory.
The Landau-Ginzburg estimate for 8An,, is
8A by

4,
n
—==8|P, |2>=3—

n T Py(T3,E) | P;(Tg,E)|© (16)

where it is easy to see that
8(P3)=(|P, |2/2)8| Py | <<8(| Py | .

Combining (16) and (11) we find

8An 7

R 6T, (16"

yq* A AT)? .
The result of (16) is plotted in Fig. 4, again with one ad-
justable parameter. Note that the phase amplitude decou-
pling approximation is quite a good one for the discom-
mensuration walls (or solitons) in the vicinity of the b* /8
commensurate phase,'’ as

4bg
8(,Pq|2)/|Pq|2:mPOIPqI4<<1

[experimentally 8( | P, |?)/ | P, |*~10~2 near b*/8]. No-
tice also that for an odd-order umklapp term in deuterated
thiourea, e.g., p =9,

S5An
R

does not vanish at low field. We find, if by~bg, that
(8An)y at E =0 is about 2.5(8An)g at E=1000 V/mm as
observed. The width /g of the + discommensuration walls
is estimated from (12): I3 has a local maximum of order
250b at zero field [if AT(E =0)<0.1 K], then decreases
to a minimum of about 106 around 1000 V/mm, and then
increases again and diverges as Pq_3 at high field' (see
Fig. 3).

We show in Fig. 6 the variation of the wall thickness /q
associated to the commensurate phase at ¢ =b*/9 as a
function of temperature in zero field. Walls are well de-
fined, of course, only when their distance is larger than
their width. Notice that in the vicinity of the § com-
mensurate phase in zero field, the wall width is of the or-
der of the unit-cell length, so that one might think that
discreteness effects may play some role in that part of the
phase diagram. See our comments on this in Sec. V.

Our interpretation depends crucially on the validity of
Eq. (15). We have experimentally checked that it was
correct by measuring the equal —q curve in the (E,T)
plane for g~2m/7.5b, due to a new memory effect which
has been reported elsewhere.!®* We find e=(2.5+0.1)
% 107% K V™2mm?, in excellent agreement with (15).

Formally, Eq. (9) leads to nonzero AT for all rational
values of ¢g.!> However, it is easy to show that the analyti-
city breaking terms (the umklapp terms) become already
vanishingly small for such relatively simple rational values
as g =3b*/23, or ¢ =3b*/25. Indeed, if one assumes
that all Landau-Ginzburg coefficients b, in (4) have the
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FIG. 6. Variation of the width Iy of discommensuration walls
at the 3 commensurate-incommensurate transition as a function
of temperature, in zero field. Walls are well defined only when
their distance is larger than their thickness. We estimate this
occurs for T <205 K.

same order of magnitude, one may estimate AT~10"K
for the above-mentioned commensurate values. In zero
field, the umklapp terms corresponding to g =2b*/13
or ¢ =2b*/15 are of order 26 and 30, for symmetry
reasons.! It is therefore quite reasonable to neglect them
altogether. One should keep in mind also, that crystal in-
homogeneities will destroy commensurability at sufficient-
ly high order, and lead to hysteresis of the modulation
wave vector.

V. CONCLUSION

As evidenced above, a standard Landau-Ginzburg con-
tinuum approach provides us with a qualitative and
semiquantitative understanding of the phase diagram of
thiourea.!” In our view, this sheds some light on an in-
teresting problem, that of the piecewise analyticity of ther-
modynamic functions in thiourea. The latter has been
quoted in the literature as a good example of “devil’s-
staircase” behavior.">® This behavior can be demonstrat-
ed to occur in a variety of one-dimensional models at zero
temperature, for example, the Frank—Van der Merwe
model when the discreteness of the atomic chain is taken
into account.” When the ratio U /A of the substrate poten-
tial U to the elastic energy A exceeds a critical value
(U/A). the model exhibits analyticity breaking®; the ener-
gy is not an analytic function of the chemical potential
anymore.

This behavior is related to the discreteness of the atomic
chain. The critical value (U /L), corresponds to a discom-
mensuration width of order & of an interatomic distance:
Walls experience a strong pinning potential to the sub-
strate. When U/A <<(U/A)., variations of atomic dis-
placements from one atom to its nearest neighbor are
small compared with the interatomic distance, and the
continuum approximation is valid; walls are thick, and the
wall pinning potential to the lattice (Peierls’s potential)
can be neglected: The energy is a piecewise analytic func-
tion of the chemical potential.

At finite temperatures,

fluctuations mask the
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commensurate-incommensurate transition in one-di-
mensional systems. In two-dimensional anisotropic sys-
tems, the wall fluctuations result in qualitative changes of
the commensurate-incommensurate transition.?’~2? In an-
isotropic three-dimensional systems (such as deuterated
thiourea), the situation should differ when walls are thick,
or when walls are thin. Thin walls interact strongly with
the periodic lattice, and at low enough temperature, their
thermal fluctuations are strongly suppressed: The walls
are well below their roughening transition temperature??;
one expects the devil’s-staircase picture to hold. On the
contrary, thick walls interact weakly with the periodic lat-
tice, the continuum approximation inherent to the
Landau-Ginzburg picture is valid; walls are rough?? in the
sense that their thermal fluctuations are practically insen-
sitive to the discreteness of the lattice?> even at tempera-
tures well below Tr. The average distance between walls
may vary in a continuous fashion, and the thermodynamic
functions are piecewise analytic; the role of thermal fluc-
tuations is to reduce the stability of the commensurate
phase.

One may argue that lattice discreteness is essential in
giving rise to umklapp terms; however this “soft discrete-
ness” (where walls are thick) gives rise to a periodic poten-
tial but does not result in the qualitative change of
behavior of thermodynamic functions described by the
devil’s-staircase concept. Taking into account higher and
higher-order umklapp terms becomes rapidly unphysical,
as the stair width decreases exponentially with (p —2)/2,
where p is the order of commensurability.'?

We believe that we have shown that thiourea can be
described in a satisfactory fashion in the continuum ap-
proximation, and that symmetry-breaking umklapp terms
are small compared to the free-energy terms which
describe the incommensurate modulation and its variation
with temperature. In fact, relatively wide stairs of orders
7, 8, and 9 may be observed in thiourea because the natur-
al (i.e., in the absence of the umklapp term) wave-vector
variation in temperature is unusually slow: The coeffi-
cient
g 1

—-1_
(&g)~'= a7

,q=b‘/8
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is of order 160 in thiourea, whereas the same coefficient
for g =b*/9 is of order 13 in NaNO,.** As noted above a
consistent theory of the wave-vector variation with tem-
perature and electric field requires a nonzero 7 term.

Our simple Landau-Ginzburg approach is complemen-
tary to other approaches, such as numerical molecular-
field calculations on the anisotropic next-nearest-neighbor
Ising (ANNNI) model®® or microscopic one-dimensional
models which attempt to take into account the long-range
dipolar interaction in SC(ND,),.?® Both these models fail
to account for the observed peculiar tear-shaped com-
mensurate phase at + because they do not incorporate the
field dependence of T’ [Eq. (15)] and the specific struc-
ture of the eighth-order umklapp term. Otherwise, they
are similar to the present approach, and should be correct-
ed by incorporating wall thermal fluctuations.

In conclusion, we have reported birefringence measure-
ments on thiourea under an electric field and at atmos-
pheric pressure. The observed commensurate phase dia-
gram, which we analyze as the + commensurate phase, is
semiquantitatively accounted for in a Landau-Ginzburg
approach which considers the umklapp term of order 8 as
a weak perturbation. Corrections to the present theory
should include a nonzero 7 term, wall thermal fluctua-
tions, order-parameter critical fluctuations, higher-order
harmonics in the description of the modulated phase order
parameter, and impurity effects. Work along these lines is
in progress at the moment.
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