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Semi-infinite systems are considered which undergo a first-order transition. The global

phase diagram is discussed within the framework of Landau theory. Several types of phase
transitions are found. At some of these transitions, critical surface phenomena occur since a
variety of surface exponents may be defined although there are no bulk exponents.

I. INTRODUCTION

The presence of a free surface strongly affects the
phase diagram of a physical system. This influence
has been primarily investigated for semi-infinite sys-
tems which undergo a second-order bulk transition. '

From a theoretical point of view, the standard ex-
ample is the semi-infinite Ising model. In space di-
mension d =2, exact results are available. For
d & 2, mean-field theory, Landau theory, '

scalinp phenomenology, s' Monte Carlo simula-
tions, real-space renormalization-group meth-
ods, ' ' and field-theoretic renormalization-group
methods' ' have been applied to this problem. As
a result, both the global phase diagram of the semi-
infinite Ising model and the details of the various
transitions are now thoroughly understood. Some
aspects of the theoretical picture have also been veri-
fied by experiments. In particular, the critical-
surface exponent Pi which governs the scaling
behavior of the surface order parameter has been
determined for the ordinary transition in the antifer-
romagnet NiO by low-energy electron diffraction
(LEED),~'2z'z and in the ferromagnet Ni by spin-
polarized LEED.

On the other hand, many materials undergo a
first-order transition in the bulk. Since there are no
critical exponents at such a transition, the bulk
behavior seems to be not particularly interesting
from a theoretical or from an experimental
viewpoint. However, this situation may change
drastically as soon as one considers surface instead
of bulk phenomena. As will be shown below, there
are some transitions of the seini-infinite system
where the surface becomes "critical, " i.e., where sur-
face quantities behave continuously or diverge al-
though the bulk quantities are discontinuous.
Some aspects of these critical-surface phenomena
which may be called critical-surface-induced disor-
dering have been reported previously.

Throughout this paper, we will use the framework
of Landau theory as discussed in Sec. II. When ap-

plied to semi-infinite systems with a first-order bulk
transition, several types of phase transitions are ob-

tained. In this paper we explicitly discuss two
models which are distinguished by different Landau
expansions for the free energy. For these models,
most quantities of interest can be calculated in

closed form. In order to organize the results in a
transparent way, we first summarize the results for
the global phase diagram in Sec. III (see Fig. 2
below). At the bulk transition temperature T =T~,
there are two extraordinary transitions, E+ and E
and two ordinary transitions, Oi and 02. The tran-
sitions Oi and 02 are separated by a multicritical
point s (we use a terminology closely related to that
used for the semi-infinite Ising model). "o' In ad-

dition, there is a surface transition S in the high-
temperature regime with T & T~ The v.arious tran-
sitions may be most easily characterized by the
behavior of the order parameter Mi at the surface
which is discussed in Sec. IV. In particular, it is
found that M i goes to zero continuously at the tran-
sitions s and 02. In Sec. V order-parameter profiles
M(z) are calculated in closed form for all values of
the Landau coefficients. As the various transitions
at T =T' are approached, these order-parameter
profiles develop a specific shape (see Fig. 3 below).
In Sec. VI surface free energies are evaluated, and in
Sec. VII, experimental aspects and further theoreti-
cal problems are briefly discussed. Results for vari-
ous surface susceptibilities are given in Appendix B.

II. LANDAU THEORY

Consider a d-dimensional semi-infinite system
with a (d —1)-dimensional free surface. The coordi-
nate perpendicular to the surface is denoted by z.
The surface is given by the plane z =0. The d —1

Cartesian coordinates parallel to the surface are
denoted by p. The system is described by a scalar
order parameter with a Landau free-energy func-
tional of the general form,
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d M Bf(M)
dz2 BM

together with the boundary condition,

(2)

FIG. 1. Generic shape of bulk term f(P) in the Lan-
dau free energy for a first-order bulk transition.

+5(z)fi(P)], (1)

for the scalar field P(p, z}. The bulk properties of
this model are governed by the term f(P}. Since we
want to study first-order bulk transitions, f(P) has
the generic shape depicted in Fig. 1. Within Landau
theory, the bulk order is described by the bulk order
parameter Q=Mii which corresponds to the global

minimuin of f(P) (see Fig. 1). At the transition

temperature T =T», the disordered state with / =0
and the ordered state with P=Mi'i &0 coexist. For
T& T», the system is in its disordered state with

M~ ——0, and for T & T', it is in its ordered state with

Ms &0.
Since the translational invariance is broken by the

free surface, the order parameter M = (P) depends

on the distance z from the surface. Thus the states

of the semi-infinite system may be described in

terms of order-parameter profiles M(z). Within

Landau theory, these profiles are obtained from the

variational principle 5F I P I /5$ =0 with P(p, z)
=M(z). This leads to the differential equation,

dM Bfi(M)

—0 M =M( =0)

at the surface z =0. In the following, we abbreviate
M(z =0)=—Mi. For large z, M(z) must approach
the value Ms of the order parameter in the bulk.
Thus one has to impose the additional boundary
condition,

lim M(z)=Ms .
Z~ 00

1 dM
2 dz

f(M)=——f(M~) .

Thus one has

+[2f(M) —2f(Mii)]'~2, Mi &Mg
t

dz —[2f(M}—2f (Mii)]'~

(5)

with the initial value M(z =0):—Mi which is deter-
mined by (3).

A combination of (3) and (5) yields

The Landau equation (2) has the form of the classi-
cal equation of motion for a particle with coordinate
M (z) moving in a one-dimensional potential

f (M). C—onservation of energy and the boundary
condition (4) imply

Bf,(M, ) +[2f(M, ) —2f(M )]'~

~M1 —[2f(M, ) —2f (M )]'~2

M, &Mii

M, &Mii

which is an implicit equation for Mi. In general,
this equation may have several solutions. Each solu-
tion for Mi will yield a profile M(z) when used as
an initial value for the differential equation (5). In
order to choose the unique profile which describes
the equilibrium state, one must consider the surface
free energy f, .

The Landau expression for this quantity is

I

do not depend on the specific form of the functions

f (M) and fi(M), but derive only from the fact that
the bulk transition is first order. On the other hand,
it is instructive to consider the simplest model where
(5) can be solved analytically. This model is defined

by

(8a)

f, J' (M, )+ f dz

2
(8b)

The equilibrium value for M(z) corresponds to the
minimuin of f, .

So far, the discussion has been quite general:
Many of the features which will be discussed below

with b, c & 0 and with integer exponents [x,y] = [3,4]
or [x,y] = [4,6]. Only infinitesimal symmetry-
breaking fields h, hi &0 will be considered in order
to discuss various susceptibilities (see Appendix B).

For finite h, h i, the phase diagram is more com-
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III. GLOBAL PHASE DIAGRAM

First consider the infinite bulk system. The first-
order bulk transition occurs at

2b /(9c), [x,y] = [3,4]
3b /(16c), [x,y] = [4,6]

(9)

which corresponds to the bulk transition tempera-
ture T = T». Accordingly, the temperature devia-
tion is proportional to

plex since additional lines of interface delocalization
transitions are present in this case." The phase dia-
gram becomes also more complex if higher-order
terms such as, e.g., {{) are included in the surface
erm (8b) 26, 27

Model (8) with [x,y]=[3,4] is applicable to sys-
tems which allow a cubic invariant such as the q-
state Potts model. [For (d, q}=(3,3), the discontinu-
ous nature of the bulk transition is now well estab-
lished. ] If the cubic term is not allowed be-
cause of symmetry, one is led to consider model (8)
with [x,y]=[4,6]. All systems which have a bulk
tricritical point belong to this class. The tricritical
bulk transition occurs for a =b =0 in (8a). The cor-
responding semi-infinite case has been investigated
by Landau theory" and by field-theoretic renor-
malization. Here we are concerned with a,b&0
where the bulk transition is first order.

As usual, we assume that the dominant tempera-
ture dependence is contained in the Landau coeffi-
cient a which enters the bulk term f(P). The
remaining coefficients are taken to be temperature
independent. The coefficient ai which enters the
surface term fi(P) is related to the relative strength
of microscopic interaction parameters in the bulk
and in the surface. For example, one may consider
the semi-infinite q-state Potts model on a lattice
where two Potts spins interact in the bulk and in the
surface via the coupling constants J and J„respec-
tively. If one performs the continuum limit in
the usual way, one finds

a i
——1 —2(d —l)(Ji/J —1)

as for the semi-infinite Ising model. Thus a i is pos-
itive when Ji &&J, and a i is negative when Ji »J.

a

0„ s 0,

5a=a —a» ~ T —T» . (10)

In the ordered phase below T», the bulk order
parameter is given by

[b+(b 4ac)'—~ ], [x,y]=[3,4]
2c

1
[b +(b 4ac)' —]2c

1/2

[x y]=[4,6] .

(1 la)
At T = T» (a =a*},Ms jumps from

2b /(3c), [x,y] = [3,4]
[3b/(4c)]'~, [x,y] = [4,6]

{1 lb)

to zero. In the semi-infinite case, we obtain several
phase transitions which are schematically shown in
the global (a,ai) phase diagram of Fig. 2 with
h =h

~
——0. (The case with finite symmetry-breaking

fields h, h i will be discussed elsewhere. ) First, con-
sider the dashed line in the high-temperature regime
with a & a* which is given by

a i
——a i(a) = —&5a .

This line separates the region with M (z) =0
(a&a», a»ai) from the region with two meta-
stable profiles (a &a*,ai &ai). One of these meta-
stable profiles becomes the equilibrium profile at the
phase boundary S (see Fig. 2). This phase boundary
is given by the implicit equation f, =0 which has to
be solved numerically. However, it is possible to
find the analytic form for S in the vicinity of a =a*
[see (41a) below). The result is

I I

-x Va' 0 )a
FIG. 2. Global {a,a, ) phase diagram. a =a» corre-

sponds to the bulk transition temperature T=T*. The
different types of phase transitions are denoted by S, E+,
E, O~, s, and 02. The dashed line is a line of metasta-
bility.

ai(a)=
—x(a ) +»z 5a ln(5a), [x,y]=[3,4](1+x)' (a')'"
—x(a )' + i&

5a ln(5a), [x,y]=[4,6]
2(1+x) (a»)'~

(13a}
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with

2'~i —1, [x,y] = [3,4]
2'~ —1, [x,y] = [4,6]

(13b}

although the bulk order parameter Mii is discontinu-
ous. For ai &(a»)'~i, Mi has the limiting behavior,

' 1/2

Mi —— — [(a»)'~ —a i ]+0(5a ) for Oi, E

IV. SURFACE ORDER PARAMETER M
&

The various transitions at a =a* may be most
easily distinguished by the behavior of the surface
order parameter Mi. This quantity has to be found
from the implicit equation (6). It is not possible to
solve this algebraic equation for all values of a & a*,
but one can expand around a =a». First, consider
model (8) with [x,y] =[3,4]. In this case, one finds
for a i & (a*)'~2,

, „, I5a I'"+o(I5a I} «r02
(a a»)1/2

' 1/3 (14a)

I5a
I
'~'+0( I5a

I

~') for s

(14b)

as the transition line a =a* is approached from
below [5a has been defined in (10)]. For a i & (a»)'~
and a & a», Mi ——0. Therefore Mi behaves continu-
ously at the transitions s and 02 as

M, ~
I
T T— (isa)

to leading order in 5a. The next term is of 0(5a).
At a =a», five different types of transitions occur
(see Fig. 2). For ai & —x(a»)'~, the extraordinary
transition E+ occurs if the line a =a» is approached
from above while the transition E occurs if the
same line is approached from below. For a =a» and

a» —x(a»}'~, there are two ordinary transitions
denoted by Oi and 02 which are separated by the
multicritical point s with coordinates
(a,ai)=[a», (a»)'~ ] (see Fig. 2).

It is instructive to compare the phase diagram just
described with the phase diagram of the semi-
infinite Ising model where the bulk transition is con-
tinuous. In this case, the transition S is also con-
tinuous (note that this transition is only present for
d & 2 (see, e.g., Ref. 16). As a consequence, the tran-

sition line ai(a) and the line of metastability ai(a)
are identical in the Ising case. In addition, there is
no difference between E+ and E, and there is only
one ordinary transition 0."

It can be shown analytically that the surface free en-

ergy as given by (7) has the property

f,(M/+)&f (Mi ).
Thus Mi may be discarded and the relevant solu-
tion is

' 1/2

M, =Mii+ Ms +—(ai —a)»2 2 2

C
(17a)

for ai &ai(a) [compare (13a)], and Mi ——0 for
ai &ai(a). (17a) implies fora~a»+0,

1/2

Mi —— — [(a»)'~ —ai]+0(5a) for E+ .

(17b)

Thus Mi is continuous at E and E+. Only at the
transition O„Mi behaves like the bulk order
parameter Mq since in this case it jumps from the
limiting value (16) for a &a» to zero for a & a».

For model (8) with [x,y]=[4,6], very similar re-
sults are found. At Oz and s, Mi goes continuously
to zero:

Mg
I5a I'~'+0( I5a I' ) for 0

(18a)

I5a I' +0( I5a
I

) for s.

Thus the surface exponent Pi is now given by

(18b)

as a =a» is approached from below.
In the high-temperature regime a & a*, the Lan-

dau equation (6) can be solved for all values of
(a,ai ). There is always the solution Mi ——0. For
ai &ai(a) [compare (12)], there are two additional
solutions,

1/2

Mi ——Ms+ Ms + —(a, —a)+

C

with the surface exponent, for 0,
1

for s
(19)

for 02
1

1

for s3

(15b}
Note that pi has the same value at the transition Oz
for both [x,y]=[3,4] and [x,y]=[4,6] while it



28 SEMI-INFINITE SYSTEMS WITH FIRST-ORDER BULK. . . 3987

differs at the transition s. This also holds if various
generalizations of (8) are considered. 2 z At Oi and
E,Mi has the limiting value,

' 1/2 1/2

[(a«)'~ —ai] +O(5a) .

(20)

Mi ——Mz + Mz +—(a i
—a)«2 «4 3 2

C
(21a)

for a, &ai(a), which leads to

In the high-temperature regime a &a«, one finds
Mi ——0 for a»ai(a) [compare (13a)] and

' 1/2 1/2

Figs. 3(b) and 3(c)] [for ai ——0, M(z)=Mii as men-

tioned before].
At these transitions, the length scale for the varia-

tion of M(z) is given by the limiting value of I/v P
which is I/(a«)'~ . In contrast, a new length scale l
appears at the transitions s and 02 as shown in Fig.
3(a). At z =l, the order-parameter profile M(z) has
a point of inflection. l can be calculated from the
implicit equation M(l)=M, where M corresponds
to the local maximum of f(M) (compare Fig. 1).
Thus there is an interface which separates a disor-
dered surface layer with M(z) &0 from the ordered
bulk with M(z) &Mz.25' This interface becomes
delocalized since

Mi ——

' 1/2 1/2

[(a )' —ai] +O(5a)

for E+ . (21b)

I
~
lnMi

~
+O(1)

(a«)ii2

1

,&2 Pi (
ln

)
5a

~ [ +O(1) for 02,s .
(a «) 1/2

(23)

Thus in both models Mi is continuous at, E
E+, discontinuous at Oi, and goes continuously to
zero at s and 02.

V. ORDER-PARAMETER PROFILES M (z)

The order-parameter profile M(z) is obtained
from the differential equation (S). For model (8),
this equation may be solved analytically. First, con-
sider the case [x,y] =[3,4]. In the low-temperature
regime a & a «, one obtains

M(z) =Mz- P
(22a)

Q +~Rsinh(+ ~Pz +S)
where the plus sign applies to a» 0 while the minus
sign applies to a i & 0. For a i ——0, one obtains a flat
profile M (z) =Mii. The parameters in (22a} are

M =
S

C
ln(v'2cP +Q}

a,Mi—ln ~ac —A
Mz —Mi

(26a)

The divergence of the length scale 1 induces a
singular behavior in the excess quantity,

M, = Jt dz[Mz —M(z)] for a &a« . (24}
0

A simple estimate of M, for a ~a « —0 gives

M, = ]t dzMii ——Miil . (25)
0

This is indeed the leading-order term since an expli-

cit calculation yields
' 1/2

P =bM& —2a,

Q =c (2M' —Mg ),
R = —,bc(Mz —Mi'i),

1 2PS =arcsinh
R

(22b}

(22c)

(22d)

(22e)

'
M(z) 02, s "M(z)

(c) ~ E, O,

Note that the "initial value" Mi enters the profile
M (z) only via the parameter S in (22e).

At the various transitions E, Oi, s, and Oi, the
profile M(z) as given by (22a) develops a charac-
teristic shape which is schematically shown in Figs.
3(a)—3(c). At E, the profile decreases monotoni-
cally to the value Mz of the bulk order parameter
[see Fig. 3(c)]. At Oi, the profile either decreases
[for —x(a«)'~ &ai &0] or increases [for
0 &a i & (a«)'~ ] monotonically to the value Mz [see

(b)

"M(z) 0,
'

M(z)

Ol z

FIG. 3. Generic shapes of the order-parameter profile
M(z): (a) at the transitions Oq and s; (b) and (c) at the
transitions O~ and E; (d) at the transition E+. Near Oz,

s, and E+ there is an interface at z =I and at z = I, respec-
tively.
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A = —c(Mi+M~)+ , b— (26b)

for a & a» which implies
1/2

2
Pi (In~sa

~
)+O(1) for Oz, sM =

S
C

1~M, ~ ~T T— (28)

(27}

where the surface exponent Pi is given by (15b). By
analogy with the semi-infinite Ising model, we de-

fine the surface exponent P, via M, ~
~

T T*—
~

'.
This implies for the diverging length scale

Thus at the transitions E+, s, and 02, an interface
appears which becomes delocalized as the bulk tran-
sition temperature T=T* is approached. This in-

terface delocalization is due to the possible coex-
istence at T = T» of the disordered phase with one
of the ordered phases. Such a delocalization
phenomenon has also been found in the wetting
and in the pinning transition where the inter-
face delocalization is due to the possible coexistence
of two ordered phases.

For model (8) with [x,y]=[4,6], a very similar
behavior is obtained. In the low-temperature regime
with a & a», one finds

with the classical value P, =0 (ln).
In the high-temperature regime with a &a» and

ai &ai(a), one obtains from (5) ([x,y]=[3,4]),
M(z) =My

R
' 1/2

, M,'—+—Qcoth2(v Pz+S, )

M(z) =

with

R =2c(a —a*),

2a

, b +'t/—R sinh(~az+S)
(29a)

(29b)

for a i & 0, and

M(z) =My ——,Mg+Q tanh (MPz+S()

(33)

' 1/2

S=arcsinh
1 2a 2

(29c) (34)

The initial value Mi which enters the expression for
M(z) only via S in (29c) is given by (17a). As E+ is
approached, this profile has the characteristic shape
shown in Fig. 3(d}. In this case, there is an interface

at a new length scale z =l which separates an or-

dered surface layer from the disordered bulk. l is

obtained from M(l)=M, where M corresponds to
the local maximum of f (M) (compare Fig. 1). This
interface becomes delocalized at E+ since

for ai &0 with

P = , bMi—i—a,2

Q =-, Mg —M~
2 42

R =M@—Mg

S& ——arccoth
1+2R/Mi
1+2R /Mg

(33'a}

(33'b)

(33'c)

(33'd)

A

l =
~

1n(5a)
~

+O(l) for E+ .
(a»)1/2

(30) S&
——arctanh

1+2R/Mi

1+2R /Mg
(34')

M, = dzM(z) for a &a» .
0

(31)

This diverging length scale again induces a singular-
ity in the excess quantity M„which is now defined

At the various transitions 02, s, Oi, and E, the
limiting behavior of M(z) is again given by the
schematic curves in Figs. 3(a}—3(c).

In the high-temperature regime with a &a» and

ai &ai(a) [compare (13a)], one obtains

' 1/2
2 (ln(~2c

~
a,

~
+cMi ——,b)

2M =
S

C

—lnI V2c [Ma —(a»)'
I ), (32a)

Changing variables from z to M(z), one immediately
obtains M(z) = a

, b +~R sinh(2~—az +S )

with

4
R = —,c(a —a»),

' 1/2

, (35a)

(35b)

~

ln(5a)
~

+O(l)

with the limiting behavior,
' 1/2

2
M, =

C

=Mal+0(1) for E+ . (32b)

1 i 2aS=arcsinh —, b+-
Mi

(35c)

At E+, this function again has the characteristic
shape shown in Fig. 3(d).
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VI. SURFACE FREE ENERGY

Phase transitions in semi-infinite systems show up
as singularities in the surface free energy f, . In
Landau theory, this quantity is given by (7) [when
the equilibrium profile M(z) is inserted]. Again
very similar results are found for [x,y]=[3,4] and
for [x,y]=[4,6]. Therefore we will only consider
the first case in this section while the latter case is
discussed in Appendix A.

In the low-temperature regime with a &a~, one
finds f, = —,aiM1+I(M1)+ J(M1), (40a)

M cc
~

5a
~

/, and at s terms proportional to
Mi 0: ~5a

~

/ arise. Note that (39) gives f, =o'
a =a~ —0. In contrast, f, =0 at the other side of
the phase boundary with a =a~+0. This implies
that there is still an interface for a =a~ —0 which

is, however, an infinite distance apart from the free
surface.

In the high-temperature regime with a &a~, (7)
leads to f, =0 for a»ai(a). For a, &ai(a), one
finds

f, = —,a 1M1+I(Mi, Mii )+J(Mi, Ms ),
with

I(M1,Mg ) = 2
c- a 1M12c' Mg —M,

(36a} with

I(Mi }=—(Mi —M~)
I
ai

I
+

C

+—a'~a ——a
1 2 032
C

3 (40b)

+2 '
a~

3c Mii —M 1

2 3/2

'3
2

Q p 1 /2

2G

(36b)

(a~)'/ (c/2)' (Mi —Mii)+
~
ai

~

M1 5a n
1/2 ~1/2

C a —a

(40c}

J(M 1 ~Mq ) 2
—nc —s/2QR ln —Q+(Q'+R)'"

(36c}

As the transition E+ is approached from above,
(40a) has the asymptotic behavior,

(a y)1/2

f, =f,*+cr + 5a
I
ln(5a)

I
+O(

C

where the parameters P, Q,R are given by
(22b)—(22d) and the parameter A is given by (26b).
At the transitions 02 and s, the surface free energy

f, develops a nonanalytic part. As a =a~ is ap-
proached with a 1 & (a~)'/2, one finds the asymptotic
behavior,

where o ~ is the surface tension (38) and

f,'= — [ ( a1
~

+3(a )'/ a 1+3a
~

a 1 ~ ]
3G

(41a)

(41b)

I(M1 M21 }=a' ——,aiM1+o (
I
5a

(a g)1/2
J(M1,Mg ) =

(37a)

/

5a
/ Pi )

ln
[
5a

/ /
+O (

/

5a
/
),

(37b)

g+= a
~ 32

C
(3g)

where Pi in (37b) is the surface exponent (15b) and

is the limiting value for f, at E . If f, in (41a) is
set equal to zero, one recovers the expansion (13) for
the phase boundary S.

In summary, the surface free energy has a singu-
lar part proportional to

~

5a
~

ln
~

Sa
~

at the transi-
tions 02, s, and E . This implies for the surface
specific heat,

d2

in (37a) is the surface tension of the interface in
an infinite system with boundary conditions
M( —Do )=0 and M( 00 ) =F1. If (37a) and (37b) is
inserted into (36a), one finds

(a y)1/2
f,=cr «+

[ 5a
/ Pi /

1n
/

5a
/ /

g 0 (
/
5a

/
)

C

(39)

the asymptotic behavior,

c, iT T i-
with the surface exponent,

a, =1 for 02 s,E+ .

(42a)

(42b)

at the transitions 02 and s. In addition to the lead-
ing nonanalytic ln term in (39), there are nonanalytic
corrections: at 02, there are terms proportional to

VII. DISCUSSION AND OUTLOOK

It has been shown in this paper that several types
of phase transitions may occur in a semi-infinite
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system which undergoes a first-order bulk transition
(compare the global phase diagram of Fig. 2). In
particular, there are surface-induced disordering
transitions denoted by Oi and s where surface quan-
tities show a critical behavior: Surface quantities ei-
ther go continuously to zero or diverge whereas the
bulk quantities behave discontinuously. These tran-
sitions occur if the Landau coefficient a i in (Sb) ful-
fills the inequality a i ) (a*)' . At the transition
Oi, i.e., for —x(a»)'/ &ai &(a»)'/ [with x given

by (13b)], both surface and bulk quantities behave
discontinuously. Finally, at E and E+, local
quantities such as M i are continuous and regular
while excess quantities such as M, [see (31)] or C,
[see (42a)) diverge at E+.

In order to decide which transition will occur in a
real physical system one must express the coordi-
nates of the various phase boundaries in terms of
microscopic interaction parameters. Thus one has
to investigate appropriate lattice models. From a
theoretical point of view, the semi-infinite q-state
Potts model is the simplest lattice model which may
undergo a first-order bulk transition. In this model,
two Potts spins in the surface interact via the cou-
pling constant J, while two Potts spins in the bulk
interact with the coupling constant J (compare dis-
cussion at the end of Sec. II). For (d, q) =(3,3), one
finds from mean-field theory ' that (a, ai )
= [a», (a *)'/ ] corresponds to the ratio Ji /J = 1.1

while (a,a i ) = [a*,—x(a»)'/ ] corresponds to the ra-
tio Ji/J =1.3. One would expect that Ji &J is the
rule which implies that the surface-induced disor-

dering transition 02 could be observed in real sam-

ples. Another lattice model of interest which has a
first-order bulk transition is an Ising model with

competing interactions in a magnetic field. For a
face-centered-cubic lattice with antiferromagnetic
nearest-neighbor couplings, this model has been used

to study the bulk transition of binary alloys such as
Cu&Au. In addition, the corresponding semi-

infinite lattice model has been investigated by Monte
Carlo methods. The Monte Carlo results for the
order-parameter profiles strongly suggest that
surface-induced disordering may also occur in such

Ising models.
The motivation for the Monte Carlo studies just

mentioned came from an experimental result ob-
tained with LEED on Cu&Au. This binary alloy
undergoes an order-disorder transition at T» =663
K which is discontinuous in the bulk. In contrast, it
was observed in the LEED experiment that the in-

tensity of the superlattice beam which measures the
long-range order parameter in the surface seems to
vanish continuously as T» is approached from
below. Unfortunately, there are not enough data
points in order to estimate the surface exponent Pi

from this experiment (see Fig. 4 of Ref. 47).
more precise measurements of the surface order
parameter in Cu&Au or similar materials would be

highly valuable. In this context, new experimental
techniques which probe the surface locally such as
total reflected x-ray diffraction or total reflected
neutron beams ' ' should be very useful.

It has been shown that the critical-surface
behavior at the transition 02 and s may be derived
from a scaling form for the surface free energy. In
this scaling form, two independent surface ex-
ponents enter. These two exponents may be taken to
be Pi and P, which describe the behavior of Mi and
I, respectively [see (15a) and (2S)]. At the transition

02, the classical values for these exponents are

Pi —
—, and P, =0 (ln). Of course, one must ask how

fluctuations which are underestimated in Landau
theory will affect these exponents. The relevant

fluctuations are expected to be capillary waves

which may lead to an interface which is not only
delocalized at T = T», but also rough. Such fluctua-
tions can be investigated via an effective interface
model. In d =2, this model can be solved exact-

ly. As a result, one recovers the transition 02 with

two independent surface exponents. The values for
these exponents are Pi(d =2)= —, and P, (d =2)

In d =3, the interface fluctuations should

be less singular than in d =2. This leads us to con-
jecture the following inequalities for the three-

1

dimensional case: —, &Pi(d =3) & —, and

& P, (d =3) & 0 (ln).
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APPENDIX A

ln(5a)+O(1) for E+
2(&»)1/2

(A lb)

where the surface exponent pi is given by (19).
Apart from a factor —, at E+, this is identical to the
corresponding results for [x,y] = [3,4). [Compare
(23) and (30).] The excess quantity M, may be cal-

In this Appendix, some additional formulas for
the case [x,y]=[4,6] are collected. First, consider
the behavior of the new length scales at 02, s, and
E+. For a ~a», one finds

1I= — »kiln ~5a ~+O(1) for 02,s
(&»)1/2

(Ala)
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culated in closed form at 02,s while at E+ it is
given by an elliptic integral of the first kind. The
asymptotic behavior is

2
5

ln(5a) for E+ .
(A2a)

I(Mi, Ms) = ——,(Mg+ —,R)
2aiMi

z
—Mii &2cQ /3

ii —Mi
'3

aiMi
Mi

Mii —M i

Thus the simple estimate (25}holds again.
Next consider the surface free energy as defined

by (7). For T&T», one obtains

f, = —,aiMi +I(M„Mq )+J(M, ,Mq ), (A3a)

with

nonanalytical higher-order terms proportional to
Mi ~

~

5a
~

/, etc. At the transition 02, there are
no such terms in Landau theory since only even

powers of Mi ~ ~5a
~

'/ appear. However, this
could be changed as soon as fluctuations are taken
into account.

For T & T», the surface free energy is given by

f, = , a i—Mi +I(M i )+J(M i ), (A7a)

with

I(Mi)= —,(Mi —Mii )
~
ai

~
+ 4Mii a', (A7b)

' 1/2
31J(Mi)= —— 5a

4 c

(c/3)'"(Mi —M~")+
~
a,

~

1/2 g y 1/2

(A7c)

f =f +o' ———1
S S 5a ln(5a )+0(5a),

As the transition E+ is approached, the surface free
energy behaves like

' 1/2

Mii (2cg /3 )

' 1/2

J(Mi, Ms ) = — — (Mii+ —,R)R

(A3b)
(A8a)

where the surface tension o» is given by (A5) and
' 1/2

I(M„Mg) =rJ» —,a,M, + 0(—5a),
' 1/2

(A4a)

1J(Mi, Mg) = ——,
C

~

5a
~

lnMi+0(5a),

Mi+(M i+2R)'
Xln i . (A3c)

Ms+(Mii+2R}'

At the transitions 02 and s, these functions have the
asymptotic form

(A8b)

is the limiting value for f, at E . From f, =0 and
the expansion (A8a), one obtains the asymptotic
form (13) for the phase boundary S .

APPENDIX B

In this appendix the singular behavior of the
zero-field susceptibilities

where
(A4b)

1 p

~ /T T*[—(Bla)

4 c
(A5) ~/T T» f—(Blb)

1f 2 c ~

5a
~
Piln

~

5a
~

+0 (5a)
(A6)

at 02,s. At the multicritical point s, there are

is the surface tension of an interface in the infinite
system with boundary conditions M( —ao ) =0 and
M( ~ )=Mii. From (A3a), (A4a), and (A4b), the
asymptotic behavior of the surface free energy is as
follows:

' 1/2

and

M, ~s
Xg —— ~ /T T-

Bh 0
(B1c}

is discussed. Mi is the surface order parameter (see
Sec. IV) and M, is the surface excess quantity de-
fined in (24) and (31). The surface exponents yi i,
yi, and y, are defined by analogy with the semi-
infinite Ising model. The susceptibilities
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(8 la)—(8 lc) may be derived from

X(z,z')= f d 'pG(p;z, z'),

where

(82)

are given by

, af (M, )
'

X],]——X(0,0)=& (86)

is the two-point correlation function. Within Lan-
dau theory, X(z,z') satisfies the differential equation,

OO , (}f](M])
Xi= f dzX(Z, O)=B (Mz —Ml),

aM,

(87)

, + V(z) X(z,z') =Biz —z'), (83a)
X, = f dz Xz —f dz'X(z, z') (Bg)

.~

() f(M) d'M dM

(}M dz
(83b)

where Xz is the bulk susceptibility. We now special-
ize to model (8). Then the behavior of X] ] and X] is
easily found to be

where M(z) is the order-parameter profile (see Sec.
V). At z =0, one has the boundary condition

a]M,
1, 1

(a ]
—a)M] +bM] —cM]x —1 y —1

(89)

X(z,z')
z=0

() f](M])
X(0,z') .

()M ]

Mg —M1
1

(a, —a)M]+bM] —cM]x —1 y —1

u](z)[S 'u](z')+u2(z')], z &z'
X(z,z') =

[8 'u](z)+u2(z)]u](z'), z (z' (Bsa)

The general solution to (83a) and (84) has the form
(compare Ref. 11)

At the transitions 02 and s, the surface order
parameter M] goes continuously to zero as discussed
in Sec. IV. This implies a power-law behavior for
X] and X] ] as indicated in (8 la) and (8 lb) with the
surface exponents,

0 for 02
with

dM(z)
u] z

dM (x)
uz(z) =u](z) dx

0 X

' —2

(85b)

(85c)

and

x —2

1

for 02

(811)

a'f] af]
aM' aM

Bf (}f]
m aM ~=M,

(85d)

In terms of X(z,z'), the susceptibilities (Bla)—(Blc)
I

x —1 fors .
(812)

It is more difficult to evaluate the susceptibility X, .
Equation (88) may be brought into the form

B(MZ —Mi—) + f dz Xz—
'2

Mq —M (z)

dM/dz
—2

L
lim [M(L) —Mz] f dz[MZ —M(z)]

L~(x] 0
(813)

The second integral is finite at all types of transi-
tions. In contrast, the first integral is singular at the
transitions 02, s, and E . In addition, the first
term which involves I/8 is proportional to

i
5a

~

at (02) and s. As a consequence, one finds

i.e.,

X, ~ iT —T*[

y, =l for 02,s,E+ .

(814)

(815)
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