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A unified first-order Greens-function theory of anisotropic Heisenberg ferromagnets

with S=—is designed to decouple the higher-order Green s functions obtained in writing

down the equations of motion of the first-order Green's functions. By defining the commu-

tator and the anticommutator brackets, the equations of motion of the two kinds of Green's

functions G and 6+ are written down. With the use of suitable decoupling parameters, a
generalized decoupling scheme is suggested. In order to determine the relation between

these decoupling parameters we define two conditions: (1) self-consistency and (2) vanishing

of the equal-time correlation functions. Using this decoupling scheme, we calculate the

thermodynamic properties of the anisotropic Heisenberg ferromagnets with S=—at low

temperatures. Finally, we also calculate the effect of the decoupling scheme on the magnon

conductivity at low temperatures. We clearly find that the magnon conductivity is modified

appreciably by the different decoupling parameters and by the anisotropy of the system.

I. INTRODUCTION

The double-time Green's functions have been'
successfully used to calculate the thermodynamic
properties of different Heisenberg ferromagnets.
The basic idea is to write down the equation of
motion of the first-order Green's function which in-
volves the higher-order Green's functions. By writ-
ing down the equations of motion of these Green's
functions we get a hierarchy of equations of motion
which can be truncated by a suitable decoupling
scheme. The decoupling scheme represents higher-
order Green's functions in terms of the lower-order
Green's functions. The simplest and the lowest-
order decoupling scheme was suggested by Tyabli-
kov~ and is known as the random-phase approxima-
tion (RPA). Callen has very ingeniously considered
the spin deviation by introducing a suitable decou-
pling parameter. Since then many decoupling
schemes have been suggested to calculate the ther-
modynamic properties of the magnetic systems.
Kumar and Joshi have attempted to generalize the
different decoupling schemes which are the outcome
of Callen's decoupling scheme.

Katsura and Horiguchi have proposed a different
coupling approximation by making use of the an-
ticommutability of Pauli operators at the same lat-

tice site. In the present work we generalize these
ideas to unify the first-order Green's-functions
theory for anisotropic Heisenberg ferromagnets with
S = —,, and compare it with the previously suggested

decoupling schemes. We calculate the spontaneous
magnetization and Curie temperature. We also
derive these results for the simple cubic lattices. We
calculate the low-temperature series expansion of the
magnetization. Recently, Kumar has suggested
that the magnon conductivity also depends upon the
decoupling scheme which we use to calculate the
spin-wave energy. We therefore calculate the mag-
non conductivity by using the present decoupling
scheme.

II. HAMILTONIAN AND GREEN'S
FUNCTIONS

Following Katsura and Koriguchi, and Tyabli-
kov, we can describe the Hamiltonian of the aniso-

I

tropic Heisenberg ferromagnet for S = —, as

glsBII g Sf g [J (f—g)(SfS +SfSy)
fg

+J~)(f g)SfS ], —

(2.1)
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where Jj (f —g) and
J ~

(f —g) are the transverse and
the longitudinal components of the exchange in-
teraction between the spins at the sites f and g. S~
is the spin operator at the site f (in units of fi), g is
the Lande g factor, and H is the external magnetic

1

field. For S=—,, the spin operators can be ex-

pressed in terms of Pauli operators as follows:

Sy+iSJ=SJ+——a~, Sg iS—I=SI ——a&,
(2.2)

sf —
2 afaf —

p nf

obeying the following commutation and anticommu-
tation relations:

H=E0 g—Ji(f —g) i +(zJ(~+gpttH) g Jai
f,g f

—g J~~(f g)a—fafagag,
fg

where

(2.4)

1 1

Eo —,——g@AH—N—
g zJ)(N .

With the use of the Pauli operators the Hamiltonian

reduces to

[ai,ag ]+——[a~,ag ]+——0,
[ag,a~]+ ——2a~ag +5~(1—2n~ ),
[ag,ag] =5~(1 2ng—) .

(2.3)

Here z is the number of nearest neighbors. Follow-
ing Zubarev, ' the Fourier-transformed equation of
motion of the Green's function G~(E), ((ag

~
af ))F+-. ,

can be summarized as

(E zJ~~ gp—AH)G—~(E)= —,5yg ((1—2ng ) ) + —,2(agag ) —g Ji(g —m)G+g(E)

+2+ Ji(g —m)Ggg y(E) —2g J~~(g m)G+ yy—(E), (2.6)

1
(E —

zJ~~ gp+H)G~—(E)= 5gj ((1—2n)) —g Ji(g m)G I(E)—2'

+2 g Ji(g m)G—~ y(E) 2g—J~~(g m)G~~—&(E), (2.7)

where (a ya- ) in Eq. (2.8) is the equal-time corre-
8 +

lation function, and G=-- y(E), etc. , are the

Fourier transforms of second-order Green's func-
tions as

G=-, - t (E)=((a-(t)a-, (t)a (t) ~a t (t')))z~

= —ie(t —t')

X([a-(t)a7(t)a (t),a7(t')]+) .

(2.8)

To simplify Eqs. (2.6) and (2.7), we require some
suitable decoupling scheme in terms of the decou-

pling parameters.

III. DECOUPLING APPROXIMATIONS

Tyablikov proposed a decoupling scheme, which
is known as RPA, and the basic idea is to consider a
self-consistent dynamic and kinematic interaction of
the magnons at all temperatures however, as RPA
ignores the fluctuations around (S'). The series ex-

pansions of the magnetic susceptibility at low and
high temperatures lead to a spurious T3 temperature
dependence. Oguchi and Honma had improved the
Tyablikov decoupling scheme of symmetric lineari-
zation in accordance with Wick's theorem for Bose
operators. This is often known as the Hartree-Fock
(HF) approximation and retains the T3 term, and
hence does not improve RPA appreciably. Callen
has successfully considered the fluctuations about
(S') in a modified decoupling scheme. It incorpo-
rates the information about spin kinematics. Swend-
son has been successful in eliminating the T term
in the series expansion of the magnetization by im-

proving Callen's decoupling parameters. Katsura
and Koriguchi, 5 on the other hand, had suggested
modification to the HF-decoupling scheme to first
eliminate its shortcoming of an infinite Curie tem-
perature by using commutation and anticommuta-
tion of Pauli operators at different and the lattice
sites, respectively.

There are other intermediate decoupling schemes
proposed by Mabayi and Lange, 9 Kenan, ' Shim-
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izu, " and Oguchi. ' Other attempts had been to
eliminate the T term in magnetization as well as
other shortcomings. All decoupling schemes'
lead to some renormalization constant; the corre-
sponding energy may be expressed as

E(k)=R [1—) (k})+cop .

One can obtain different values of decoupling pa-
rameters involved in the value of the renormaliza-

tion constant R. We propose a unified decoupling
scheme taking into account the kinematic interac-
tions within the framework of first-order theories in

order to eliminate the spurious T term.
Following the concept of Callen's decoupling

scheme with a suitable decoupling parameter, ' we

represent the decoupling approximation by taking a
suitable combination of the three decoupling
schemes as follows:

((a-(t)a (t)a- (t)
~

a t (t')))g~~fp (a a )((a (t)
~

a
&

(t')))E+f&g~(a a )((a (t)
~

a y(t')))E

+f2rr~(a-a- )((a (t)
~

a r (t')))z~ +p(g, in f )5(t t') . — (3.1)

The corresponding Fourier transform of Eq. (3.1}can be expressed as

G= y(E)=((a" a-a- ~a & ))E~fpg (a a-)((a- ~a t ))E+f)g (a-a- )((a- ~a t ))~

+f2s~(a-a )((a- ~ay))~+p(g, m, f), (3.2)

where (fp,fi,f2) are decoupling parameters which depend upon the magnetization and the transverse correla-
tion function of the spins at the lattice sites g and m, i.e., pg

——((a -a-) ). The last term, p(g, rn, f ), is an

additional term' which may depend upon the relative positions of the lattice sites (g, m, f ). We assume p to
be symmetrical, i.e.,

p(g, m, f ) =p(m, g, f } . (3.3)

The relation between the decoupling parameters (fp,fi,f2) can be obtained by making use of the conditions
of self-consistency and the vanishing of the correlation function

(a y(t')a-(t)a-(t)a - (t) ),
automatically at f = g and t =t, because of the anticommutability of the Pauli operators at the same lattice
site. Writing the following contractions of the related correlation functions, we find that

(a y(t')a-(t)a-(t)a (t) )~fp(a (t)a-(t) ) (a t (t')a (t) ) fi (a-(t)a (t) ) (a—t (t')a-(t) )

+f, (a, (t)a- (t)) (a y(t')a, (t) ) . (3.4)

It should vanish at f = g and t =t', if

fp+f2=fj . (3.5)

The other relationships between the different decoupling parameters can be determined by using the condi-
tion of self-consistency. It can be done by evaluating the expression

lim [G= (t, t') G= —(t, t')]ggmm mmgm
t —t' —+0

(3.6)

and by introducing the decoupling scheme in Eq. (3.6), which gives

fp(n (a - a y )+n (a ya - ) n(a-a t—)+n (a ya ) )

+fi((a-a- )(a-ay)+(a-a- )(aya-) —(a a-)&a-ay)+(a a-)(aya- ))

+f2((a-a- )(a-ay)+(a-a )(aya-) —(a-a )(a-ay) —(a-a-)(aya- )) . (37)
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We assume

i lim G= t (t,t')=(a a7)+(a ta )
t —t'~0+

(3.8)

p(g, m, f)=p(m, g, f) .

In Eq. (3.7), n=(a a) because (a-a-) is indepen-

dent of the lattice site due to translational invari-
ance. We now consider the equal-time correlation
function which can be expressed as

i lim [G=+ t (t, t') —G+-(t t')]
t —t'~0+

((a a a ay)+(a~a a a )

—(a-a-a ay)+(a pa a a-)) . (3.9)

Putting f =in and using the commutation relation
we find

=n (a -—a- ) (3.10)

and

i lim [G:- - (t, t') G:---—(t, t')]
0+

=n —(a a-) —2(a-a-a-a- ) .
m g g g m m

(3.11)

fpn(1 —2(a a ) ) —f i (a a )(1—2ir)

—f2(a a )(1—2(a-a- ))

=n (a-a-)—
m g

(3.12)

Putting f =in in Eq. (3.7) and comparing it with

Eqs. (3.11) and (3.10), we get

and

fpn(1 —2n ) f—i (a a )(1—2(a a ) )

f—2(a -a- )(1—2n)

=n (—a-a-) —2(a a a a ) .
m g g g m m (3.13)

pmg n-
A2 pgm——(1—2jug ) —n(1 —2n ),
A3 ——2I4g (1 n —pg —),
A4 —

pg —n2(n ng ) .

(3.15)

Equations (3.5)—(3.15) can be used to determine the
decoupling parameters. We find that the decoupling
parameters are the functions of n, )Mg, and (ngn ).
Owing to the assumed translational in variance,

)Mg
——p, mg and I4mg and (nmng) depend On g —rn

only. The average value of n remained the same
throughout. The present decoupling approximation
reduces to the previous decoupling schemes by suit-
able choice of the decoupling parameters as shown
in Table I.

IV. SOLUTION OF THE EQUATION
OF MOTION

Introducing the present decoupling scheme, the
equations of motion of the following Green's func-
tions become

We also get the same information as contained in
Eqs. (3.12) and (3.13), for f = g.

Combining Eqs. (3.5), (3.12), and (3.13), and put-
ting p, mg

= (a a - ), we find

A3 —AiA4 A4 —A2

A —A A3 i 2 3 1 2

with

21M g(1 —n —p g)

TABLE I. Decoupling parameters for G , f (E) in vario—us first-order Green s-function theories for S = —,.

Theory

Heisenberg ferromagnets
Coefficient of Coefficient of

(agaz )((a,a~&))E (a a )((a,a~&))z
Coefficient of

Additional term

RPA
Oguchi and Honma

(HF approximation)
Katsura and
Horiguchi (KH)
Callen
Present work

1

1

fo(o,p g)

1

0
fi(a~t4mg )

0
o =(l —2n)
fZ(&~t4mg )

0
0

p(g, m, f )
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[E—zJII(1 2—fon ) g—piiH)G-+ f (E}

=(2n. ) '5- &(1—2n)+2(2n) '(a ya-) —(1—2fon) g Ji(g —m}G+
&

(E)

+2fi QJi(g —m)(a-a- )G-y(E) Q—JII(g —m)(a-a )G:y(E)
m m

+2fq g Ji(g —m)(a-a- )G-+y(E) Q—JII(g —m)(a a-)G+- y(E)
m m

+2 g Ji(g —m)p(g, m, f ) —g Jll(g —m)p(m, g, f }

[E—zJII(1 2fon —} gpBH—]Ggf(E)

=(2m ) '5gf(1 —2n ) —(1—2fon ) g Js( g —m)G: y(E)

r

+2fi g Ji(g —m)(a-a- )G+ f (E) QJII(—g —m)(a ag )G+- 7(E}
m rn

+2fg g Ji(g —m)(a-, a- )G:,y(E QJII g——m (a-a-)G: y(E)
m m

+2 g Ji(g —in)p(g, m, f ) —g Jll(g —m)p(m, g, f )

m m

Here we consider the relative magnetization o of the lattice which can be given by

o = (S') /S = (2S') = 1 —2(a a ) = 1 2n . —

The last term in Eqs. (4.1) and (4.2) can be written as

(4.2)

(4.3)

—m — —m, m, (4.4)

It depends only on the positions of the two lattice sites g and f. We assume as usual the spatial Fourier

transform; by making use of the translational invariance we have

G +(E)=—pe—'"'s 'G-+(k, E),N-
k

(a fa )=—ge'"'s 'n(k),N-
k

geik (g —f )

k

Ji Il(g —f )= pe "' Ji Il(k),
k

P( g, f ) =—g e' " ' s 'P( k ) .N-
k

We also put

i II
k =Ji llz'Y(k ), 7( k ) =—Q e' " '

(4.5)

(4.6)

The periodic boundary condition is used and hence the reciprocal-lattice sums are restricted to the first Bril-
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louin zone.
The Fourier-transformed equations of motion are

E —E(k)-f,Q(k}
—flQ(k)

where

—flQ(k) G+(k,E)
E —E(k)—f2Q(k) G (k,E)

, tr+p(k)+2n(k)
cr+P(k)

(4.7)

and

E(k ) =gysH +z(1—2fon )[J~~ —Jl P(k)] (4.8)

Q(k) =—z g [J,y(k}—Jlly(q —k)n(q)] .
N

We solve Eqs. (4.7}for 6+(k,E), and we get

6+(k,E)

G (k,E)

1

E
1

1

n(k)

n (k)+P(k)+cr
(4.9)

where

E+ E —E(k——) —f+Q(k),
and

f+ =fz+fl . (4.10)

Knowing the Green's functions 6-(k,E) from (4.9), we determine the equal-time correlation function
(a~as ) —by using Eq. (2.8) and putting t =t' as

(a&a )+= ge—'"'s "n+(-k)
N

k

and

1 n+(k)
1 4- exP {P[E(k )+fo Q( k )] I

(at/a )
—=—y e' " ' s —~'n —

( k)N-
k

n(k)+p(k)+tr
1+exp {P[E(k)+f+ Q( k )] I

e ik (g —f) (4.11)

1 ~ n(k)—
exp{P[E(k)+f Q(k)]I —1

We have made use of the identity

2ni5(to E—) . . —1 1
lim

&~o+ t0 E+l Et0 E ——l'6—
n (k)+p(k)+o

exp{P[E(k)+f+Q(k }]I —1

lk (s —7)e (4.12)

(4.13)

A superscript + or —on n (k } denotes whether it has been calculated by using 6 or 6, respectively. We
can simplify Eqs. (4.11) and (4.12) to get n+-( k ) as

exp{p[E( k }+f Q ( k }]I +1
n+(k)=[cr +P(k)]

exP{2P[E(k}+fzQ(k)]I —1
(4.14)
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n (k)=[o+P(k)] exp{P[E(k)+f Q(k)] }
—1

1 —2 exp{p[E(k)+f Q(k)] }+exp{2p[E(k)+f2Q(k }]}
We can now determine the magnetization o from

2o= 1 2—n =1——g n(k) .

(4.15)

(4.16)

1 1

o+ N-
k

exp{ p[E—(k)+f2Q(k)]}+exp[—fig(k)]
D, =1—— P(k)

2sinh{P[E(k)+ f2Q(k)]}

1 exp{2P[E(k}+f2Q(k)]}—1

1 —2exp{p[E(k)+f Q(k)]}+exp{2p[E(k)+f2Q(k))} D2

D2=1 ——g p(k)
exp[ —Pf ig(k)] exp—{ P[E(k—}+f2Q(k)]}

2cosh{P[E(k)+f2Q(k)] }
—2 exp[ —Pf i Q(k)]

The expression for Q ( k ) can also be simplified as

Q(k) =zp[Jl —Jlly(k)],

where

By substituting the expressions (4.14) and (4.15) in Eq. (4.16), we get

1+exp{2p[E(k)+ f2Q(k )]}+2 exp{p[E(k)+f Q(k) j }

exP {2P[E(k )+fzg( k )]}—1 D
(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

p =—gy(k)n(k) . (4.22)

Substituting for n ( k) in Eq. (4.22), we get

exp{P[E(k)+f Q(k }]}+1+ =— y(k)[P(k)+o+]
exp{2P[E(k)+fig(k}]}—1

1 exp{P[E(k)+f Q(k)]}—1
y(k)[P(k)+cr]

1 —2exp{p[E(k)+f Q(k)]}exp{2p[E(k)+f2Q(k)]}

(4.23)

(4.24)

We have thus obtained the coupled equations from which we can determine the magnetization, Curie tempera-
ture, and the zero-field susceptibility, etc.

It may be remarked here that the results contained in Eqs. (4.17)—(4.24) reduced to the well-known results of
earlier theories when we take appropriate values offp, fi, and f2 from Table I.

For example, we consider Eqs. (4.17) and (4.18), and Table I, to substitute the different values of (fp fi f2)
for different decoupling parameters to get the previous decoupling schemes. We find that

with

1 1 1+exp[ —2pE(k}]+2exp[ —pE(k)]
o RPA N

k 1 —exp[ 2PE(k)]— (4.25a)

E(k)=gp gH +zo[JII —Jiy( k)],

1 =—X
HFA k

with E(k ) the same as in (4.25b), and

1+exp{—2p[E(k)+fzg(k)] }+2exp{ p[E(k)+f2Q(k)]—}

1 —exP {—2P[E( k }+fzg(k )]}

(4.25b)
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Q(k) =—gz( [J,y(k) —Jlly(q —k)]n (q) j,

(afag) =—gexp[iq (g —f)]n(q},1

(4.26)

, KH

1+exp[ —2P[E(k}]j+2exp[ P[—E(k)+Q(k)] j

1 —exp[ —2PE(k }]
(4.27)

where E(k) and Q(k} are the same as described by Eqs. (4.25b) and (4.26), and KH stands for Katsura and

Horiguchi.

V. THERMODYNAMIC PROPERTIES

We calculate the thermodynamic properties of the anisotropic Heisenberg ferromagnet from G+(k,E) and

restrict the calculations to P( k) =0. Our aim is to compare our present results for the Curie temperature with

those obtained by using RPA- and HE-decoupling schemes; we therefore consider at this stage the results for

G+(k,E) and P(k}=0. For different values of the various decoupling parameters, we can obtain different

decoupling schemes only when P(k) =0.

A. Curie temperature

We can determine the Curie temperature by putting H=0, and taking the o ~0 limit in Eq. (4.17a), which

can be put in the form

1 1

where

1+exp[ —2P[E (k }+f2Q(k)] j +2 exp[ —P[E(k }+fzQ(k)] j

1 —exp[ —2P[E(k}+f2Q(k)] j
(5.1)

E(k) =z(1—2fon)[J~~ —Jzy(k)]

=z[1+fo(&—1})lJ~[ —Jiy(k }]

and Q(k) is given by Eq. (4.21). p is given by

exp[P[E(k)+f,Q(k)] j+1
y(k)

N -„exp{2P[E(k)+f2Q(k)] j

In taking the limit o ~0 we have

lim E(k)=z(1—fo)[J(~ —Jjy(k)],
cryo

lim Q(k)=Q, (k)=zp, [J~ J~ly(k)] .

We shall assume simple polynomial expansions for the thrm decoupling par~eters M

a2

f) —— bo + b) o+ b2 o+
f2 co ct c2

We have in the limit o ~0, where 9F stands for the right-hand side of Eq. (5.1),

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

1
lim 9t=—

0 N-
k

where

1+exp[ —2zP, J&(k )]+2exp[ —zP,Jz(k)]
1 —exp[ —2zP, J& ( k )]

(5.7)
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Ji(k) =(1—ap)[JII —Ji y(k)]+cop, [Jj —JIIy(k)],

J2(k) ={1—ao [JII Jiy(k)]+(bp+cp)p, [Ji —JIIy(k)],

P, = I/kiiT, .

(5.8)

(5.9)

(5.10)

Since the left-hand side of Eq. (5.1) is infinite at the Curie temperature, so the denominator of the right-hand
side of Eq. (5.7) should be equal to zero. If ap~0 and cp&0, then p, should be equal to zero in order to make
the right-hand side of Eq. (5.7} go to infinity. This corresponds to infinite Curie temperature. We find that
the two conditions which are to be satisfied in order to get a finite Curie temperature of the lattice are

ap ——1 and cp =0 . (5.11)

In the HF approximation, we have ap —1 and cp ——1, so we get an infinite Curie temperature. On substitut-
ing these conditions in the expression for the magnetization and taking the»mit a~O, we g«

1 —exp I zp—,p, bo[Ji —JII y( k )] j
zP, =—gN

i, {1 i )[ II Jiy(k)]+cip, [Ji—JIIy(k)]

The ab,ve equation determines the Cune temperature with the parameter p, which can be given by

1+exp [ zp,p, b—o[Jr —JII y( k ) ] I
zP,p, =— y(k)

N
i, i [ II Jiy(k)]+oip [Ji Ily(k)]

(5.12}

(5.13)

Equations (5.12) and (5.13}together give the expres-
sion for the Curie temperature and they can be re-

duced to the previous results when we substitute the
following values of the different constants (from
RPA, CH, and Callen, respectively):

B. Low-temperature expansion of magnetization

We consider the case of simple cubic lattice with a
lattice constant equal to a and the nearest-neighbor
number z= 6. For a simple cubic lattice

y( k ) = —,(cosk„a +cosk„a +cosk, a ), (5.16)

ai ——0, bp ——0, ci ——0,
ai ——0, bp 1, ci ——0, ——

ap=O, bp=0, ci = 1

(5.14)
where (k„,k„,k, ) are the components of the vector
k. In the limit N~ oo, the sums over k can be re-
placed by the integrals given as follows:

Using Eqs. (5.6) and (5.11} in the present approxi-
mation we find

dk„F dky dk, ,
( 2~)3 —~/a —s /a ~ n la-

k

(5.17)

and

a„+c„=b„
for any value of n

ao ——1, bo 1, ci ——0, ——

(5.15)

where 0 is the volume of a unit cell. In our case
A=a . The vector k is restricted to be inside the
first Brillouin zone, and hence the limits of integra-
tions are —m./a to +m./a.

The expressions for the spontaneous magnetiza-
tion cr and the parameter p are obtained as

1 2a ala w/a n/a n (k)—= 1+ dk„de dk,
o (2~)3 —w/a

" n/u ~ —n/a—
(5.18)

with

2 3

dk de dk y(k)
{2~)3 —~/a n/a ~ —w—/a * a

(5.19)
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(5.20)n(k)= 1+exp{ —P[E(k)+f+Q(k)] j

1 —exp{ —2P[E(k)+fzQ(k)] j

with E( k ) given by Eq. (5.2) and Q(k ) given by Eq. (4.21). Since we are interested in the low-temperature ex-

pansion of the magnetization, we expand the integrand of Eq. (5.17), i.e., [n(k)l a], by powers of e
The result is

= g (exp {—(2r + 1)p[E (K)+fz Q( k )]—pf i Q( k ) j +exp {—2(r + 1)p[E ( k ) +fzg( k )] j ) . (5.21)
r=0

We can simplify the curly brackets as

and

(2r + 1)P[E(k )+fzg( k )]+f i Q( k ) =zJP{pg[(2r + 1)fz+fi ]+(2r + 1)[1 +fp(a 1)]j-
—zJPy(k) {p[(2r+1)f, +f, ]+(2r + 1)/[1+fp(a 1)]j—

2(r + 1)P[E(k)+fzg(k)] =2zJP(r +1){pPfz+[1+fp(a 1)]j—
2zJP(r—+1)y(k){pf,+P[1+f,(o —1)]j .

(5.22)

(5.23)

C.=2zJ13(r +1){p4fz+[1+fp(a—1)]j

D =
3 zJP(r +1){pfz+P[1+fp(a—1)]j

Equation (5.20) is now written as

n(k) = g {exp[ —A, +3B,y( k )]+exp[ —C, +3D„y( k )] j .
r=0

Let us consider an integral of the type

g3 m/a m/a n/a 3B y( Q )I i
—— dk„dk„dk, e

(2~)3 —s/a " ala " el—a-
with y(k) given by Eq. (5.16). Equation (5.25) reduces to

I)=— f e ' de =1O(B,),

where Ip(x) is the modified Bessel function of the zeroth order. We assume

m/a

I2 ) I dk, Jl dk„ f dkyl k)e,
It can be reduced to

} Brcos8& + Bcos82
Iz i cos——6ie " 'd8i e 'd8z ——Ii(B,)Ip(B,),

0 0

where I i (x) is the modified first-order Bessel function.
We can write down Eqs. (5.18) and (5.19) as

—=1+2 g e 'Ip(B, )+2 g e 'Ip(D„),
0' r=0 r=0

=2 g e 'I, (B,)Ip(B, )+2 g e 'Ii(D, )Ip(D, ) .
r=0r=0

We put J, /J~~ =P, the interaction anisotropy parameter, and J~~
—J. We also substitute

A„=ZJP{pg[(2r + 1 )fz+fi ) + (2r + 1 )[ 1 +fp(a' —1 )] j

B,= , zJP—{p[(2r+1)fz+fi ]+(2r + 1)/[1+fp(o 1)]j, —
(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)
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The asymptotic expansions can be obtained as

1—=1+ [m, ( , zJ—P) / + , m—(, zJ—P) 5/ +m p( , zJ—P) / + , m—(—,zJP) / p

+,",, m, (-,
' ~P)-'/2+O(P-9/2)], (5.32)

„,[m, (-,'mp) '/2-,'—m—,( ,'a-p) 5/2-+m, p(-,'mp) 3/2-—
—,
'

m,'p(-,'mp)- 5/2

(
~ ~P) —7/2+O(P —9/2)] (5.33)

where

m2 ——

[1+fp(cJ—1)] /
g( —,),

[1+fo«—1)l '"P 2»
——,[1+fo«—1)] '"

X[A —,)f2+k ——ifi2 '"]
——,[1+fo(o—1)] '"

x [N-,
'

if2+P —,', —,
'
if,2-'"],

[1+fp(o —1)] ' 'g( —, ) .

(5.34)

—(e 2ab)P —+O(P '
) (5.37)

Here in Eq. (5.36), fi ——g„b„and f2 g„c„,——
i.e., the values of decoupling parameters when o = l.
We are interested in the coefficients of P and P
The other terms are standard ones. The coefficient
ofP 'is

(2 )3 3 2(
—zJ) '&( —)[(2+3f )&( —)2 2

The expression for the spontaneous magnetization
becomes equal to

~P 3/2 —
bP 5/2 —(c a 2)P—3 dP

—7/2

The leading term in o is O(1) and in p/o is
O(P 3/ ). Making use of this in collecting the
terms in increasing negative powers of P, we get a
value equal to

+2 ' fig( —,, —,)], (5.3&)

while the coefficient of P is

where

P 3/2+ b P
——5/2+ cP

—3+dP
—7/2

P
—4+ O(P

—9/2) (5.35) 4(27r)
(-~)-"I4(1+f2)g(-)f(-)2 2

a= ( zJ) g( —),2 ~ 3/2

(27r)

b= ( —zJ) ' 'g( —i,
4(27r)

c=,( —,zJ) '[g( —,)f2+(( —,, —,)fi2 ' '

—g( —, )g( —, )f2

+g(
7 ~ )f 2

—5/2] (5.36)

(5.39)

These coefficients can be compared with the
spin-wave-theory results of Dyson, ' RPA results of
Tyablikov, and KH results of Katsura and Horigu-
chi. '

The coefficient of the P 3 term is, for RPA, for
Dyson, and for KH, respectively,

d =[33/64(27r)' '](—,zJ) '
g( —,), , ( —,zJ) 'g(3),

(27r)'
(5.40a)

e = [3/4(27')3]( —,zJ)

xIg( —, )[g( —, )f2+/( —,, —,)fi2 ' ]
—55 —,)M(2)f2+A i g)fi2 '"]l .

, (-, ~)-'g( —, )[2g(-, )+2-'"g(-„-,)] .

The coefficient of the P 4 term is, for Dyson, for
KH, and for RPA, respectively,
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4(2 )3 3 '
2 2

4(2 )3 3 2 2
(-'~)-'I4g(-'g(-') (2+3f2)/f i

= —0.4252 . (5.41)

The coefficients of the p term in Eq. (5.38) can
be made to agree with Dyson's result if we assume

, ( —,zJ) g( —, )g( —, ) . (5.40b)

The first-order Green's-function theory cannot give
the correct coefficient of the p term because for
this we have to take into account the spin-spin in-

teractions. For a simple cubic lattice the variation
of Curie temperature with the anisotropy parameter
()I) can be obtained as' (see Fig. 1)

and

al [) [((—a )+c ()8 ]= j d k
(22r)' 1 — (k)

3

arl(l))p, [ll —a, ) d+ c, p, ]= arII(II)[( )— )+adpc] —) —, , jd'kc oP p. (oo[d r(k)], —

(5.42)

(5.43)

where z=6, a is the lattice constant, y( k ) is given by Eq. (5.16), and ri is defined as

(1—a] )y+c]p,
7l=

1 —a]+c]yp,

If we put a ] ——0, bo ——0, and c]——0 in Eq. (5.42) we get

(5.44)

zJi P, (RPA)= jl d k =2+((I)) .
1 —P (k)

(5.45)

Substituting Eq. (5.44) in Eq. (5.42) we find

a' J,k
cop[ — IIB.p. o[d r-

(22r) 1 —ri (k)

Doing the integration as usual, we finally obtain

zJ((p P.[(1—&[)4+c]p.l=zJ((P. [(1—&i)+c](I(tp. )l

—1 —e"p( —zJ)(Pep. bob)[io( —,zf)(P.p.bo) 1'

(5.46)

(5.47)

Equation (5.47) represents the variation of the Cu-
rie temperature with the anisotropy constant P and
the different parameters. Equation (5.47) is appreci-
ably modified as compared to results previously cal-
culated by Dalton and Wood. '

VI. THERMAL CONDUCTIVITY
DUE TO MAGNONS

Recently I( umar has shown that the magnon
conductivity gets modified by the spin-wave renor-
malization. Initially McCollum, Wild, and Calla-
way' have calculated the magnon conductivity as

where

=AT x, T
o

'
(e 1)

3 =ki]/6m. ]]2y .

Here the spin-wave energy is defined as

E(k)= k2

K (T)= T jI I (x, T) dx
6 fiy o (e' —1)'

(6.2)



3980 ANIL KUMAR AND ASHOK K. GULA

1.00 dE(k }
dk

(6.4)

0.95—

0.90—

C~(k) =kii
E(k)

8

r~(k)=1~(k)Vk .

E( k )/k~T
e

E( k )/ksT
e

(6.5)

(6.6)

In Eq. (6.3},E(k) is the spin-wave energy which is

obtained as

E+(k)=a —by(k},

with

(6.7}

P.70-

a =(zJo+f+zJpf),

b =(zJog+ f+zJ.p) .
(6.8)

0.65—
Equation (6.7) can be further simplified for a simple
cubic lattice as

O.oo—

p.55
0

I

0.2
I

0.4 0-6

&ade'ApproxirnoIe
ResuP

I

O.S $.0

E+ ( k ) =(a b)+ —k—a =ai+Pik

with

a i (a b——), —

(6.9)

FIG. 1. Plot of 2k+ T, /zJ~~ vs the anisotropy parameter

{It) (=J~/J~~) for a simple cubic lattice using different

decoupling schemes: (i) RPA (ao ——1, a) =0, b0=0, co ——0,
C, =0); (ii) KH decoupling scheme (ao ——1, a) ——0, bo= 1,
co=0, c) ——0); (iii) intermediate decoupling from the

1 I
present scheme (ao ——1, a) ———,bo 1, co ——0, c——) ————, ).

Following Callaway, we assume

Pik a~=x and =5 .
kgT ksT

(6.10)

where y entirely depends upon the technique of cal-
culating the spin-wave energy. With the use of
Zubarev's double-time Green's functions, y depends
upon the various decoupling parameters. Therefore,
the degree of the deviation between theory and ex-
periment will depend upon the inadequacy involved
in the different decoupling approximations.

We now study the modifications in the magnon
conductivity which occur by using the present
decoupling scheme. Following Callaway, the mag-
non conductivity can be expressed as

tC„{T)=,I V~r (k)c s'o8C (k)d'k,
(2m. )

(6.3)

where

Vk ———2pik =1
(6.11)

x+5
C (x)=kii(x+5)'

(e"+s—1)

The magnon conductivity reduces to

(6.12)

K (T)=/I
x

x, Tx x+
0

I(rl) =
(e')i 1 )2

&(I(x +5)dx,
(6.13)

Substituting Eqs. (6.9) and (6.10) into Eqs. (6.3) and

(6.4), we get the magnon velocity as

2I))ik
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Equation (6.13) clearly shows that the magnon con-
ductivity depends not only on the two decoupling
constants (P~, a&) but also on the anisotropy con-
stant. If we assume that the neglect of the parame-
ter 5 does not appreciably change the function I(x)
the magnon conductivity can be written as Equation (6.14) can be further simplified as

(6.14)

x

( T) =A T2 j l~ (x, T)x (x +5) I (x)dx .
Pi

K (T) =A
x x X

'r~ f I (x, T)x31(x)dx i25 J I (x, T)x2I(x)dx +5~ )I I (xT)xI(,x)dx

(6.15)

We can rewrite Eq. (6.15) as

Iz(x) I i(x)
K (T)=K (T) 1+2$

I3(x) I3(x)

Therefore,

K (T)=K (T) (6.18)

where
x

I„(x)= jt I (x, T)x"I(x)dx . (6.16)

Equation (6.16) represents the magnon conductivi-
ty which depends upon the additional decoupling
parameters and the anisotropy constant {{}.We now
study the effect of the anisotropy on the magnon
conductivity. Equation (6.9) shows that

5= = (zJo f+zJp)(1 —(}I))—
ktt T kjt T

, a zJ—tr dtd+f+ 0'
(6.19)

There the multiplication factor (y/P&) is of the form

It is therefore observed that the magnon conduc-
tivity varies with the anisotropy constant. Equation
(6.18) shows that the additional decoupling parame-
ters are still important for isotropic systems because
of the multiplication factor y/P~. We observe that

P) ——, ba = , a—(zJtrg+—f+zJp)

(1—P) .=zJI3o 1 f+—0'
(6.17) (6.20)

Substituting Eqs. (5.6) and (5.33) into Eq. (6.17), we
observe that the series expansion corresponding to
the term [f+(p/o)] is obtained depending upon a
and ( —,zJP) . The temperature dependence is
same as that of (p/tr). The magnon conductivity
has been effectively increased by considering the an-

isotropy. However, for (t) =1, i.e., isotropic systems,
we find

Equation (6.20) is again a series-dependent term and
depends upon the different decoupling parameters
used in the calculations along with the temperature,
as previously suggested by Kumar. 6
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