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Details are presented of an extension of the size-scaling hypothesis to systems in which
each element interacts equally with all others (systems for which the mean-field approxima-
tion is valid in the thermodynamic limit). A simple argument, which relates the large-size
critical behavior of physical quantities with the upper critical dimensionality of the corre-
sponding short-range system, already presented in a Letter, is here made precise and
checked either analytically or numerically on several examples. In particular, the scaling
form for the magnetization is explicitly derived in the case of the infinitely coordinated Is-
ing model, and a numerical study is presented of the infinitely coordinated XY-Ising quan-
tum model in a transverse field, with its extension in the presence of an imaginary longitudi-
nal field (a model exhibiting a Yang-Lee edge singularity).

I. INTRODUCTION

This paper presents details and further applica-
tions of a work on the extension of the finite-size
scaling hypothesis of Fisher and Barber to infinitely
coordinated systems.! We define as an “infinitely
coordinated system” a thermodynamical system of
N elements, each of which is coupled to all others
with a strength independent of the position and the
nature of the elements. One of the most simple ex-
amples of such a system is the infinitely coordinated
ferromagnetic Ising model defined by the Hamil-
tonian

H=-JN"'3SS;, (1)
i#j

where S,~=i% are spin variables, the summation
covers the whole range of i and j values from 1 to N
without any restriction (except i =j), and J is a posi-
tive constant. The N ~! prefactor appearing in (1) is
essential to ensure the convergence of the free energy
per spin in the limit where N tends to infinity (ther-
modynamic limit). For all other examples this pre-
factor must not be forgotten unless some of our gen-
eral conclusions become wrong. This simple exam-
ple (as well as the Heisenberg case) has been first
treated analytically for any N by Kittel and Shore.2
We will reproduce these calculations in a closer
form as a check of our general predictions in Sec.

IIL
Both the simplicity of these models and the fact
that they can often be studied analytically>® explain
why they have been widely studied in the past.>~>
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For finite N, they have been often used as models
for the nucleus, as in the Lipkin model.* For infin-
ite N, they have been used to describe dense gases,
and the study of the so-called “spin van der Waals
models” has been the subject of a great interest.’
When such systems present a second-order phase
transition in the thermodynamic limit (N — o0 ), it is
well known that the mean-field approximation is
justified due to the long-range nature of the interac-
tions.>~> It is for this reason that such systems have
often been introduced as a simple ‘“mean-field”
model of real short-range d-dimensional systems.
This is, for example, the case in the model of Sher-
rington and Kirkpatrick for spin-glasses.®

This paper is devoted to the behavior of infinitely
coordinated systems when N is large but finite.
When the system develops a second-order phase
transition for N = w0, the nature of the transition,
and the value of the exponents are generally well
known through the mean-field approximation.
However, when N is large but finite, generally no
true transition exists. For very large N there is a
critical scaling of the thermodynamical quantities
with N, which depends on the nature of the system
and which has not been systematically studied up to
now. In the simple example of the Ising model
described by Eq. (1), Kittel and Shore? found analyt-
ically that the magnetization goes to zero as N~ /4
at the critical temperature, but no general argument
was given to explain this characteristic exponent.
By extending the scaling hypothesis of Fisher and
Barber’ to these systems we are able to give some
general conclusions which explain very simply this
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result as well as other numerical results that we
present in the paper. In Sec. II we present the exten-
sion of the scaling hypothesis; in Sec. III we give
some analytical examples, and in Sec. IV we present
some numerical calculations for infinitely coordinat-
ed quantum-spin systems. On all these examples the
general conclusions of Sec. II are checked.

II. SIZE SCALING OF INFINITELY
COORDINATED SYSTEMS

A. Size scaling in the short-range case

Let us recall briefly the scaling hypothesis as in-
troduced by Fisher and Barber’ and Nightingale® for
systems with short-range interactions (such as
nearest-neighbor interactions). Let us consider a
homogeneous and isotropic d-dimensional system,
contained in a hypercube of length L, which
develops in the thermodynamic limit L = « a regu-
lar second-order phase transition at T=T,. As usu-
al we define a characteristic coherence length & for
the infinite system (L = oo ) which diverges at T, as

§L:w ‘ T_Tc l . (2)

Let us consider a given thermodynamical quantity A4
which is singular at the transition in the infinite sys-
tem. Its critical exponent a is defined by

4~ |T-T.|°. 3)

The scaling hypothesis postulates the existence of a
regular function F,(x) such that, for large L, A can
be written as

A~ |T—T,|°F,(L/E). (4)

F,(x) is such that F,(x)—const when x — o in or-

der that (3) is recovered, and F,,(x)~xw“ when x —»0
with @, = —a /v in order that 4 must be regular at
T =T, for L finite. As a consequence, the critical
scaling of 4 at T =T, is given by )

AT:.T LY ~L—9", (5)

[4
The scaling hypothesis has been checked in many
cases and is currently used in numerical methods
such as the ‘“phenomenological renormalization
group,”®® which has been applied to various model
Hamiltonians. More precisely, this hypothesis is
valid for the magnetization, the susceptibility, the
free energy per site, etc., for dimensionalities smaller
than the upper critical dimensionality d. at which
the short-range system starts to have a mean-field
behavior. At d =d, some extra logarithmic terms
appear in the scaling (L /& is replaced by some

(L/&)[In(L/Ly)]%), as shown in the case of the
spherical model.!® These logarithmic terms can be
attributed to fluctuations which, even if they are not
able to change the exponents from their mean-field
values, can however affect the critical behavior.

B. Extension to infinitely coordinated systems

The usual scaling cannot be straightforwardly ex-
tended to infinitely coordinated systems since, in
these systems, the usual concepts of “length” as well
as ‘“‘dimensionality” have completely lost their
meanings. Each element interacting equally with all
others, it does not matter if they are disposed on a
line, on a plane, etc. The coherence length &, which
plays an essential role in the usual scaling is then
conveniently replaced by a more general quantity
N., a “coherence number,” independent of the
dimensionality. We suppose that this coherence
number diverges at the transition in the infinite sys-
tem (N = oo ) with a characteristic exponent v*:

¥
Ne~ IT-T.|™". ®)

The physical meaning of N, is less clear than in the
short-range case, where it can be defined as the
number of elements contained in the volume &%
Here, all the elements are completely delocalized
and we cannot refer to a well-defined volume in the
space. The existence of N, is here a simple conjec-
ture which will be tested by the consequences.

As above, we consider a given thermodynamical
quantity which behaves near T, in the infinite sys-
tem as

A4~ |T—T.|™, )
N=w

where ayr denotes the mean-field value of the ex-
ponent a. The scaling hypothesis is extended by
postulating the existence of a regular function F; (x)
such that, near T, and for large N, 4 behaves as

A~ |T—T,|"MFFX(N/N,) . (8)

As above, it is necessary that Fj(x)—const when
x—ow and that F}(x)~x"* with w,= —app/V*
when x —0. Then at T =T,, one has

_ *
A ~ NN M 9)

T=T,

Thus if one knows v* as well as all the mean-field
exponents, the critical scaling of all thermodynami-
cal quantities is known.

C. General argument giving the exponent v*

Let us now show how v* can be simply linked
with the upper critical dimensionality d,. of the cor-



28 LARGE-SIZE CRITICAL BEHAVIOR OF INFINITELY . .. 3957

responding finite-ranged model by the following
reasoning. The main idea is to compare the infinite-
ly coordinated system of N elements with the corre-
sponding short-range system at d =d, and with
finite length L =N/ % in each space direction. By
definition of d,, this short-range system is supposed
to behave with mean-field behavior for L infinite. A
first assumption is that the scaling of Fisher and
Barber applies, even at d =d,, to this short-range
system; i.e., there exists a function F, such that Eq.
(4) can be written where a takes its mean-field value
avp- A second assumption is that both systems
have the same scaling exponents. Then the
correspondence between Egs. (4) and (8) is made by
assuming N, ~& . As a direct consequence it fol-
lows, by comparing Egs. (2) and (6) that

vV =vypd, - (10)

We would like to emphasize that this derivation
of v* is based on many assumptions. In particular it
is known that the first assumption is simply not true
since some logarithmic corrections must appear in
the scaling of the finite ranged system at d =d,.!°
These logarithmic terms are due to fluctuations. It
is reasonable to suppose that the fluctuations disap-
pear completely in the uniform infinite ranged limit
where the system becomes infinitely coordinated, so
that the logarithmic terms would not appear in Eq.
(8). In fact, this assumption will be checked in all
examples of infinitely coordinated models that we
will consider below.

As a direct consequence of formula (10) one gets
for any infinitely coordinated system

a
A ~ N with o, = — —2 (11)

T=T, vmed,
so that the critical scaling for large N of any quanti-
ty is known if one knows the mean-field exponents
and the upper critical dimensionality of the corre-
sponding short-ranged system.

Applied to the case of the magnetization in the in-
finitely coordinated Ising model (as well as the
Heisenberg model) for which ﬁMF=VMF=% and
d.=4," this general argument explains very simply
the result of Kittel and Shore,> m ~N~17% We
would like to give more details on this simple exam-
ple by showing that the scaling form (8) can be
analytically derived.

III. ANALYTICAL EXAMPLES

A. Infinitely coordinated Ising model

On the very simple example of the infinitely coor-
dinated Ising model, described by the Hamiltonian

(1), we would like to show, by following Kittel and
Shore? and Niemeijer,” how a scaling form of the
type (8) can be derived explicitly for the magnetiza-
tion.

Note that the Hamiltonian (1) can be also written

J 2, J
= _ S. = . 12
H N ]? ,] +7 (12)
The energies are
E,=—J(N—1)/4+Jp(N —p)/N , (13)

p=0,1,2, .. ., N with degeneracy
N!

GE)=—"7""=. (14)
(E,) pN —p)!
The partition function can be calculated by
N
Zy= 3, G(E,)exp(—BE,) . (15)
p=0

with the use of the procedure of Niemeijer,® the
summation can be exactly transformed into an in-
tegral, for any value of N,

Zy=Ky [ expl—Nf(n)ldn (16)
with

Ky =2M(NBJ /) *exp(—BJ /4) (17a)
and

f(n)=BJn*—Incosh(BJ7) . (17b)

Let us define here the thermal average of the mag-
netization by
2>1/2

m=< 7:{—;3,—

1 oinzy | (18)
| N aBJ)
Then, an integration by parts gives
2 2 1
mi=(n’)—————, (19)

2BJ.
and, if we ignore 1/N corrections, we can work with
, J wexpl —Nf()ldy

"= fexp[—Nf(n)]dn

With this formula, m is different from the spontane-
ous magnetization defined from the average of |7 |
as in the original papers.2* Our m? is more exactly
proportional to the zero-field susceptibility multi-
plied by the temperature. However, for large N our
m? does approach the square of the spontaneous

(20)
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magnetization with corrections of order N ~! which
do not affect the slower critical behavior that we
will find in Eq. (24). Exact relations (20) and (17b)
allow one to determine implicitly m (T) for any N.

In the thermodynamic limit N— «, we recover
the result that the spontaneous magnetization corre-
sponds to the minimum of the function f(7) and is
thus given by the implicit equation

m“,:%tanh(Bme) ) (21)

which corresponds to the mean-field approximation.

The Curie temperature is thus given by BJ=2,
ie., kgT.=J/2, m_ =0 for T>T,, m_+#0 for
T<T..

Let us now consider the case where N is large but
not infinite and where T is in the vicinity of T.
The spontaneous magnetization is very small, and
f (1) can be conveniently expanded as

T—T,
T,

fn~2 n+30*+0(n°) . (22)
At this stage it is interesting to notice that f(7) can
be recognized as a simple Ginzburg-Landau expres-
sion for the free-energy!! without any gradient term,
i.e., if there was only one uniform order parameter
7. The absence of d-dependent gradient terms is
reasonable since the dimensionality does not play
any role here.
Thus for large N, m is given by

T.—T
[ nexp |2N———n*—3N5*+NO(n®) |d7
m?~ ‘
fexp 2N— nz—%Nn4+N0(776) dn
[4
(23)

The large-N behavior of m can be then formed by
standard methods and we find

m~m_(T)+0 for T<T,,

1
N

m~N"1* for T=T,, 24)
m~N"1% for T>T, .

This is the result already found by Kittel and
Shore.2 However, we would like to determine pre-
cisely the behavior of m in the large-N critical re-
gion by neglecting the 7% terms and defining
T.—-T |

TC

c

Then performing the change of variable

u=nN"*, 26)
Eq. (23) becomes
" | T,—T| iJ—x/z
T, N,
fuzexp +2 132 l/Zuz—%u“’du
X ’
fexp +2 j—VN: 1/zuz——:-u“ du
(27)
where = is the sign of T, —T.
This is precisely a form like (8) with
[F, (e e x =172 f uzexp(inVZuz—%u“)du
‘ fexp(in'/zuz—%u“)du
(28)
and
avF=7 - (29)

As expected we recognize the mean-field exponent
for the magnetization of the Ising model.!

Thus the scaling hypothesis as postulated above is
here completely justified. Equation (25) gives v* =2,
a value consistent with our argument giving
v =vypd, since it is well known that wvyg
=~ and d, =4 for the short-range Ising model.'!

It can be shown that the corrective 7° term of
f(7n7) does not affect the asymptotic scaling. In par-
ticular it does not introduce any logarithmic term in
the scaling form.

B. Infinitely coordinated Heisenberg model

Similar calculations can be performed in the case
of the infinite range Heisenberg model:

H=—JN"'3 (SS;+SIS}+SiS)) , (30)

i#j

ij
where the S’s are now Pauli spin-—zl- operators. It
has been shown>* that the partition functions of the
Ising and Heisenberg models differ only by leading
terms of order N ~! which do not affect the large-N
behavior of the magnetization given by Eq. (24).
The same type of calculation, not reproduced here,
as in the Ising case can be performed yielding to the
same scaling form for N with the same exponent v*.
It is well known'! that in the short-range case the
transition in temperature of the Heisenberg model is
affected by quantum fluctuations and is only driven
by thermal fluctuations as in the Ising case. Thus



28 LARGE-SIZE CRITICAL BEHAVIOR OF INFINITELY . .. 3959

the upper critical dimensionality is d.=4 in both
cases which is consistent with the exponent v*=2
found in both cases.

C. Infinitely correlated Berlin and Kac model

The scaling form can be also explicitly derived in
the case of the infinitely coordinated version of the
model introduced by Berlin and Kac,'? which can be
considered as a formulation of the spherical
model.!® In this case, the calculation is even more
simple than the Ising case.

The model is described by the Hamiltonian

H=—JN™! [Ei:a,-]z 31

where o; are now N continuous variables subject to
the condition

S oi=N/4. (32)

The order parameter is defined between —% and
1
+5 by

77:[;0'1‘]/]\7 (33)

given 7, the number of configurations is proportion-
al to the volume of the intersection of the plane
n=const by the hypersphere in N dimension of ra-
dius N'72/2 defined by (32). This is the volume of
an hypersphere of radius N'/2(+—5'"? in N —2
dimensions. The partition function is thus given by

+1/2
ZN:KN f~l/2 (1_41’2)(1\7—2)/2

X exp(BIN9?)dy , (34)

where K is only N dependent. This expression can
be written as

12 1

Zy=Ky f_m — exp[ —Nf(n)ldn, (395)
with

[ =—3In(1—anp>)—pIn?* . (36)

For N infinite the mean-field value of 7 is given by
the minimization of f(7n) and this is given by the
self-consistent equation

The critical temperature is given by BJ=2, i.e.,
kgTc=J /2, as in the Ising case.

When N is large but not infinite, and when T is in
the vicinity of T,, f(7) can be expanded in a
Ginzburg-Landau form similar to (22):

T-T,
T,

flp~2 7 +47*+0(7%) , (38)
and also the n? term in 1/(1—4%?) can be neglected
in Zy. Thus a scaling form for m2=(%?) similar
to (27) can be explicitly derived with only different
numerical coefficients. It can be also shown in that
case that there are no logarithmic terms. The large-
size critical behavior of the infinitely coordinated
Berlin and Kac model is consequently similar to
that of the Ising and Heisenberg model. In particu-
lar, the exponent v* =2 is the same in the three cases
consistl%nt with the upper critical dimensionality
d.=4.

IV. NUMERICAL EXAMPLES
A. Anisotropic XY model in a transverse field

1. Generalities

In the case of short-range interactions, it is known
that quantum systems at zero temperature can
behave as classical systems of larger dimensionality
at finite temperature.'* The upper critical dimen-
sionality for a ground-state transition of a quantum
system is consequently smaller than for the thermal
transition of the classical equivalent. Thus quantum
systems provide examples of systems with different
d. values useful to check the generality of the pre-
dictions made in Sec. II. A typical example is the
XY Ising model in a transverse field. For arbitrary
S spins and in the infinitely coordinated limit, the
Hamiltonian is given by

H=—(NS)"'3 (S/S;+vS!S})—T 3 87, (39)
i < j i
ij
where S; are spin-S Pauli operators, ¥ is an anisotro-
py parameter (y=1 corresponds to the isotropic XY
case), and T is the transverse field (the coupling con-
stant has been normalized in order that I', =1). We
have limited our study toO<y < 1.

The short-range version of this Hamiltonian has
been widely studied in the past by exact calculations
in one dimension!> and various approximate
methods in larger dimensionalities such as series ex-
pansions,'® real-space renormalization group,'’ etc.
In the anisotropic case, this d-dimensional quantum
model undergoes a second-order phase transition in
transverse field at T'=0 which has the same critical
behavior as the transition in temperature of the clas-
sical Ising model in d +1 dimension.'®* In the
equivalence, the gap G between the ground state and
the first excited state plays the role of the inverse of
the coherence length in the extradimensionality for
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the classical equivalent.!* The result is that the gap
scales as the inverse of the length of the system at
the critical field. In other words, the dynamical ex-
ponent z defined, at the critical field, by

G ~ L (40)
r=r

(4

is exactly equal to 1 in that case. As a direct conse-
quence of this equivalence, the upper critical dimen-
sionality must be d. =3 for the ground-state transi-
tion of the quantum system in field, since it is d, =4
for the classical equivalent.

The symmetric XY case (y=1) is very peculiar
since this equivalence does not hold.!®* The transi-
tion is here very different.!® There is no spontane-
ous magnetization in the low-field phase, and the ex-
ponent z at the critical field is z =2 instead of z =1.
Unless there is no exact transformation, it has been
suggested that the quantum XY model in a trans-
verse field would be equivalent to a classical model
in d +2 dimensions.?’ If we trust this assumption,
the upper critical dimensionality would be d. =2 in
the isotropic case.

We have performed numerical calculations on the
Hamiltonian (39) for y=41 as well as analytical cal-
culations for y=1. We have calculated the gap G
between the ground state and the first excited state
as well as the x component of the magnetization m
which can be defined as

2
m2=(NS)—2<o

3 s7 o> , (41)

where the expectation value is taken in the ground
state. Note that there are different ways to define m
for finite N values. The above one has the advan-
tage of corresponding to the definition of the mag-
netization in the short-range case, the square of
which being the limit of the xx spin-correlation
function for infinite distances. Here the distance
does not play any role so that a uniform average
over all the elements can be made. Generally other
relevant definitions differ from (41) by leading terms
in N~!in the large-N limit, which do not affect the
scaling behaviors found below.

In the isotropic case y=1, the direction of the
magnetization in the XY plane is not defined and it
is better to define m more generally by

2
St + |28
i i

2

m2=(NS)—2<o + o) . (42)

Before presenting the numerical results for N finite,
let us give the mean-field results for N infinite
which can be obtained analytically.

2. Mean-field results

There are different ways in getting the infinite N
results for m. A simple one consists in rewriting the
Hamiltonian under the form

H=—QNS)"'(J** 97’ —K*—yK*)—TJ*,
43)
with
Je=Y S7, K*=3 (S)? . (44)
i

i

The K¢ terms become negligible in the thermo-
dynamic limit (they behave as N, while the J o
behave as N2). The lowest states of the Hamiltonian
belong to the maximum eigenvalue J = NS of the to-
tal spin so that in the limit N = o, the Hamiltonian
can be replaced by

H=—QN) 0=y —1J* . 45)

In the thermodynamic limit the large spin J of size
NS can be treated as a classical spin by writing

J*=J sinf cosp, J?=Jsinfsing ,

(46)
J*=J cosf .
Then, we must minimize
E(6,)=— %( sin’0 cos’p + y sin%0 sin’p)
—T°J cosO (47)
and calculate
m =J*/J =sinf cos¢ . (48)

In the anisotropic case y < 1, one gets ¢=0 or 7 and
0=0 for I'> 1, 8=cos™'T for I' <1 so that, retain-
ing only the positive value of the magnetization,

m,=(1-T? forT<1 ,
(49)
m_,=0 forT'>1

Thus the system develops a second-order phase tran-
sition when N = o0 at [, =1 with a mean-field ex-
ponent BMF:% for the magnetization

In the isotropic case y=1, we find that ¢ can take
any value, which reflects the fact that the direction
of the self-consistent field can be chosen arbitrarily
in the XY plane. The definition (42), independent of
the choice of the polarization, gives exactly the same
result as (49). Thus the infinitely correlated Ising
and XY models in the transverse field have exactly
the same behavior for N = «. This result is com-
pletely different than in the short-range case.
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To obtain G in the limit N = o one can identify
the gap (in units #i=1) with the frequency o for the
motion of the large spin J. With the use of the
Hamiltonian (45), the equations of motion for J*
and J? are given by

J*=ioJ*=i[H,J]
=—2%(JyJ’+J’Jy)+FJ” :

Jr=iwl?=i[H,J’] 50
—1

= (JFH TN T .
5 T

In the classical limit where N— « the random-
phase approximation, which consists of replacing J*
by its mean-field value, is justified. Replacing
J*=JcosO by T for ' <1 and by J for ' > 1, one
finds for G , =ow

G,=0 forT<l1 ,
G,=[(T—1)(T—9)]"? forT>1 .

(51)

Thus at the second-order phase transition the gap
opens as

G, ~(C—T,)’™MF | (52)
with a mean-field exponent syp
SMF=% for y=1 ,

smp=1 for y=1 .

3. Finite-slize numerical results
in the spin-~ transverse Ising case

In the spin-% case the K terms defined in (44)
are simple constants so that the Hamiltonian (45)
can be used even for finite N. This Hamiltonian cor-
responds exactly to that introduced by Lipkin et al.*
as a model for the nucleus. Some numerical calcula-
tions* as well as analytical calculations*?' are avail-
able. Here, we have focused our numerical investi-
gations in the large-N critical region. Since the
Hamiltonian involves a unique spin, very large sizes
can be reached easily. In the basis |J,M ), where
M=—J,—-J+1,...,+J is the eigenvalue of J?
and where J=NS =N /2, it can be easily seen that
H connects only M with M +2. It appears that the
ground state and the first excited state belong to two
different subspaces in which the matrices to be diag-
onalized are of order N/2+1 and N /2, for N even.
We went up to N =150. We have calculated G and
m for various values of ¥ and we found that the
large-N behavior is the same in the whole anisotro-
pic region y1. We report here the results of the

calculations in the simple Ising case y=0. The nu-
merical results for G and m are given in Fig. 1 for
N =10,20,60,100. The asymptotic mean-field re-
sults of Sec. IVA2 are represented by dashed
curves. The differences G —G ,, and m —m ,, have
been studied as a function of N and the following re-
sults have been found:

G ~exp(—aN), m—m ~N~! forT<1 ,
G~N"'3 m~N-'3 forT'=1, (54)
G—G,~N"!, m~N"1"2 forT'>1 .

The exponential behavior of G below the transition
has been previously derived analytically,2! however
there do not exist, to our knowledge, any analytical
derivations of the 5 exponent for both G and m at
I'.. This critical exponent has been determined here
with a great accuracy (within 10~3 error). In Fig. 2
we have plotted InG and Inm as a function of InN
for =I,.=1, and one can see, at least in the case
S =% studied here, that the N ~!/3 behavior is veri-

0L

0.5

05|

0 05 TR

FIG. 1. Finite-size results (N =10,20,60,100) for the
gap and the magnetization of the infinitely coordinated
Ising model in a transverse field. Infinite N mean-field
results are represented by dashed curves.



3962 R. BOTET AND R. JULLIEN 28

0 1 2 3 LN s

FIG. 2. Double-logarithmic plot of the gap (left scale)
and the magnetization (right scale) as the function of size
at the critical field for the infinitely coordinated Ising
model in a transverse field (the dots are not shown for
N >20).

fied in a large range of N values. One can certainly
exclude logarithmic terms. Behaviors of the type
N-131In(N/N,), as in short-range systems at
d =d,, are not supported by the numerlcal results.

The critical exponent wg=w,,=—~ found nu-
merically for both G and m is cons1stent with the
general argument of Sec. II which leads to

m=—Bwmr/(vmrd;)

(55)
o¢=—sur/(vmpd,)

Here for y=0 one has BMF=sMF=vMF=%, thus

®, =wg=—1/d,. Our numerical result at '=T",
provides a direct estimation of the critical dimen-
sionality which 1s d.=3 for this quantum system.
Thus here v*= —, and the scaling forms for G and
m must be
1/2 % 3/2

G~ |T-T.|"FG(N |T—-T.|°"%) , (56)

m~|T—T¢|2Fp(N |T=T.|*?) .

The scaling hypothesis has been numerically con-
firmed by computing the functions Fg and F,. In
Fig. 3 we have plotted |’ —T . | ~!/2G as a function
of |[T—T, |3/2N. The points lie on the same curves
in a large range of N values (60—150) near I, which
represent the function F¢ above as well as below the
transition.

4. Extension to larger spins

In order to know if the scalilng behavior found in
the anisotropic case for S =+ is general and in-
dependent of the size of the spin, we have performed

G||-,_rc.|-1/2
. 0100
3 |. o 80
i + 60
3 « 40
;.
2L % T>h
LY
™
0‘ \"“4-‘“
" W o oo xy
*a
1L >,
*’f
’9 e
r‘<ré Y ey, e
0 0.5

N|r‘_r‘(|3’2

FIG. 3. Results for the gap of the infinitely coordinat-
ed Ising model in a transverse field in the critical region
(|]F=T.] <0.05) as a plot of G|I[—T.|~'% vs
N|C—-T.|**  The points corresponding to
N =40,60,80,100 are all disposed on the same curve
which represents the scaling function F¢ (see text).

other numerical calculations for S =1 and = The
Hamiltonian (45) can no longer be used for S >7
and we must consider the original form (43). The
diagonalization is then more difficult, and we could
not reach very large sizes. However, for S =1 it ap-
pears to be powerful to represent the Hamiltonian in
the basis |J,L,M ) where, for the highest eigenvalue
J=N, L, and M are eigenvalues of 3 ,(S/)?=K?
and ZiS,-’=J‘, respectively; with J given, L varies
from O to N by integer values; with J and L given,
M varies from —L to +L by integer values. The
matrix to be diagonalized is of order
(N +1)N +2)/2. Using this representation and us-
ing the Lanczds algorithm?? to diagonalize the large
matrix we were able to reach N~70. For S=-
such a manipulation could not be used, and we were
limited to N ~8. In Fig. 2, we give the result for the
critical scaling of the gap as a plot of InG vs InN for
I'=TI,.. After a crossover at small sizes the curve
for S=1 becomes asymptotically parallel to the
1 . .

curve for S =+. The conclusion is less clear for
S =% since we could not reach large sizes and we
are certainly remaining in the crossover region. It
seems, however, reasonable to conclude that the re-
sult wg= —% is independent of the spin size as ex-
pected from the classical-quantum equivalence.
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3. Analytical results in the S =%
isotropic case (y=1)

For y=1, straightforward analytical calculation

can be done in the S =% case where (45) can be
used. The Hamiltonian
H=—Q2N) " [J*?+")?]-IJ? , (57)

is entirely diagonal in the representation J, M, and
the eigenvalues are

EUM)=—[JJ+1)—M*/(2))—TM
=—(J+1)/2+M?*/(2))-TM . (58)
The magnetization as defined in (42) is given by
m?2=[J(J +1)—M?*)/J* . (59)

For I'> 1, the ground state and the first excited
state correspond to M =J and M =J — 1, respective-
ly, so that the gap G =E(J,J —1)—E(J,J) and the
magnetization are given by

G=C—1+1/N, m=Q2/N)"? forT>1 .
(60)

For T <1, the minimization of E (J,M) implies that
M varies discontinuously in the ground state. How-
ever, for J =N /2 large, M is a quasicontinuous vari-
able given by M ~TI'J in the ground state. Thus the
gap E(J,M —1)—E(J,M) and the magnetization
are asymptotically given by

G=N"!, m=(1-T24+J"HY2=m_+0(N7")
forT'<1l . (61)

The mean-field results are recovered when N — .
The large-N critical behaviors at =1 of G and m

are of the form G ~N“%, m ~N“™ with

wg=—1, Op=—7 . (62)

The scaling forms here are particularly trivial since
G below the transition as well as m above the transi-
tion do not depend on I'. However, for G above the
transition and m below the transition, one has

G~(T=1)(1+N,/N), T>1

(63)
m~2(1-D)Y2(1+N,/N)V*> T <1
with
N.=|F—1]"1 .

The exponents wg, ®,,, and v* =1 are consistent
with our argument (10) if one takes the mean-field
exponents Byp= %, smp=1 found in Sec. IVA 2, if
we suppose that vMF=% as in the Ising case, and if

we trust the upper critical dimensionality d. =2 pro-
posed for this model.°

B. A quantum model exhibiting a
Yang-Lee edge singularity

1. Generalities

Yang and Lee?® have shown that for classical Is-
ing model the zeros of the partition function are dis-
tributed on the circle of radius unity in the complex
activity plane z =exp(—2h/kpT), where h is the
applied magnetic field. In the thermodynamic limit,
a density of zeros G (6) can be defined on the circle
z =exp(i@) which determines all the physical quan-
tities. For T >T,, g(6) has a gap of width 26,(T)
and the edges of this gap, for h ==*ihg(T), are
branch points for the magnetization m (h,T). Near
these edges and on the circle the real part of the
magnetization m' and the density of zeros g(0) are
proportional and behave like

8(0)~m’'~(0—0,)°~(h —hy)° , (64)

where the edge exponent o is different than the
equal exponent 1/8 in a real applied field. Fisher**
has interpreted this singularity as a new critical
behavior, corresponding to a transition when a pure-
ly imaginary field is applied to the system. This
transition shares the properties of ¢° field theory
and the upper critical dimensionality is d, =6.%*

The Yang-Lee edge singularity has been investi-
gated by various approaches.?*? In particular an
interesting indirect way to study the Yang-Lee edge
singularity of a d-dimensional classical Ising model
is to study the equivalent quantum model in d —1
dimensions: the Ising model in a transverse field
with an extra purely imaginary longitudinal field.
This has been recently done for d =2 by using real-
space renormalization-group methods on the one-
dimensional quantum model.”> This quantum
model provides a new example for which the upper
critical dimensionality must be d, =5.

We would like to report here on numerical calcu-
lation performed on the infinite range version of the
transverse Ising model in an imaginary longitudinal

field in the case of S =% spins, where the Hamil-
tonian is written as
H=—(J*?/()—TJ*—ihJ* (65)

with the notations of Sec. III. The Hamiltonian is
no longer Hermitian and some numerical manipula-
tions must be used for h-£0 as explained in Sec.
IVB3. We have computed the real part of the gap
between the eigenvalues of lowest real part and the
complex magnetization, the square of which being
always defined as in (45).
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2. Mean-field results

The mean-field theory of the Yang-Lee edge
singularity has been developed by Suzuki.?® Unless
the critical behavior is exactly the same, the quanti-
tative results are quite different here since we are
working on a quantum-equivalent model. The
mean-field calculation on (65) can be done as in Sec.
III B2 by introducing an angle 6 which is now gen-
erally complex 6=6'+i0" with

J*=JsinO, J*=J cosf, m =sinf (66)
the form to be minimized is
E(0)=—J(5sin*0+T cos+ihsind) .  (67)

In the spirit of the analytical continuation of the
real field results, we simply minimize as if the coef-
ficients would be real. We get

—sinB cos@+ I sinf—ih cos6=0 , (68)
1.e.,

sin6’'[ —cos6@’ cosh(26"')+I" cosh®” —h sinh6']1=0 ,

(69)
- —;- cos(26')sinh8"” +T cosf’ sinh§"
—h cosf' coshf” =0 .

The magnetization is given by

m'=sin@’ cosh@”, m'' =cosf'sinhf" . (70)
m' plays the role of an order parameter which is
zero in a whole region of the plane 4,I". The critical

line which separates this region from the “ordered”
region where m’'50 is given by

re—h =1 . (71

This line represented in Fig. 4 starts from the criti-
cal point I', =1 for A, =0 and ends in the asymptot-
ic direction & =T of the (h,I") plane. Near I'. ~1
one has

he~(T,—1)4 (72)
with
A=

| w

The exponent A is related with the usual exponents
B and § of the magnetization without complex field
by the relation A=p5. 27 This relation is verified
here where B and & take the mean-field values
Bmr= 7, =3 of the Ising model."!

In the disordered region I' > I', the magnetization
is given by

10 |

FIG. 4. Mean-field critical curve in the plane h,I" for
the infinitely coordinated Ising model in a transverse field
with a purely imaginary longitudinal field i4. The points
1,2, ..., 6 correspond to h and I" values where the critical
scaling has been numerically investigated (see Fig. 6).

m'=0, m' =sinh§" , (73)
where 0" is implicitly given as a function of 4,I" by
I" sinh@"” — h cosh@”’ =sinh@" cosh§” . (74)

In the ordered region I' <I', the magnetization is
given by Egs. (70) where 6’ and 6" are calculated
implicitly with (68) after eliminating the trivial solu-
tion 6'=0.

The critical behaviors of G and A near the critical
curve can be easily found analytically. For example,
when 4 is taken constant one has

m'~(T, -T2 |m"—m/| ~T,—T
forr°'<r, ,
(75)
m"’—m/| ~(D=T,)2
for°'>I, .

G~(I—T)'72 |

The same behavior is obtained in & —h, by taking I'
constant. We recover the mean-field value of the ex-
ponent o aMF=% for the real part of the magneti-
zation.?® We observe that the exponent is the same
for the imaginary part of the magnetization above
the transition (but not below). Also we find that the
mean-field exponent for the gap here is sy = %, dif-
ferent from the case A =0.

An example of the behavior of G, and m when
varying T, at constant 4 value, is given in Fig. 5
where the mean-field result of m’, and G (a) and
m ., (b) are given by the dashed curves.
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1.0

0.5

0

FIG. 5. Finite-size results (N =10,20,60,100) for the
gap G [(a), right scale], the real part of the magnetization
m’ [(a), left scale] and the imaginary part of the magneti-
zation m" (b) of the infintely coordinated Ising model in a
transverse field with a purely imaginary longitudinal field
ih. The quantities are plotted vs T for a constant h value
(h =0.42185). Infinite N mean-field results are repre-
sented by dashed curves.

3. Numerical results for finite sizes

The Hamiltonian (65) is represented by a non-
Hermitian, but still symmetric, matrix in the repre-
sentation |J,M ). We still keep the definition of the
scalar product as the sum of simple products of the
coordinates. Note that the square of the norm of a
vector can become negative or zero. With this defi-
nition the eigenvectors of H can be still orthogonal-
ized. The ground state is then defined as the eigen-
value of lowest real part. The gap is defined as the
difference between the eigenvalues of lower real
part. We define G as the real part of the gap. The
square of the magnetization is calculated as in (45)
with the new definition of the scalar product. Nu-
merical results for a constant / value are reported in
Fig. 5 as a function of T for N =10,20,60,100. One
observes that there is a singularity for NV finite at a

given critical value I'.(N) depending on N, which
tends to the mean-field value I', when N— . As
in the mean-field case this singularity corresponds to
an opening of G for I'>T'.(N) and separates a re-
gion where m’'s£0 [for T <I.(N)] from a region
where m’'=0 [['>T.(N)]. [Note that m’ becomes
again different from zero at a given T'*(N) > I'.(N),
which tends quickly to infinity when N— «; this
I'*(N) is not a true critical value. It corresponds to
the annulation of m? which becomes positive for
I'>T*(N).] The singularity at I'.(N) has trivial ex-
ponents for N+ oo

m"” ~m'~[[(N)—T]"1? for F<I.(N) ,
(76)
m"” ~[T=T(N)]"'?, G~[T—T(N)]'?

for T >T.(N) .

This singularity corresponds mathematically to the
point when the norm of the ground state vanishes.
This explains the trivial exponents % One can also
understand this singularity physically as follows.
From the classical-quantum equivalence, the finite
system with N elements (disposed in any space
dimensionality) corresponds to an infinite one-
dimensional classical Ising system for which a Yang
Lee edge singularity exists with o= — %.23

When N — o, [ (N) tends to the mean-field crit-
ical value I', calculated above and the exponents
change into the mean-field exponents. There is thus
a large crossover for the magnetization when in-
creasing N. 1The exponent goes from a nega-
tive value — 5 for finite N to a positive value + 5
for infinite N. The critical scalings of m and G have
been studied at '=TI". and the results are given in
Fig. 6 where we have plotted InG and In(m ,, —m")
as a function of InN for various values of I',,h.. If
we forget the kink in the curve for m" which corre-
sponds to N such that I'*(N)=TI", we find that for
large N:

G~N“, m” —m"~N"" (717)
with
0w;=0.2, 0,=04 .

These values are consistent with the general predic-
tions of Sec. II. The mean-ﬁelld value of the ex-
ponent v is known to be viyg= 7 for the Yang-Lee
problem,?* and here the critical dimensionality is
d.=5 for the quantum equivalent. Equation (11)
explains the results if we consider the mean-field ex-
1 1 .
ponents syr = and o= 7 derived above.
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e B R Ra

FIG. 6. Double-logarithmic plot for the gap (a) and the
imaginary part of the magnetization (b) as a function of
size at the different critical points shown on Fig. 4 for the
infinitely coordinated Ising model in a transverse field
with a purely imaginary longitudinal field.

V. CONCLUSION

In this paper we have extended the finite-size scal-
ing hypothesis of Fisher and Barber to the case of
infinitely correlated systems. We have given a very
general argument which relates the large size scaling
exponents with the upper critical dimensionality of
the corresponding short-range system. In some sim-
ple examples where d, =4, such as the Ising model
and the spherical model of Berlin and Kac, we have
been able to derive the scaling form of the magneti-
zation explicitly. Thus our argument has been
proved on the infinitely coordinated version of the
O (n) model in the special case n =1 and n = . It
would be useful to extend the calculation in the gen-
eral n case. Moreover, we have performed numeri-

cal calculations on various infinitely correlated
quantum models where d, =2 (XY model in a trans-
verse field), d. =3 (Ising model in a transverse field),
d, =5 (Ising model in a transverse field with an im-
aginary longitudinal field). In each case we have
checked our general argument. All these studies
give some confidence on the generality of the
reasoning of Sec. IIC. Our argument can be now
applied to more complicated systems. In particular
it could give a simple way to estimate d,. in short-
range systems where it is not known by studying the
finite-size scaling of corresponding infinitely coordi-
nated model. In particular in a disordered infinitely
coordinated model, the spin-glass model of Sher-
rington and Kirkpatrick,® we learned?® that a scaling
form can be derived for the order parameter which
is consistent with an upper critical dimensionality
d,=6. Other further studies would be to explore
systems in which the range of interaction can vary
with a given parameter, for example models with in-
teractions varying as r ~P. In the one-dimensional
Ising case it has been analytically shown that the
system behaves as it would be infinitely coordinated
for p smaller than a critical value p, =2.%° On more
complicated systems where no analytical results are
available, it could be useful to perform finite-size
calculations. Then, the present study could give
some help to interpret the numerical results in the
parameter region where infinitely coordinated phys-
ics is expected. To conclude, we would like to insist
on the fact that infinitely coordinated systems are
not unrealistic models. Not only is their study use-
ful for obvious fundamental reasons, but also these
systems are currently used as a model of real sys-
tems in various domains of physics such as field
theory, condensed matter, nuclear physics (the Lip-
kin model for nucleus, etc.), and even atomic physics
(superradiance).
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