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Finite-cell calculations (up to N =12 spins) have been performed on the spin-1 Heisenberg-Ising

chain with an uniaxial anisotropy, 4 = g, [S;"S+i +SfSf+i +AS S;*+~ +D (S;)']. From a scaling

analysis of the gap between the ground state and the first excited state, a phase diagram has been

drawn in the (A, ,D) plane and the transition lines between the "ferromagnetic, " "X-Y,
" "singlet-

ground-state, " and "antiferromagnetic" phases have been estimated for the infinite-N system. One

of the most important results is that a singlet-ground-state phase with a nonzero gap exists in an ex-

tended range of A, and D values including the Heisenberg point A, =1, D=O, in contrast with the

spin-2 case. Moreover, for A,=1, the gap decreases with increasing positive anisotropy D, goes

through a minimum, estimated to be zero, and then increases with D.

I. INTRODUCTION

The ground-state properties of the Heisenberg-Ising

chain

M= g(S;"S;"+i+SfS~+i+ASS,"+, )

A = g [S;S,"+i+SfS~+i+AS,'S,'+, +D(S,') ] (2)

in the entire range of A. and D parameters. The (S,') an-

are well known in the case of S = —,
'

spins. ' Between the
doublet-ground-state ferromagnetic (F ) and antiferromag-
netic (AF) phases, there exists, for —1 & A. & 1, a peculiar
X-Y phase, characterized by a gapless ground-state and
power-law decay of the spin-correlation functions. The
AF transition at A, =1 is characterized by an "essential
singularity, " the gap, and the z-magnetization opening like

exp[ —I/(A, —1)' ] for A, & 1, while the ferromagnetic
transition at A, = —1, which corresponds to a simple cross-

ing of levels, has first-order character.
Since the semiquantitative analytical predictions by Hal-

dane that properties for integer spin must differ qualita-
tively from those for half-integer spin, there is a need for
studying larger spin cases. We have already presented
some results on the Heisenberg-Ising chain in the spin-1
case which confirm unambiguously Haldane's predictions.
We have established that, between the gapless X-Y phase
and the doublet-ground-state AF phase, there exists, for
an extended range of A, values (0 & A. & 1.18) containing the
AF Heisenberg point A, = 1, a new phase characterized by a
nonmagnetic singlet ground state, nonzero gap, and ex-

ponential decay of the spin-correlation functions. The
singlet-doublet transition at A, —1.18 has a regular
second-order character while the X-Y—singlet transition is
an essential singularity located near A.=O.

In the present paper we give details of this study and ex-
tend it to the case with a uniaxial anisotropy. Thus we re-

port on the finite-cell-scaling analysis of the full spin-1
Hamiltonian

isotropic term which is obviously meaningless in the spin-
—, case, becomes essential in larger spin cases and must be

considered both for experimental and theoretical reasons.
Experimentally, the full Hamiltonian (2) has been used

to interpret the magnetic properties of a number of crys-
tals in which the magnetic ions are arranged in chains

with strong intrachain and small interchain interactions.
In the spin-1 case, the Hamiltonian (2) has been explicitly
used to explain the properties of antiferromagnetic
CsNiC13, RbNiC13, and RbFeC13 compounds. A simple
spin-wave theory has been used in that case. However, in

such approximative treatments the gap is strictly equal to
D while it will be shown here that the gap may have
another origin with a nontrivial variation with D.

Theoretically, the introduction of the anisotropic term
D(S ) is of interest through the equivalence between
one-dimensional (1D) quantum models and two-
dimensional (2D) classical models. For A. =O it has been
shown that Hamiltonian (2) is a truncated Hamiltonian
formulation of the classical X-Y model in two dimen-
sions. Through this equivalence the parameter D plays
the role of the temperature in the classical model. This
equivalence has been confirmed by numerical finite-cell
calculations on Hamiltonian (2) (with A, =O) (Ref. 9) which
confirms the existence of a line of fixed points up to a
classical value D, =0.4, where an essential singularity
occurs as in the Kosterlitz-Thouless' transition of the
classical equivalent. This result is consistent with other
calculations. "

The present study can be considered as an extension of
both A, =O (Ref. 9) and D =0 (Ref. 3) previous investiga-
tions. One of our main motivations is to locate the phase
boundary of the X I'phase i-n the (A, ,D) plane. This phase
extends up to D =0.4 for X=O (Ref. 9) while it seems to
terminate near )(, & 0 for D =0.

In Sec. II we present the results for the ordering of the
low-lying levels. Then in Secs. III and IV we give the
scaling analysis of the respective gaps between the ground
state and the first excited state. In Sec. IV we analyze the
correlation functions and a conclusion is given in Sec. V.
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II. DETERMINATION OF THE GROUND STATE
AND CROSSINGS BETWEEN LOW-LYING

LEVELS

We have diagonalized numerically the full Hamiltonian
(2) for finite rings of N spina with periodic boundary con-
ditions for even values of N up to 12. Most of the results
presented here are restricted to N &10, only few results
with N =12 will be reported. To reduce the size of the
matrix to be diagonalized, it has been essential to consider
the symmetries. First, we have used the conservation of
the z projection of the total spin X'= g, S,' which takes

integer values from Nu—p to +N. We have also taken
into account the conservation of the total wave vector K,
which takes values 2nn/N with n as an integer varying
from 0 up to N —1. Second, we have considered the
right-left (p=+ I) and the spin-reverse (can=+ I) sym-
metries. Note that the spin-reverse symmetry is only use-

ful to reduce the matrices in the X'=0 subspaces; in other
cases, it only tells us that X' and —X' subspaces are de-

generate. The largest matrix to be diagonalized was of the
order 1728 for N = 12 (subspace 2*=+1). To handle such
large matrices we have used the Lanczos algorithm'
which appeared to be very powerful, giving the ground-
state energy in each subspace of given symmetry with

great accuracy (error within 10 ).
Let us present the results concerning the ordering of the

low-lying eigenstates first. We have observed, for any fin-
ite N, that the ground state for the whole chain is either
the singlet ground state of the subspace X'=O,K =0,0.
=p = + 1, or the fully ferromagnetic doublet state
X'=+N, K=0,o=p=+1 of energy N(D+A, ). It has
never been the ground state of a subspace of an intermedi-

ate value of X'. We have numerically determinixl, in the
(A, ,D) plane, the line corresponding to the crossing between
the X'=0 and +N ground states. This line only slightly
varies with N for N =6,8, 10. The estimated infinite-N
limit of this line is represented by curve 1 in Fig. 1. On
the left-hand side of this line (region I), the ground state of
the chain is ferromagnetic with the largest possible z mag-
netization, while on the right-hand side of this line (re-

gions II, III, and IV) the ground state is a X'=0 singlet
ground state. Since this line corresponds to a crossing of
levels with a jump of the z magnetization, it corresponds
to a first-order phase transition in the infinite-N system.

The asymptotic large-D behavior of line 1 could have
been expected from general consideration on Hamiltonian
(2) by considering the X-Y part smaller than the )I, and D
parts. For D large and positive we recover the asymptotic
line D = —A. corresponding to the crossing between the
singlet state

~
0,0, . . . , 0)at energy 0 and the ferromagnet-

ic doublet
~

+1,+ 1, . . . , +1)at energy N(A. +D). For D
large and negative the curve 1 becomes asymptotically
tangent to the axis A, =O and varies as A, ——4/D . This
can be understood by considering that for D large and neg-
ative the ground state is mostly constructed from the
S'=+1 doublets on each site. The S'=0 states, highly ex-
cited (at energy

~

D
~

above the doublets), can be treated in
second-order perturbation leading to an effective
Heisenberg-Ising Hamiltonian of spin —, with an effective
coupling constant proportional to 1/D .

In order to be more precise in the region to the right of
line 1, where the ground state is the X'=0 singlet, we have
also determined the crossings between the first excited
states. In region II the first excited state is a X'=+1
doublet. In region III the first excited state is a X'=0
singlet but with different symmetries than the ground
state (K=@,p=o= —1). In region IV the first excited
state is a 2*=+2 doublet. The boundary lines 2 (between
regions II and III}, 3 (between regions III and IV), and 4
(between regions II and IV) have been determined for
N =6,8, 10 and the estimated extrapolation for N ~ oo are
represented by dashed curves in Fig. 1. Note that in gen-
eral these lines do not represent phase transitions except if
the gap between the ground state and the first excited state
tends to zero when N~ ~. We will present now the study
of the different gaps in each region II, III, and IV.

III. BOUNDARY BETWEEN THE SINGLET-
GROUND-STATE PHASE AND THE NEEL

DOUBLET-GROUND-STATE AF PHASE

In this section we focus our attention on region III of
Fig. 1, where the two lowest levels of (2) are both singlets

of X'=0 subspaces. By analyzing the gap Goo between

these two lowest levels one can observe that it tends to
zero exponentially with N for large A, values, it behaves as
a power law Goo-N ' with z=1, for large N, only along
a given line in the (A, ,D) plane, while to the left of this line

it seems to tend to a nonzero constant value. This is a
strong indication that a second-order phase transition
occurs on this line in the infinite-N system, the vanishing

gap corresponding to the divergence of the correlation

length in the equivalent classical model. To determine
more precisely this transition line, we have postulated that
z =1 at the transition (this is justified by the quantum-
classical equivalence} and we have proceeded as in the

FIG. 1. Thick solid line 1 separates the ferromagnetic region

I where the ground state is the doublet X'= kN from the other

regions (II, III, IV) where the ground state is a singlet X'=0. In
regions II, III, and IV the first excited state is, respectively, a
doublet X'= +1, a singlet X'=0, and a doublet X'= +2. Cross-

ing lines 2, 3, and 4 have been determined up to N =10 and ex-

trapolated for N~ ao (dashed lines).
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phenomenological renormalization-group method' by
comparing successive sizes. Let us define an implicit
renormalization-group transformation which transforms A,

into A,
' for a given constant D value after a size transfor-

mation %~%+2,
(N+2)GOO+ (3,',D) =NGOO(A, ,D) . (3)

The N-dependent fixed point A,,(N, N+2), which corre-
sponds to the successive crossings of the "scalixi" gap
NGco(A, ,D), has been plotted as a function of 1/(N + 1) in
Fig. 2 for several D values. One observes that these criti-
cal values extrapolate quite well to a given line A,,(D)
represented by curve a in Fig. 3. The same procedure ex-
cept for fixed A, and varying D would have given exactly
the same answer. In fact, it can be shown that the succes-
sive curves in the (A, ,D} plane which corresIiond to the
crossings of the successive scaled gaps NGOO(A, ,D) and
(N+2}GOO+ (A, ,D) are converging nicely to curve a when
N ~ ao. Line a cuts the A, axis at the point A,=l. 18, D =0
already found and the D axis at the point A (A, =O,

FIG. 2. Fixed point A,,(N, N+2) of the phenomenological

renormalization-group equation for the gap Goo for different D
values.

D= 2—. 1+0.1}. For large A, values curve a becomes su-

perimposed to line 2 and they become asymptotic to the

A, =D direction. This asymptotic direction could have

been found by a simple analysis of Hamiltonian (2} with a
vanishing X-F part: It corresponds to a crossing between

the X'=0 state
~
0,0,0, . . . ) of energy 0 and X'=1 Neel

doublet of components
~
+ —+ — . ) and

~

—+ —+ ) of energy N(D —2,). From this reason-

ing it is expected that the second-order phase transition on
line a transforms into a first-order phase transition for
A, ~an. It would be very interesting to know if this
transformation occurs at a given point on curve a for fi-
nite k or only asymptotically when A,~ ao. If this
transformation occurs at a finite point of curve a this

point must necessarily correspond to the junction between

lines a and 2. It is, however, very difficult, due to the nu-

merical uncertainties, to locate precisely the junction be-

tween lines a and 2. A more clear conclusion comes from
the analysis of the exponent v which tells how the correla-
tion length diverges at the transition.

In the phenomenological renormalization-group
method'i one can define a N-dependent exponent,
v(N, N +2), by linearizing the renormalization-group
equation (3} near the fixed point A, (N, N+, 2) for each
constant-D value. It is now important to note that D has
been taken constant since, in principle, different results
would have been obtained, for finite N, by varying D in-

stead of A, . This exponent v(N, N+2) can be numerically
obtained through

ln[(N+2)/N]
ln[(N+2)GOO +

/(NGOO )]
(4)

g(N, N+ 2)

where Goo designs the partial derivative of Goo with

respect to A, . v(N, N+ 2) has been plotted as a function of
1/(N+1) in Fig. 4 for different D values. In a large
range of D values ( —1.5 &D &1.5), v(N, N+2) seems to
converge quite well to the same asymptotic value,

v=1.2+0.1,

0.5

1.5
2.1

2.7

0.1 0.2 0.3 1/(N+1 )

FIG. 3. Second-order transition line a in the plane (A,,D).

FIG. 4. Exponent v(N, N +2) of the phenomenologica1
renormalization-group equation for the gap 600 plotted as a
function of 1/(N+ 1) for different D values.
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wh&ch is consistent with the value v=1.3+0.2 already re-
ported in the case D =0. However, we observe deviations
for large negative and large positive D values. These devi-
ations can be more clearly analyzed in another plot given
in Fig. 5 where we have plotted v(N, N+2) as a function
of D, for different pairs of successive sizes (N, N+2).
One can see that when N increases, v(N, N +2) presents a
much more pronounced plateau suggesting strongly that,
in t e in inite-N system, v becomes independent of D

'
o in a

arge range of D values, as already found from Fig. 4.
Note that this result justifies a posteriori that we could
have taken D constant to evaluate v. The same analysis,
but with varying D and constant A. , would have given the
same limiting value v=1.2 for N~ oo in the range
0 (k (2.5. This result for v implies that the gap closes as

A,,—A, )' (fixed D) or (D D, )' —(fixed A.) with
s =vz=1.2+0. 1.

In Fin Fig. 5 one can see a marked crossover, v(N, N+2)
becoming suddenly very large, when D becomes negative
and approaches the point A (A. =O,D= —2. 1). This cross-
over becomes more and more pronounced when N in-
creases. This suggests that, if v is constant along the line
a in the infinite-N system, it becomes suddenly infinite at
point A. In fact, v= ao means that, at this point, the gap
closes more quickly than any power law as it is expected
for an essential singularity. This result is consistent with
the fact that, at this point, the second-order line a merges
into the boundary of the X-Y phase which corresponds to
an essential singularity as it will be seen below. Another
deviation can be seen in Fig. 5, but for positive large-D
values. Now it seems that, instead of converging to
v=1.2, v converges to zero for sufficiently large-D values.
Even if this step is less pronounced than above it is also
more and more marked when N~ao. One can estimate
D=2. 3 the value above which v(N, N +2) starts to tend to
zero when N~00. The fact that v=O, i.e., s =vz=0
means that the gap could have a discontinuity. This sug-
gests strongly that at a given point (A,=2.75,D=2. 3)
point C in Fig. 3) the second-order phase transition

transforms into a first-order phase transition. Then this
point C must correspond to the point ~here line a joins
line 2.

V(N, N+ 2)

-2

1

~ ~ ~ ~
'

()
. .- /

/
'' '/

/j ~

(i,6)

(6,8 )

.. ... . . . . . .. ( 8, 10)

FIG. 6. Lines in the (k,D) area where the successive scaled
gaps NGp~ and {N+2)Gpi+', for sizes (N, N+2), are equal.
Dashed-dotted, dashed, and dotted lines correspond, respective-

ly, to sizes (4,6), (6,8), and (8,10).

IV. BOUNDARY OF THE X-YPHASE

Let us now consider region II, where the ground state is
the X'=0 singlet and the first excited state is the X'=1
doublet. We have performed the same analysis as in the
preceding section with the gap Goi between these two
states. Here it seems that the gap varies as 1/N in a large
region and fits quite well a behavior such as

Goi -Gp"i+A/N

with Goi very small. The X-7 phase is the region where it
can be estimated that Go"i is zero. The N ' term observed
outside of the X-Y phase is probably due to the fact that
we are always well below the large-size crossover towards
an exponential behavior. In Fig. 6 we have drawn the
lines in the (A, ,D) plane where the successive scaled

N %+2
ca e gaps

NGoi and (N+2)Goi+ are equal for N =4,6, 8. These
curves converge less rapidly than above and it is more dif-
ficult to estimate the line of transition in the infinite sys-
tem. As before we have calculated the index v(N, N+2)
for 7i, fixed and D varying along part b of the line a d f

ixed and A, varying along part c: The results are,
respectively, reported in Figs. 7 and 8. It is clear from

V(N, N+ 2)
7.5

-4

I

I

I

I

I

I

L

6 0

FIG. 5. Exponent v(N, N +2) of Fig. 4 plotted as a function
of D for different pairs of size (N, N +2). Its estimated extrapo-
lation for infinite N is represented by the dashed curve.

2.5
-0,4

0
0.4

=2
I

0.1 0.2 0.3 1/( N+ 1)
FIG. 7. Ex npo ent v(N, N +2) of the phenomenological

renormalization-group equation for the gap Gp& calculated when
crossing line b of Fig. 6 at different constant-A, values.
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Fig. 7, that, if the curve b has a definite limit when
N —+ oo, the exponent v would be infinite on this line sug-
gesting strongly that this line of transition corresponds to
an essential singularity as already found for )L, =O and
D=0.4.9 In Fig. 8 the divergence of v(N, N+2) when
N~ao is less clear since in the range —0.3&D(0.3 the
curves show a change of curvature. But the extrapolated
value found for v would be so large in that case (v 15)
that it is reasonable to also predict an essential singularity
along the limiting curve corresponding to part c.

A very strange behavior is observed in the range
0 & A, & 2.5 where parts b and c of the curve have a finger-
like shape which seems to stay up to N~oo. In that
range of )I, values the successive scaled gaps NGpi and
(N+2)Gpi+ are crossing in two neighboring points.
Moreover, the finger-shaped edge corresponds nicely to
the point C where line a, determined in the preceding sec-
tion, becomes first order. From this analysis we are
tempted to conclude that in the infinite system there exists
a tiny X-Y region, perhaps reduced into a single line, ter-
minating at point C. This X-Y region would be between
the "Heisenberg" singlet-ground-state phase (containing
the Heisenberg AF point A, =l,D =0) and the large-D
singlet-ground-state phase. Also difficult is to estimate
the limiting curve corresponding to part c in the range
—2. 1gD &0. In Fig. 9 we give two possible phase dia-
grams for the infinite-N system where the X-Y phase is
represented by the area with the solid lines. In both cases
the boundary of the X-Y phase cuts the ferromagnetic
first-order transition line at a given point B (A, ——1.8,
D-1.35). The two following problems remain difficult to
clarify according to our calculations.

(i) Is the X-Y region reduced to a single line [DC in Fig.
9(b)] for A, &0?

(ii) Is the boundary strictly superimposed with the D
axis between D and A?

Q(N, N+ 2)

10 +Q.

-0.9
+1.5
-1.5

0.1 0.2
I

0.3 1J {N+1)

FIG. 8. Exponent v(N, N +2) of the phenomenological

renormalization-group equation for the gap Gp&, calculated when

crossing line c of Fig. 6 at different constant-D values.

To complete the phase diagram below point C, it
remains to elucidate what happens in region IV of Fig. 1

where the two lowest states are the X'=0 singlet and the
X'=+2 doublet. As above we have studied the gap 602
between these two states. In Fig. 10 we have drawn the
lines in the (A,,D) plane where the successive scaled gaps
NGpp and (N +2)Gp2+ are equal, for N =4,6, 8. These
lines converge to the lines 3 and 4 of Fig. 1 when N~ ao.
The analysis of the exponent v would show that, again,
these lines correspond to essential singularities. Thus re-

gion IV with its vanishing gap corresponds also to an X-Y
phase. One could say that region IV corresponds to a
spin- —,

' —like X-Y phase while the dashed area of Fig. 11
corresponds to a regular spin-1 X-Y phase.

(a)

FIG. 9. Two possible estimations of the shape of the boundary of the X-Y phase in the (A, ,D) plane for N ~ ao. X-Y phase (dashed

area) is separated from the ferromagnetic phase by the first-order transition line 1, from the high-D singlet-ground-state phase by the
essential singularity line b, and from the Heisenberg singlet-ground-state phase by the essential singularity line c.
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FIG. 11. Plot of lnp vs lnN for D =0 and different A, values.

FIG. 10. Lines in the (A, ,D) plane where the successive scaled

gaps NGpz and (N+2)Gpz+, for sizes (N, N+2), are equal.
Dashed-dotted, dashed, and dotted lines correspond, respective-

ly, to sizes (4,6), (6,8), and (8,10).

V. CORRELATION FUNCTION

We have calculated, at a few points on the plane (A. ,D)
in the antiferromagnetic region A, & 0, the following corre-
lation functions between two opposite spins on the ring:

p = ( —1)"(s+s,—,„),p = ( —1)"(s,'s,',„)(5)

with n =N/2. Since we have used periodic boundary con-
ditions the result is independent of the site i The sig.n

( —1) has been introduced in order to obtain positive
quantities in the antiferromagnetic region. The angular
brackets mean that the expectation value has been taken in

the X'=0 singlet ground state of the chain. We will im-

plicitly suppose that the dependence of correlation func-
tions with n, for finite systems of N =2n spins when

N~ oo, is the same as their dependence with distance be-
tween spins in the infinite-N system. This is the case for
systems where the exact solution is known. These calcula-
tions of the correlation functions were more difficult than
those for the gap for two reasons: First, we need the
eigenvector (and not only the eigenvalue) to calculate the
expectation value in the ground state, and, second, due to
N/2 odd-even oscillations in p, we were obliged to go up
to N =12 to get significant results on the asymptotic
behavior.

Let us discuss the results on p first. There is a clear
change of behavior on line a. To the right of this line p
tends to a constant value when n =N/2~os. The limit-

ing value p =m can be interpreted as the square of the
staggered z magnetization in the antiferromagnetic phase.
On the contrary, to the left of this line p tends quickly to
zero with n =N/2. By analyzing p in a log-log plot one
can show that p~ follows a power-law behavior of the type

p~(n)-n just on line a. An example is given in Fig.
11 where one can see that the slope of lnp vs lnN is rap-
idly varying when crossing the curve a by increasing A. at a
constant-D value (here D =0). The even-odd oscillations
do not allow us to obtain q, with very good precision.
However, taking A.=1.18 for D=0, one can estimate
r), =0.23+0.03. The same analysis done for different D
values shows that g, does not vary along this line a. The
value of g, implies an opening of the staggered z magneti-
zation of the type m, —(A, —A,, )~ (for fixed D) or
m, -(D, D)~ (for fix—ed A) on the right-hand side of line
a with an exponent @=vs),/2=0. 17+0.04.

The results for p+ are more difficult to interpret since
everywhere p+ ~0 when n =N/2~op. In fact, one
must expect that p+ follows a power-law behavior of the

type p+ -n + for n =N/2~ oo, in the entire X-Yre-
gion, with a varying r)+ exponent, while it must follow
an exponential behavior in the singlet-ground-state regions
where the gap is nonzero. However, it is not possible to
determine the boundary of the X- Y region by using this
criterion since, if the gap is nonzero but very small, we ob-
serve always power-law behavior. It would be necessary to
reach much larger cells to hope to see the crossover to-
wards an exponential behavior. This is illustrated in Fig.
12 where one observes always straight lines in a log-log
plot on the right of the frontier A.=O of the X- Y phase.
However, one can observe that the value g+ ——0.25
predicted by Haldane at the frontier of the X-Y phase is
very well recovered. For A, =O and D = —0.4, 0, and 0.4,
one obtains, respectively, g+ ——0.245+0.007, g+
=0.248+0.007, and ri+ ——0.255+0.007. This confirms
the fact that the frontier of the X-Y phase must be almost
close to the D axis. However, even if the precision is quite
good here, these results do not allow us to distinguish be-
tween the two possibilities of phase diagram [Figs. 9(a)
and 9(b)] especially concerning the finger-shaped part DC
of the diagram. One can see in Fig. 9 that for D =0.4,
g+ varies very slowly with A, .
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FIG. 13. Variation of the gap with the single-site anisotropy
parameter D in the Heisenberg case (A, =1). Estimated gap for
the infinite-N system is represented by the dashed curve.

FIG. 12. Plot of lnp+ vs in% for D=0.4, 0, —0.4, and

A, =O, 0.15, and 0.3. The slope —
4 is indicated by the dashed-

dotted lines.

VI. CONCLUSION

By studying the lowest states of Hamiltonian (2) for fi-
nite chains (up to N =12), we have been able to construct
a complete T =0 phase diagram in the plane (A, ,D) (Fig.
9). We have been able to extend the boundaries of the
singlet-ground-state Heisenberg phase in the presence of a
uniaxial anisotropy D. We recall that this new phase
which includes the AF Heisenberg point (A, =+1,D =0) is
characteristic of integer spin chains and would not exist in
the half-integer case. To its right, for large AF anisotropy
of the coupling, this Heisenberg phase is bounded by the
Neel-type AF phase through a second-order transition line
(line a in Fig. 9). When crossing this line the singlet
ground state changes into a doublet ground state and a
staggered spontaneous magnetization appears in the z
dircx:tion. The exponents of the transition (v=1.2,
P=0. 17) have been estimated. To its left, when the aniso-
tropy of the coupling becomes ferromagnetic (A, &0}, the
Heisenberg phase is bounded by the X-Y phase through an
essential singularity line. When approaching this line
from the Heisenberg phase the gap closes more quickly
than any power law. We have not been able to determine
more precisely the shape of this transition line. It would
be interesting to know if it exactly superimposes the D
axis. Here some analytical studies could help. In particu-
lar, knowing the classical equivalent of the A, term one
could study its influence on the existence of the
Kosterlitz-Thouless transition. If the hypothesis of Fig.
9(b) is true the Kosterlitz-Thouless phase would disappear
for )(, & 0 while it would stay for A, & 0.

Another result is the existence of a tiny X-F phase,

perhaps reduced to a single line, separating the Heisenberg
phase to the singlet-ground-state phase for large single-site
anisotropy. In contrast with what we could expect (and
what we announced in Ref. 3) the gap between the singlet

ground state and the bottom of the continuum is not sim-

ply enlarged when applying a positive uniaxial anisotropy.
This gap starts to decrease first, goes through a minimum
which is estimated to be zero here, and then increases
again. This suggests that the large-D phase and the
Heisenberg phase which look quite similar (singlet ground
state with a nonzero gap} are in fact of different natures.
This point also must be elucidated in further studies.

As a conclusion we give in Fig. 13 the behavior of the

gap when applying the D parameter on the Heisenberg an-
tiferromagnet (A, =l). The estimated gap in the infinite
system is represented by the dashed curves. One sees
clearly in this figure the difference between the behavior
of the Goo gap when crossing line a and the behavior of
the Goi gap when crossing the part DC of the phase dia-
gram. The gap for D =0 is quite large, about one-quarter
of the coupling parameter; the same value is recovered for
D=1.7, i.e., for an anisotropy parameter almost twice as
large as the coupling constant. This might have important
experimental consequences and we think that the physical
interpretation of the behavior of a spin-1 chain such as
CsNiCI& and RbNiC1& might be different. If a gap exists
the magnetic susceptibility must tend to zero, after passing
through a maximum, when lowering the temperature,
while it would saturate as T~O in the gapless case. Also,
the gap could be seen in the spin-wave spectrum by
neutron-diffraction experiments.
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