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Master-equation approach to muonium depolarization in solids
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The theory of master equations for open systems is applied to describe the spin relaxation

of muonium in solids. An equation of motion for the density matrix of muonium is derived

which takes into account the interaction of the bound electron with the host. The calculated
muon relaxation rates depend strongly on the applied magnetic field. The range of validity

of the Markov approximation is investigated and the results are compared with those of pre-

vious theories.

I. INTRODUCTION (1.5)

2g.rag„u, I fi, (o)
I

(1.2)

where
I f~, (0)

I
is the electron density at the muon

and where the operators for the magnetic moments
of the electron and of the muon are

pe gepBSe (1.3)

The positive muon is used extensively as a probe
in solid-state physics and chemistry. In insulators,
semiconductors, and liquids, the muon may bind an
electron to form a one-electron atom which can be
studied by measuring the time dependence of the
muon spin polarization.

Two different paramagnetic muon states have
been observed in silicon, germanium, and diamond.
The hyperfine spectrum of the so-called normal
muonium state is analogous to that of vacuum
muonium but with a reduced hyperfine frequency.
The observed spectra of anomalous muonium are
describable by an axially symmetric hyperfine in-
teraction.

In the presence of an external field B the magnetic
interactions of a muonium atom in its ground state
are given by the Hamiltonian

HM„——AS„.S, +g,pgS, .8+g„p„S„B. (1.1)

The hyperfine structure constant A is found from
the relativistic interaction energy (Fermi contact
term) to be

measured in MHz/kG,

ge PIt gpP p—

measured in MHz/G, and

vp ——A /h,
the eigenvalues of (1.1) are given by

E, /h =v ~
=vp/4+ I B/2 y„B, —

E /h =v =v /4 I B/2+@„B—,

(
2 +I 2B2

)
1/2

E2 4/h =v2, 4= —vo/4+
2

A plot of the energy levels of the Hamiltonian (1.1)
in the case of germanium (vp=2361 MHz) versus
the field strength is given in Fig. l.

The M =+1 levels diverge linearly with the field
because they are eigenstates with m&

——m, =+—,.
The two M =0 levels are field-dependent linear

1

combinations of m&
———m, =+ —,.

In a muon-spin-rotation (@SR) experiment in a
longitudinal field, i.e., where the initial p polariza-
tion is parallel to the applied field, only the transi-
tions obeying the selection rule 6M=0 occur. The
parallel component of the muon polarization is
given by

gt &t Ss . (1.4) P„(t) = 1 —a +a costo24t, (1.9)

The time dependence of the muon spin polarization
which is determined by the Hamiltonian (1.1) can be
solved analytically.

Using the notation

where toq4 2m(Ez E4)/h and———
2

Vpn=
2vp+ 2r B

(1.10)
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FIG. 1. Breit-Rabi diagram for muonium in Ge.

where

tan(213) =vp/I B, (1.12)

and where the two frequencies tp4& and co43 between
the singlet and triplet states are (for normal muoni-
um) too high to be detectable. The transitions 1~2
and 2~3, however, are in the experimentally acces-
sible range for fields below 300 Cx.

Equations (1.9) and (1.11) also apply to the case of
anomalous muonium if the field is along a (111)
axis of the crystal. Since the hyperfine parameters
are then 1 order of magnitude smaller than for nor-
mal muonium, the corresponding frequency
should easily be observable in small longitudinal
fields and the amplitude a would strongly depend
on the field.

Since the present experimental resolution is lower
than 500 MHz, all terms oscillating with the fre-
quency co24 are averaged to zero. Thus in a longitu-
dinal field experiment, no pSR frequency is ob-
served, but since the ratio between the constant part
and the oscillating part of the polarization depends
on the field and on the hyperfine frequency vp, a
measurement of the polarization as a function of the
field yields information about vp.

In a transverse field, transitions with
~

b,M
~

=1
occur and one gets

pp(t) =
2 [cos /3( ocsco )2t +coscp43t)

+sin P( cosco4& t +cosco23t) ],

The dependence of the transition frequencies on
the field and (for anomalous muonium) on the crys-
tal orientation has been measured in various experi-
ments. All results are well described by Eqs. (1.9)
and (1.11), and precise values of the hyperfine
parameters as a function of temperature have been
obtained. The observed time dependence of the
muon polarization, however, also shows marked
depolarization effects which depend on external
parameters such as temperature, doping concentra-
tion of the crystal, etc. To account for these relaxa-
tion phenomena the interactions between the muoni-
um electron and the host must be considered. Vari-
ous kinds of interactions which affect the electron
spin exist in semiconductors. There is the hyperfine
interaction between the muonium electron and the
magnetic moments of nuclei ( Si, Ge). At low
temperatures the exchange interaction of the elec-
tron with paramagnetic dopant atoms may be im-
portant, and at higher temperatures there are col-
lisions with charge carriers. Furthermore, all
mechanisms which lead to spin-lattice relaxation
may play a role in certain temperature ranges.

A phenomenological description of the influence
of a general relaxation mechanism on the muon spin
polarization has been given by Yakovleva by adding
to the equations of motion for the polarization com-
ponents a term which leads to a relaxation of the
muonium electron with a rate v. This model, which
is based on the Wangsness-Bloch theory, has fur-
ther been applied to muonium in solids by Nosov
and Yakovleva and by Ivanter and Smilga. '

In this work a general approach to muonium
depolarization is presented. It is based on the theory
of master equations for an open system interacting
with a reservoir. The derivations of the basic for-
mulas of this theory are given in Sec. II. The appli-
cation to muonium in solids, where the bound elec-
tron is interacting with the surroundings, is dis-
cussed within the Born approximation in Sec. III.
An equation of motion for the density matrix of

uonium is obtained by integrating over all degrees
of freedom of the reservoir. Following Argyres and
Kelley, " correlation functions of the reservoir are
introduced which describe the dissipative behavior
of the host.

In Sec. IV it is shown how the previous models
for muonium relaxation can be obtained as a limit-
ing case of our general theory. The dependence of
the muon relaxation rates on the magnetic field is
discussed in detail. Finally, in Sec. V the results are
compared to recent @SRexperiments in Cxe and Si.

For definiteness, all equations have been formu-
lated to describe the behavior of (normal) muonium
in solids. They can easily be modified to account
also for anomalous muonium.
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II. THEORY OF MASTER EQUATIONS

A. Formal derivation

the von Neumann equation (2.1) reads

iz p(z) —ip(t =0)=Lp(z) . (2.4)

The theory of master equations has been applied'
to investigate the dynamics of open systems (A)
behaving irreversibly under the influence of their
surroundings (8). As a basis for the discussion of
the open system A we use a complete microscopic
description of the composite system AB. By elim-
inating the coordinates of B we infer the behavior of
A. The motivation for this approach is that nature
frequently confronts us with coupled systems only
one of which is of experimental relevance. We shall
restrict ourselves in the following to the case where
we have only two subsystems. A generalization to
more than two subsystems is straightforward. Fur-
ther, as it is our aim to obtain dissipation effects we
have to choose at least one of the two subsystems
macroscopically large; this is necessary in order that
dissipation may occur. We call the subsystem of in-
terest S and the other one R (reservoir). In order to
derive an equation of motion for our system S we
shall only make assumptions about the initial state,
i.e., that S and R are initially separated and that
only the macroscopic properties of the reservoir are
known.

With the use of the projection-operator technique
of Zwanzig' an exact equation for the reduced den-
sity matrix of S is established by summing over the
degrees of freedom of the reservoir. The reduced
density matrix then enables one to calculate all ex-
pectation values of the observables for the subsystem
of interest.

In quantum statistical mechanics the states of a
given system are represented by statistical operators
p, called density matrices. The time evolution of the
states is governed by the von Neumann equation

S and R are assumed to be uncorrelated initially
such that the density matrix at time zero factorizes,

p(t =0) ps—pR t
0 0

where pri is a stationary distribution.
The total Hamiltonian H is decomposed into

H =Ho+ V,

(2.5)

(2.6)

where Ho is the sum of the Hamiltonians of S and
R, i.e.,

Hp ——Hg+Hg, (2.7)

and V is the interaction between S and R. We are
interested in the dynamics of the reduced density
matrix of S, which is obtained by summing over all
degrees of freedom of R,

ps=Trrrp . (2.8)

In order to get an equation of motion for ps it is
convenient to define a linear operator P which acts
on elements X of W in the following way:

PX=prr TrgX . (2.9)

=PLPp(z)+PL (iz —QL) 'QLPp(z) . (2.10)

According to (2.6) and (2.7), the Liouville operator L
is split into

P is idempotent. Its complement is denoted by Q.
Qperating with P and Q, respectively, on the von

Neumann equation (2.4) one gets two coupled equa-
tions for Pp and Qp. Elimination of Qp leads to

izPp(z) i p(t =0)—

i = [H,p(t)],. dp(t)
(2.1)

L =Ls+Lrr +Li
It is assumed that

(2.11)

where A'=1. The Liouville operator L for the total
system is defined by

LX =[H,X]=HX XH . — (2.2)

p(z) fdt e *'p(t), = (2.3)

It operates on elements X of the Liouville space
which is the product space of Ws and Wz. The
spaces Ws and Wz are generated by the set of all
Hilbert-Schmidt operators on the Hilbert space of
the subsystem S and of the reservoir R, respectively.

For the Laplace transform of the density matrix

PLPp(z) =LsPps(z) . (2.13)

In a similar way the last term of (2.10) can be
rewritten. By the use of the relations PLQ =PLr Q,
QLPp=LvPp, and QLQ =(Ls+Lrr+QL&)Q, one
obtains

(2.12)

This condition, which assures that PLvP =0, im-
plies no restriction since it can be fulfilled in general
by an appropriate redefinition of Ho and V.

Furthermore, the relations P(Ls+Lrr ) =LsP and
Lrr P =0 hold. Therefore, we have

rz Pp(z) ipsprr LsPp—(z)+PL&(iz Ls——Lrr —QLr ) —'L&Pp(z) . — (2.14)
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Using (2.8) and (2.9), one finally obtains the equa-
tion of motion for the reduced density matrix ps in
the form

[iz L—s M—(z)]ps{z)=ips, {2.15)

where

M (z) =Try [Lv(iz —Ls —Lg —QLv) Lvp~ ]0

(2.16)

Thus in time space ps obeys the integro-differential
equation

dps(t)
t =I tpt(t)+ f dt'M(t')pt(t —t'),

t
(2.17)

with the memory kernel

M(t) = i Tr~ IL—vexp[ i (Ls—+Lg +QLv)t]

&«vp~j . (2.

These equations in conjunction with the initial con-
dition ps(0) =Tr~ p(0) determine completely the
time evolution of all observables in our subsystem of
interest. The first term in (2.17) describes the unper-
turbed motion of S, whereas the term containing
M(t) may be considered as a generalized collision
operator, correct to all orders in V. It is clear that
this term involves memory effects, i.e., the rate of
change of ps(t) at time t depends on all earlier
values of ps(t).

This form of equation of motion represents a con-
venient starting point for obtaining microscopic
foundations of phenomenological equations which
describe dissipation. ' The application of the gen-
eral theory to specific problems usually requires an
approximate treatment of M, which can be obtained
by a perturbation expansion of the exponential
exp[ —

& {Ls+L~+QL v)tl occurring in (2.18) in
terms of the interaction Liouvillian L v

..

M(z) =Tr~ Lv .
—g [QLv(iz —Ls —Lg ) ']"Lvpg

&& —LS —L~ .=0
(2.19)

However, this perturbation series makes sense only
if it can be identified to be in terms of a small di-
mensionless parameter which is, formally,
O(Lv)IO(Ls+L~). The present theory is not ade
quate in cases where the interaction between S and
R is too strong for the expansion (2.19) to converge.

If, on the other hand, the series is in terms of a
small dimensionless parameter, the use of the gen-
eralized master equation offers substantial advan-
tages over other methods of evaluating ps(t), e.g. ,
the perturbation theoretical solution of (2.1). This
latter method proceeds by expanding the time-
evolution operator in

ps(t) =Tr~ I exp[ —t {Ls+L~+Lv)t]p{0) l

in terms of Lv. It is easy to see that an infinite
number of terms of all orders of this elementary per-
turbation expansion have to be summed up in order
to recover a given finite order approximation to the
series (2.19).

B. Born approximation

V=gu U, ,
K

where u, and U„operate in the spaces of the reser-
voir and the system of interest, respectively. Bear-
ing in mind that

(2.20)

exp( iLot) V =exp( —iHot) V exp(iHot)—,

we can rewrite (2.17) in the lowest Born approxima-
tion:

In order to see more explicitly the nature of the
equation of motion for ps(t), Eq. (2.17), we consider
here the case of a system interacting weakly with the
reservoir. In the lowest Born approximation the
operator M is of order V and is obtained from
(2.18) by «placing exp[ —i (Ls+L~ +QLv )t] by
exp[ i (Ls—+Lz )t]. Since we want to analyze (2.17)
in terms of the separate properties of the reservoir, it
is useful" to expand V in a complete set of operators
u„u„, j[.e.,

ipt(t) Ltpt(t) —tg I d [c ( t)[ te tp( „—UiLxtt)tttpt(t —t')] —tt„(—t)[U„,txp( —(Ltt)pt(t —t)vt]] .
K, A,

(2.21)

In the last expression all reference to the reservoir has been concentrated in the quantities c„~(r), which are the
thermodynamic correlation functions for the Heisenberg operators u„(t) =exp(iLz t)u„of R, defined by

c„~(r)=Trz[pzu (r)u~] . (2.22)



MASTER-EQUATION APPROACH TO MUONIUM. . .

The Laplace transfoiin of Eq. (2.21) is given by

('z —Ls )ps(z) = ips(0) +M (z)ps(z)

with

M(z)ps(z) = —ig [v.j ~(z+iLs)[vt. Ps(z)]+i.~(z+iLs)[ut, Ps(z)]+]
K)A

(2.23)

(2.24)

where [a,b]+ ab ——+ba, and

j„lzz)= i dze *'c„—z(z)

and

(2.25a)

j„~(z)= dv. e "c„~(r)
0

(2.25b)

If the influence of the reservoir can be approximated
by a random field of force, which requires that the
reservoir temperature is much larger than typical
system energies, the expression (2.24) considerably
simplifies, "

M (z)Ps(z) = ig [u„,j—),(z +iLs ) [ux Ps(z)]] .
K) k

(2.26)
I

are the Laplace transforms of the correlation func-
tions

c„-~(~)= —,[c„z(~)+c~„(—r)] =+c4~( ~) .—

(2.25c)

c„~(~)=0 for
l

~
l

&&a . (2.27)

This implies the energy spectrum of the reservoir to
be continuous, otherwise the c,q's are quasiperiodic
functions of ~, as seen from (2.22).

Under these restrictions one finds that for long
times (t & ~, ),

Equations (2.24) and (2.26) will be further dis-
cussed in the next section. At this point we would
like to indicate the differences between our approach
which leads to relaxation functions involving
memory effects [see Eqs. (2.21) and (2.23)] and
theories which work directly with Markovian equa-
tions of motion. It can be shown that Eq. (2.21) can
be approximated by a Markovian equation of
motion under the assumption that the relaxation
times of the system are much larger than r„ the re-
laxation time of the reservoir. The latter can
mathematically be characterized by the condition
that for all thermodynamic correlation functions
c„q(r) one has

ips(t)=Lsps(t) —ig [v [J z(iLs)ux Ps(t)]+[J x(iLs)ux Ps(t)]+] .
K)A,

(2.28)

The Laplace transform of this Markovian equation
of motion reads

[iz Ls M(z—)]ps(—z) =ips,

M(z)Ps(z) = iP [u [j—)„(iLs)u).,Ps(z)]
K) A,

+[j ~(iLs)u~, Ps(»]+] .

If the influence of the surroundings on the subsys-
tem can be described by a random field of force, this
equation reduces to

M (z)ps(z) = ig [v„,[j„),—(iLs )v~,ps(z) ]],
K) A.

(2.30)

which is the Markovian approximation to Eq. (2.26).

III. APPLICATION TO MUONIUM

In this section the general theory is applied to
describe the behavior of the muon spin polarization
in a muonium atom where the bound electron is in-

I

teracting with the surroundings. With the use of the
concepts and the formulas of Sec. II, an equation of
motion for the density matrix of the muonium spin
system alone will be obtained.

In dealing with the dynamics of the muonium
spin system it is convenient to represent the observ-
ables in the basis generated by the direct product of
the Pauli spin matrices ~' and o' (i =1,2,3) of the
electron and the muon„respectively, and z =cr =I,
where 3. is the identity matrix.

We denote the basis vectors by

f ~=o 7. ~, a,13=0,1,2, 3 . (3.1)

Whereas HM„or p are linear operators in the four-
dimensional Hilbert space spanned by the states of
the spin- —,—spin- —, system, one considers' in the
Liouville formalism a different space which has di-
mension 16. In Ws the quantum-mechanical opera-
tors are vectors which will be expressed in terms of
the basis (3.1), and the Liouville operator Ls as well
as the resolvent R are linear operators in this vector
space which is spanned by the basis (3.1). For our
spin problem a scalar product is naturally defined by
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(f P,f"")=Tr(cr r P~ "r")=45 „6p„. and is given by the 16)& 16 matrix with elements

Thus the Hamilton operator (1.1) is given by the fol-
lowing vector expressed in terms of the basis (3.1):

R (z)f P=(R)@~lap(z)f

Using (3.8) and (3.10) we finally obtain

(3.10)

(3.3a)

where the sum over i is implied and

br=gePjj&t ~

r ——gpPp8s ~

(3.3b)

Lsf 1=i Ejk( f'"+b—(f "
2

(3.4)

f"=ie,„f"'+c,f—
2

L f"=,k (f'" f"')— —S

+~ ~j klclf "+& &)k~bif

Therefore, the transformation operator Ls can be
represented by a 16&& 16 matrix according to

(3.5)

where the sum over repeated indices is implied. All
operators in Ws can be written as linear combina-
tions of spin operators and can therefore be
represented by matrices.

The basis (3.1) is most convenient since the initial
value of the reduced density matrix ps can be writ-
ten 3.S

(3.6)

The action of the linear transformation L, on the 16
basis vectors can be easily obtained. Using the com-
mutation properties of the Pauli matrices one gets

Lsf

CX ~ ( )fog' (3.12)

where the T s are the Cartesian components of the
fluctuating field representing the reservoir and 5,„ is
the interaction strength. This particular choice of
the interaction possesses many of the features of a
dipolar coupling; however, it is more simple to treat.
In fact, the assumption of a random field of force
and the resulting form of the thermodynamic corre-
lation functions between the bath operators consid-
erably reduce the complexity of the formalism
sketched in Sec. II.

The correlation functions for the reservoir are
found to be"

II p(z)=R pg„„(z)Trs(psf"')=R pg„,(z)II„

(3.1 1)

This equation determines the evolution of the spin
system from the initial polarization if the elements
of the resolvent matrix R are known.

To proceed, the interaction V between the muoni-
um system and the reservoir has to be specified. In-
stead of investigating a particular microscopic in-
teraction in which S, couples to magnetic moments,
we discuss the general features for a model where all
relaxation mechanisms are approximated by a ran-
domly fluctuating field. This field is assumed to
jump randomly between two values +Ta (a=x,y, z)
with a probability per unit time equal to (2v, )
Such a change in the field may have its origin, e.g.,
in the diffusion of the muonium atom or in col-
lisions with charge carriers, or in the flipping of lo-
calized spins due to exchange or spin-lattice relaxa-
tion.

With the use of the notation of Eq. (3.1), the in-
teraction Hamiltonian Vis thus written as

where the II p are the components of the initial po-
larization matrix

(3.7)

Further, the Laplace transform of the time-
dependent polarization matrix can be expressed as

c„k(r)=
26,„ 0
4 Tr~f&.(r»kp~l
2'"

5„k(T„'),„e IC, A, =x,+,z

(3.13)
IIap(» =Trs lps(»f lj=Trsl R (z)psf

(3.8)
In the following we will assume an isotropic fluc-
tuating field which implies

where the resolvent operator R (z) follows from
(2.15),

R (z) = [z +iLs+ iM(z))

(3.14)

Then with the help of (3.13) and (3.14), Eq. (2.26)
can be rewritten as
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M(z)Ps(z)= ig [v„,j„(z+iLs)[v„,Ps(z)]],

(3.15)

becomes valid.
Following the same lines leading to (3.19) one

finds

(z +iLs+M)ps(z) =ps, (3.20)

j„(z)=f dec "c„(~), (3.16)

j.(z+ILs)f ~=
2

1
z + I +iI g

C

(3.18)

or, using our basis representation,

M (z)f ~= i —g [f "j„(z+iLs )[f ",f ~]] .
re=1,2, 3

(3.17)

Further, the action of j„(z+iLs) on a general basis
vector is given by

where M is now frequency independent and has ele-
ments given by

g2
' —1

M = g 1+iL~
4 „

FOj(Fat3

aP/Oz

(3.21)

It should be noted that this equation differs from
the z =0 limit of Eq. (3.19). This difference can al-
ready be seen from (2.26) and (2.30).

The evaluation of M is still tedious, but we have
here the advantage that M, as well as iLs, are ma-

trices with constant elements. Instead of (3.20) we
can then write

This leads finally to the following form of the relax-
atloll matrix M(z), (z +IL,ff )ps(z) =ps (3.22)

$2
M(z) = i —g Fo z+ 1+iL~

4 .=i 23
FQK

(3.19)

where F" and (z+ I/1;)1+iL~ are 16&&16 ma-
trices, whose elements are deteiiriined according to
the notation introduced by Eqs. (3.5) and (3.10).
Thus FO" is the matrix representing the action of the
commutator [~",. . .] on all other elements of the
basis (3.1), and the elements of this matrix identify
the coefficients of such an expansion on orthogonal
operators. With the help of (3.9), (3.11), and (3.19),
we are now able to determine the complete evolution
of the muon spin polarization. This result is ob-
tained in the Born approximation but is valid for ar-
bitrary long correlation times ~, .

As a consequence of the interaction of the muoni-
um with the medium, one then expects a broadening
or a splitting of the different lines corresponding to
transitions between the four energy levels of the
muonium spin system [Eq. (1.8)]. The characteristic
features of the line shapes are determined by the two
parameters of our model, 5,„and I;. Different
choices can generate a variety of possible relaxation
effects, which will be discussed in more detail in the
next section.

An interesting case occurs when the correlation
time of the reservoir becomes very small (e.g. , small-
er than the typical relaxation times of our spin sys-
tem, which are known from experiments and are of
the order of 1 jMs). Then, as discussed at the end of
Sec. II, the memory effects can be neglected and the
Markov approximation, represented by Eq. (2.30),

—Aintp„(t)=ae

p~(t) =
2 [cas Pe cos(cozit)

—A~3t+sin /je "cas(co23t)],

(3.24)

(3.25)

where we have omitted the frequencies which cannot
be detected experimentally, and where A~~ (A21 and

A23) are the so-called parallel (transverse) relaxation
rates. A study of the dependence of these dampings
on the various parameters, in particular an the field

and a simple diagonalization of the effective
Liouvillian L,ff is possible.

The spin dynamics of our system is then fully
determined by the complex eigenvalues of the ma-
trix iL,ff, whi—ch are c numbers representing the
complex frequencies governing the time evolution of
the polarization components II II(t):

II p(t)=QAJe ' (3.23)
J

where the AJ's are the complex amp»«des found by
decomposing the initial polarization in a linear com-
bination of the eigenvectors. Let us here briefly con-
sider the case of free muonium (Leff —Ls). As a
consequence of the reversibility in the evolution of
the total system, no dissipation will occur, and one
has purely imaginary eigenvalues k.

Now the introduction of irreversible processes
leads in a first-order approximation to damping ef-
fects. The free muonium frequencies are unchanged
if the strength of the interaction and the correlation
time ~, are small enough. Thus instead of (1.9) and
(1.11) we can write
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FIG. 5. Calculated line shape of the transition 1~2 at
a transverse field of 100 G for three different values of
the correlation time ~, .

FIG. 7. Plot of the line shape at zero frequency for
r, = 10 s and r, =3 X 10 9 s (where the maximum of
the amplitude is at 0.8).
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FIG. 6. Line shape calculated in the Markov approxi-
mation for three values of the correlation time ~, . For
~, = 10 s the line shape is the same as the corresponding
one in Fig. 5. For larger values of ~„ the Markov approx-
imation predicts different line shapes.

ficiently small, e.g. , smaller than the measured re-
laxation times ( —1 ps). This can clearly be seen by
a comparison of Figs. 5 and 6. For ~, ) 10 s, the
Markov approximation gives a result which is very
different from that obtained from formula (3.19).
The results of the latter give for ~, greater than
10 s a characteristic splitting of Aru-5, „ for the
frequency coiz in a transverse field. In this case the
dynamics of the subsystem is governed by frequen-
cies which are much higher than the rates of change
[1/(2~, )] of the fluctuating field produced by the
reservoir. This implies the occurrence of two effec-
tive fields in which the electron spin precesses. The
splitting in Fig. 5 is due to the approximation of the
interaction term by Eq. (3.12) using a single value of

5,„. In actual cases one has to consider a distribu-
tion of 5,„values which is determined, e.g. , by the
average distance between the muonium and the
neighboring spins. Instead of a splitting, one then
observes a distribution of frequencies obtained by
taking a statistical average over all 5,„.

On the other hand, as shown in Fig. 7, the line
shape at zero frequency is characterized by the fact
that no splitting occurs, even for large ~, () 10 ' s).
This means that the parallel relaxation rate disap-
pears in the static limit, as expected.

V. CQMPARISQN TQ EXPERIMENTS
AND CQNCLUSIQNS

Recently transverse and longitudinal relaxation
rates of muonium have been measured as a function
of temperature in germanium' and silicon. ' For
high temperatures (T) 150 K for Si), the ratio be-
tweeil AJ measured at 10 G and +

I I

t 200 Cx d
creases from about 2.0 to 1.5 with increasing tem-
perature. For temperatures lower than 50 K, A~~ is
very small, and Ai has a typical value of some 10
s ' depending on the doping concentration of the
crystal.

The measurements have been interpreted' in
terms of different depolarization mechanisms. At
low temperatures the muonium relaxation is due to
the exchange interaction with paramagnetic dopant
atoms, while the strong increase of the relaxation
rate at high temperatures is attributed to either a
chemical reaction or a Raman process.

The existing data are too scarce to allow a sys-
tematic analysis in terms of the relaxation theory
discussed in this paper. The general features, how-
ever, agree with the behavior expected from our dis-
cussion. At low temperatures the correlation times
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are large (r, ) 10 s), and one is close to the static
limit where the longitudinal relaxation rate is zero
and the transverse rates are proportional to 5,„due
to the splitting of the frequencies (see Figs. 5 and 7).

For intermediate values of the correlation time
(10 "

& r, & 10 s), one expects a characteristic
field dependence of both longitudinal and transverse
relaxation rates (see Figs. 2—4). With decreasing r„
the ratio Az/A~~ decreases towards a value of 1.5 at-
tained in the limit of complete motional narrowing.
A decrease of this ratio with increasing temperature
has indeed been observed. ' We therefore suggest a
measurement of the relaxation rates as a function of
both the field and the temperature. This then would
allow one to make a direct comparison with our
model of relaxation and to extract the temperature
dependence of r, . The qualitative agreement be-
tween the existing data and our predictions is en-
couraging.

In conclusion, the application of the theory of
master equations for open systems to muonium in
solids leads to a general description of relaxation
phenomena. It has been shown that the model al-
lows one to study depolarization effects for arbitrary

correlation times going from the static limit to the
limit of motional narrowing. In the latter case, the
model of Ivanter and Smilga based on the
Wangsness-Bloch equations is recovered. The fact
that the dynamics of the spin system under con-
sideration cannot be separated from the relaxation
mechanism with the reservoir shows up in the field
dependence of the relaxation rates. Therefore, an
analysis of the field and temperature dependence of
the relaxation rates of both normal and anomalous
muonium in semiconductors with the help of the
formalism presented here allows one to extract in-
formation about the intrinsic relaxation times of the
host.
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