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The critical behavior of the three-state Potts model in two dimensions is investigated with the use
of the Monte Carlo renormalization group (MCRG), and the results are compared with conjectured
values as well as with other methods. Recent advances in the MCRG enable greatly improved con-
vergence, as well as greater insight into the structure of the renormalization transformation. The
introduction of a four-point interaction is used to control the chemical potential of effective vacan-
cies in a purely Potts Hamiltonian.

I. INTRODUCTION

A q-state Potts model' orders at low temperatures into
one of q phases related by global q-fold permutation sym-
metry. The q=3 Potts model in two dimensions (d=2)
attracted attention by the fact that its phase transition is
second order, in qualitative violation of classical
theory, which dictates a first-order transition with the oc-
currence of a third-order term in the free-energy function-
al. Subsequently, it was noted that inert gases epitaxially
adsorbed onto basal graphite, undergoing critical and tri-
critical phenomena, are realizations of the q= 3,d =2 Potts
model and of its extension by vacancies. A precise
specific-heat measurement' for helium on graphite yield-
ed an unusually large specific-heat exponent a which was

later confirmed by theory. This measurement, along with
various other information, led to a conjecture for the exact
critical exponents of q-state Potts models in two dimen-

sions, " later extended to tricritical exponents, ' and prov-
en in the critical branch. ' ' The exact solution' of the
hard-hexagon problem, with the q=3 Potts-ordering sym-

metry, also confirmed the critical conjecture.
Renormaliz ation-group (RG) studies of the critical
behavior of the q=3,d=2 Potts model have been carried
out using finite-cluster truncation, ' variational optimiza-
tion, ' ' and finite-size scaling. ' ' The Monte Carlo re-
normalization group (MCRG) provides an alternative
approach, which is highly accurate and flexible, unambi-

guously yielding many of the critical properties.
Recent advances in MCRG methods have greatly in-

creased the number of systems for which they can be suc-
cessfully used to calculate critical properties. In particu-
lar, two new features have made it possible to optimize the
convergence.

First, a method of determining the critical temperature
directly from the MCRG analysis has been developed,
without having to rely on any other method. This makes
it possible to introduce more parameters into the initial
Hamiltonian without loss of accuracy (Refs. 24, 25, 28,
36, 40, and 41).

The second improvement is more fundamental to the

general theory of the RG and arises from an improved
understanding of the effect of the renormalized transfor-
mation. It was obtained from calculations for the q-state
Potts model in two dimensions, ' in which the introduc-
tion of vacancies (an additional state, accounting for fluc-
tuations in the amplitude of the order parameter) into the
renormalized Hamiltonians enabled both first- and
second-order transitions to be described by real-space
truncation approximations. Later, it was recognized that
"effective vacancies" could also be described by four-spin
operators without introducing an extra state. Explicit
calculations for the q=4 Potts model showed that such
terms were important in the renormalized Hamiltonian
and could be exploited to obtain accurate estimates of the
critical exponents despite the difficulties caused by the
presence of a marginal operator.

In the following section, the basic equations of the
MCRG method will be summarized. The results for the
q=3 Potts model will be presented in Sec. III and dis-
cussed in Sec. IV.

II. MCRG FORMALISM

The operator on lattice site i will be denoted by e;. For
the q-state Potts model, ' o.; takes on integer values 1

through q and the Hamiltonian can be written as

a = pre.s. ,

where the S 's are the various combinations of the o s.
The nearest-neighbor (NN) Potts operator is simply

(2)

The block-spin renormalization transformation we have
used for the d=2 Potts model divides the square lattice
into 2&(2 blocks (scale factor b=2) and gives the block
spin o,' the value of a plurality of the spins in the block.
Ties are assigned to each of the spin values in question
with equal probability using a random-number generator.

The renormalized coupling constants are assumed to be
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analytic functions of the original coupling constants.
Linearizing, we write the RG transformation as

(K'"+"—K') = g Tng(Kp
' K—p), (3)

P Lattice size (L) 64 32 16

TABLE I. MC simulation data for MCRG calculations.
d=2,q=3 Potts model E=—1.0307, F=0.4. Data taken for
correlation functions every 10 MC steps per site.

where

ave'"+"aT
ave'"'

P
(4)

10' MC steps per site used
10 MC steps per site discarded

14
14

50
5

83
9

is found numerically by solving the set of chain rule equa-
tions

a( '"+") a '"+" a( '"+")
y ~ a y

gK(n) M 5K(n) gK(n+1)
P a P a

(5)

and the derivatives in Eq. (5) are obtained from Monte
Carlo correlation functions, using equations of the form

~(S(n+ i) ) = (s'"+"s'"')—(s'"+") (s'"')
g~(n)

= r P y P (6)

a(s'") ),
p

aEp(0)
5K' '

az"'
P

(7)

where I. and S refer to the large and small systems and
the derivatives are calculated in analogy with Eq. (6). To
find the condition of criticality, we used Eq. (7) to mini-
mize the differences in the correlation functions while

varying a single coupling constant.

The techniques for determining the critical point of a
general model developed from an approach introduced by
Wilson for the study of lattice gauge theories (Refs. 24,
25, 36, 40, and 41). The size effect is compensated by
simulating lattices differing by the scale factor b and
using the RG transformation to obtain different renormal-
ized Hamiltonians on the same-size lattice. A particularly
efficient procedure for calculating the differences in cou-
pling constants from differences in correlation functions is
to solve the set of linear equations

(S(n) ) (S(n —i) )

Eq. (7) to calculate the critical value of K for various fixed
values of F. It was shown that all simulations were con-
sistent with the critical exponents conjectured, but that the
convergence for F=0.4 was particularly rapid.

In the light of these results, we also concentrated our ef-
fort on F=0.4. An improved value for the nearest-
neighbor coupling, E = —1.0307, was taken from the re-
sults of the previous simulations at K = —1.032, compar-
ing 16)(16and 8)(8 lattices.

Table I contains data for the MC simulations of three
different lattices, with linear dimensions L=16, 32, and
64. In each case, the data were stored in about 100
separate groups and all aspects of the analysis were repeat-
ed for each of several subsets of the data to obtain esti-
mates of the statistical errors. The operators used in the
RG analysis of the MC data are given in Table II.

The correlation functions of the renormalized systems
are affected by both the change in the coupling constants
through renormalization and the change in system size. If
the generalized Hamiltonian we have used is really close
to the fixed point of the RG transformation, then the
Hamiltonian will remain nearly unchanged by the
transformation and the major effect on the correlation
functions comes from the change in lattice size. This im-
plies that systems reaching the same size after different
numbers of RG steps should show equal correlation func-
tions. Data testing this assumption are given in Table III.
Nearest-neighbor and vacancy correlation functions are
shown for each of the three lattices simulated after vari-

TABLE II. Coupling constants used in the RG analysis of
MC simulations of the d=2,q=3 Potts model.

III. GENERALIZED POTTS MODEL

We consider a general two-dimensional, three-state,
nearest-neighbor Potts model of the form

H =ESNN+FS„,

where the operator for nearest-neighbor coupling is de-
fined in Eq. (2) and the "vacancy" operator by sums over
plaquettes (plaq)

Nc

Even couplings
Description

Nearest neighbor (10)
"Vacancy" operator on elementary plaquette
Next-nearest neighbor (11)
"Crossed-product" operator
Third neighbor (20)
"Vacancy" operator on sublattice plaquette
Three-spin "vacancy" operator

s„=g (1 —5;J)(1—51 k)(1 —5k))(1 5( j) . —
plaq

(9) Odd couplings

Preliminary work on this model used MCRG methods
to map out the phase diagram. ' Fairly small lattices were
used for the MC simulations, the largest being 16&(16.
Comparisons were made with 8 X 8 and 4&(4 lattices using

Magnetic field
Three spins on a plaquette (00)-(10)-(11)
Three spins in a row (00)-(10)-(20)
Three spins at an angle (00)-(10)-(12)
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TABLE III. Nearest-neighbor and "vacancy" correlation functions for the d=2,q=3 Potts model as
a function of the renormalized lattice size and the linear dimension of the original lattice {L).
K = —1.0307, F=0.4.

Renormalized
lattice

64x 64

32 X 32

16X 16

8x8

4x4

2X2

0.412(1)
0.0159{1)
0.407(2)
0.0165(1)
0.383(3)
0.0155(2)
0.339(4)
0.0133(3)
0.270(6)
0.0104(5)

Original lattice size {L)
32

0.403(6)
0.0153{1)
0.389(2)
0.0156(1)
0.351(2)
0.0139(1)
0.283(4)
0.0110(2)
0.166(4)
0.0065{3)

16

0.383(1)
0.0143(1)
0.354(1)
0.0139{1)
0.288(2)
0.0114(1)
0.171(2)
0.068(1)

TABLE IV. Estimates of the deviation of the simulated cou-

pling constant from the true critical value for K when
K= —1.0307 with the value of F fixed at 0.4. 1=2,q=3 Potts
model. Data obtained by a least-squares fit to the differences in

seven calculated correlation functions. 2X2 RG block transfor-
mation.

N,
Lattice sizes being compared

64—32 32—16

0.0005(3)
0.0007(4)
0.0006(5)

0.0005(5)
0.0005(5)

ous numbers of renormalization steps. The data are
presented in such a way that all numbers in a given row
correspond to the same-size renormalized lattice and
would be equal if the original system were exactly at the
fixed point and there were no statistical errors. It can be
seen that the agreement is quite good, although there
seems to be a slight trend for the correlations to be weaker
as the number of RG steps increases. This effect is very
small in terms of the change implied in the initial value of
the critical coupling as shown in Table IV. On the basis
of this data, our best estimate for the critical value of E
would be —1.0313, although this change of less than
0.1% is within the statistical uncertainty and does not af-
fect our results.

Table V presents our MCRG data for the leading
thermal eigenvalue exponent yT. It should be remembered
that the RG analysis should give the correct critical ex-
ponents in the limit of many coupling constants {to
describe the eigenvectors correctly) and many RG itera-
tions {to get close to the fixed point). From the data it is
very easy to include sufficient coupling constants, and
there are no significant changes after taking first- and
second-neighbor coupling and the vacancy operator into
account. The size effect is also small. It only amounts to
about I /o between renormalized lattice sizes of 8X 8 and
16X16. Between 16)&16 and 32)(32 it is smaller than

N, Nc

1.143(3)
1.149(2)
1.175(2)
1.175(2)
1.176(2)
1.176(2)
1.176(2)

Lattice size (L)
32

1.137(1)
1.144(1)
1.174(1)
1.174(1)
1.174(2)
1.174(2)
1.175(2)

16

1.129{1)
1.136(1)
1.172(1)
1.172{1)
1.173{1)
1.173(1)
1.173(1)

1.168(3)
1.173(3)
1.188(3)
1.188(3)
1.189(3)
1.189(3)
1.189(3)

1.167(4)
1.174(4)
1.195(4)
1.194(4)
1.194(4)
1.193(5)
1.193(5)

1.159(1)
1.166(1)
1.189(1)
1.189(1)
1.190(1)
1.189(1)
1.188(1)

1.151(2)
1.158{2)
1.190(2)
1.188(2)
1.187(2)
1.184(3)
1.183(3)

1.144(2)
1.152(2)
1;185{2)
1.184(2)
1.183(1)
1.180(1)
1 ~ 179(1)

1.139(2)
1.147(2)
1.213(2)
1.211(2)

1.171(8)
1.177(8)
1.211(8)
1.210(9)
1.203(16)
1.198(16)
1.197(16)

1.142{4)
1.149(4)
1.216(4)
1.214(4)

TABLE V. Critical eigenvalue exponent yT (exact value is
1.200) for the d=2,q=3 Potts model as a function of the num-

ber of RG iterations (N, ), the number of coupling constants in

the RG analysis (N, ), and the linear dimension of the lattice
(L). 2X2 block transformation.
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TABLE VI. Critical eigenvalue exponent yH (exact value is
1.86667) for the d=2,q=3 Potts model as a function of the
number of RG iterations (N, ), the number of coupling constants
in the RG analysis (N, ), and the linear dimension of the lattice
(L). 2X2 RG block transformation.

TABLE VIII. Critical eigenvalue exponent yH& (exact value is

0.667) for the d=2,q=3 Potts model as a function of the num-

ber of RG iterations (N„), the number of coupling constants in

the RG analysis (N, ), and the linear dimension of the lattice

(L). 2X2 RG block transformation.

N, N,

1.8699(2)
1.8697(1)
1.8694(1)
1.8694(1)

1.8679(4)
1.8665(3)
1.8663(3)
1.8663(3)

1.8690(4)
1.8664(3)
1.8661(3)
1.8660(4)

1.8735(10)
1.8695(5)
1.8699(5)
1.8688(8)

Lattice size (L)
32

1 ~ 8701(1)
1.8694(1)
1.8690(1)
1.8690(1)

1.8683(3)
1.8658(2)
1.8654(2)
1.8654(2)

1.8700(6)
1.8651(4)
1.8645(4)
1.8645(4)

1.872(2)
1.865(2)
1.864(2)

16

1.8705(2)
1.8689(2)
1.8683(2)
1.8683(2)

1.8684(3)
1.8643(3)
1.8636(3)
1.8636(2)

1.8696(6)
1.8626(7)
1.8613(7)

N, N,

0.60(1)
0.68(1)
0.68(1)

0.61(1)
0.68(2)
0.68(2)

0.59(2)
0.66(2)
0.66(2)

0.57(2)
0.66(3)
0.65(3)

Lattice size (L)
32

0.598(4)
0.683(4)
0.684(6)

0.613(4)
0.688(3)
0.685(3)

0.592(4)
0.671(4)
0.660(5)

0.591(9)
0.703(9)

16

0.595(1)
0.682(1)
0.682(2)

0.606(4)
0.684(4)
0.675(5)

0.583(6)
0.697(5)

TABLE VII. Estimates of the exponent for the d=2,q=3
Potts model from finite-size scaling on renormalized lattices.
The exact value is g=0.26667. Values of g obtained by com-
parison of renormalized lattices (n) and (n —I) from a single
MC simulation as a function of the size of the original lattice
(L). 2 X2 RG block transformation.

0.260
0.263
0.257
0.239

Lattice size (L)
32

0.258
0.259
0.247
0.218

16

0.254
0.249
0.223

the statistical errors. This means that the systematic error
due to the size effect is negligible for the first two RG
transformations of the 32X32 lattice and the first three
transformations of the 64X64 lattice. Even the first
transformation is only 2% below the conjectured value of
yr ——1.2 and the third iteration is within 0.6%. This is a
substantial improvement over the convergence from the
nearest-neighbor Hamiltonian, where the first three RG
iterations gave values of 1.11, 1.14, and 1.17 for yr. '

The convergence of the leading magnetic eigenvalue is
even better, as shown in Table VI. The statistical errors
are much smaller than for yr for the usual reason that the
expectation value of the magnetization vanishes on finite
lattices, so that the second term in Eq. (6) can be ignored.

Since the statistical errors are about 0.0003, an apparent
size effect of about 0.0007 or 0.0009 between renormalized
lattice sizes of 8X8 and 16X16 might be real (compare
the first transformations starting from the 32X32 and
16X16 lattices and compare the second transformations
between the 64X64 and 32X32 lattices). The 64)&64 lat-
tice then gives the sequence 1.8694(1), 1.8663(3), and
1.8660(4), where the last number might have been
depressed by 0.0007 due to the size effect. Not only do
the second and third iterations agree, indicating conver-
gence, but the deviation from the conjectured ' then
proven ' value of yH ———'„——1.86667 is less than 0.04%
(even without correcting for a finite-size effect in the third
iteration). The distinction between the value of —'„' for the
q=3 Potts model and the value of —"

, =1.875 for the q=2
Potts model (Ising model) is therefore clearly demonstrat-
ed, even though it is only 0.45%%uo.

The accuracy for yH is actually about the same as that
achieved by the finite-size scale method, working with in-
finite strips of finite width. ' ' In this context, it is in-
teresting to check the results of a finite-size scaling calcu-
1ation using the same MC data, as shown in Table VII.
These results for the exponent i) =d + 2 —2yH are less sa-
tisfactory than either the MCRG or finite-strip results, al-
though still consistent with the conjectured g=0.26667.
The dependence on lattice size is too strong to produce
highly accurate values.

An advantage of the MCRG method is that it produces
estimates automatically for several eigenvalues from the
same MC simulation. In particular, a second relevant
magnetic eigenvalue appeared in these calculations, as it
had previously in the data of Rebbi and Swendsen. The
two sets of values are consistent, although our conver-
gence is much better and our statistical errors are much
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TABLE IX. Critical eigenvalue exponent yz2 for the d=2,q=3 Potts model as a function of the
number of RG iterations (N, ), the number of coupling constants in the RG analysis (N, ), and the 1inear
dimension of the lattice (L). 2)(2 RG block transformation.

N„ N,

—2.11(4)
—2.04(6)
—1.46(2)
—1.00(5)
—1.15(5)
—0.87(3)

Lattice size (L)
32

—2.09(2)
—2.00(2)
—1.47(2)
—1.03(2}
—1.17(2)
—0.84(1)

16

—2.13(2)
1.97(2)

—1.46(1)
—1.04(2)
—1.15(1)
—0.83(1)

—2.13(3)
—2.32(4)
—1.50(3)
—1.08(4)
—1.19(3)
—0.86(2)

—2.16(2)
—2.32(3)
—1.49(3)
—1.11(3)
—1.18(2)
—0.88(1)

—2.11(4)
—2.20(4)
—1.41(2)
—1.37(2)
—1.22(1)
—0.87(1)

—2.14(8)
—2.30(12)
—1.56(4)
—1.13(4)
—1.17(2)
—0.93(3)

—2.13(4)
—2.23(4)
—1.42(3)
—1.37(3)
—1.22(2)
—0.89(2)

—2.11(8)
—2.22(9)
—1.42(6)
—1.31(7)
—1.17(5)
—0.86(5)

smaller, as shown in Table VIII. The size effect seems to
be negligible within the statistical errors and all the data
are consistent with a value of yH2 of about 0.68, in very
satisfactory agreement with the conjectured s and recently
derived ' value of —', . Since we only used four interactions

with odd symmetry in our analysis, we checked the results

by reanalyzing the data using repeated RG transforma-
tions as single transformations with scale factor 2 . No
systematic changes were found.

We have also investigated the second thermal eigen-
value, with somewhat disappointing results. Although
both the statistical errors and the size dependence are fair-

ly small, there is a very strong dependence on the number
of interactions used in the RG analysis, as shown in Table
IX. Repetition of the analysis, treating two, three, and
four iterations of the RG transformation as a single
transformation confirmed the view that additional interac-
tions played an important role, as demonstrated in Table
X for data for the 64&(64 lattice. The values for the re-
peated transformation are systematically smaller than the
average of those for the single transformations, which is
the typical warning signal that more couplings are needed.
It is possible that a good determination of this eigenvalue

could be made from any analysis of an extended Potts
model, including vacancy states explicitly in the simula-
tion. Such a simulation should also be able to investigate
"tricritical" behavior.

IV. CONCLUSIONS

Rebbi and Swendsen ' have considered the nearest-
neighbor q=3 Potts model as part of a general study of
the q-state models. They performed fairly long simula-
tions (5 X 10 MC steps per site) on large (96X 128) lattices
at the exact critical temperature, which is known from du-

ality. The results were not inconsistent with the expected
thermal eigenvalue exponent, yT ——1.2, but the conver-
gence was very slow. The magnetic eigenvalue exponent
also came rather close to the currently accepted value of
1.8667, even though a value of 1.875 had been expected at
the time.

The present calculation dramatically improves MCRG
convergence. This is because the fixed-point Hamiltonian
is readily approached by varying the field coupling to the
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TABLE X. Critical eigenvalue exponent y» for the d =2,q =3 Potts model as a function of the
number of RG iterations (N, ), the number of coupling constants in the RG analysis (N, ), and the
power of the scale factor m. 2)& 2 RG block transformation on a 64)(64 lattice.

N, N,
m (scale factor, 2 )

2 3

—2.11(4)
—2.04(6)
—1.46(2)
—1.00(5)
—1.15(5)
—0.87(3)

—2.13(3)
—2.32(4)
—1.50(3)
—1.08(4)
—1.19(3)
—0.86(2)

—1.70(13)
—1.75(10)
—1.22(5)
—1.06(5)
—1.00(8)
—0.83(3)

—1.94(25)
—2.09(13)
—1.22(6)
—1.10(6)
—1.05(7)
—0.84(4)

—1.76(19)
—1.50(18)
—1.53(10)
—1.16(13)
—0.99(7)
—0.71(6)

—1.70(20)
—1.67(16)
—1.00(12)
—0.89(11)
—0.82(9)
—0.81(9)

—1.87(15)
—1.19(11)
—1.03(9)
—1.06(14)
—0.97(5)
—0.66(7)

—2.14(8)
—2.30(12)
—1.46(4)
—1.13(4)
—1.17(2)
—0.93(3)

—1.71(5)
—1.68(12)
—1.14(7)
—1.18(9)
—1.12(9)
—0.85(7)

—2.11(8)
—2.22(9)
—1.42(6)
—1.31(7)
—1.17(5)
—0.86(5)

vacancy operator. Thus the presence of effective
vacancie~fiuctuations in the amplitude of the order
parameter —is indicated in the asymptotic critical
behavior. ' For q=3 here, these effective vacancies affect
the quantitative critical pmperties. For higher q (q &4),
they qualitatively affect the transition by changing it to
first order. Our present calculation, in addition to yield-

ing very accurate critical exponents for the q=3,d=2
Potts model, illustrates the essential symbiosis between the
quantitatively powerful MCRG procedure and the quali-

tative physical understanding of phase-transition mecha-
nisms.
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