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The soliton response occurring at elevated temperatures in the one-dimensional Ising-type antifer-

romagnet CsCoBr3 has been studied by neutron scattering. An inelastic peak is observed and identi-

fied as the Villain mode arising from the propagation of domain walls. Calculations have been

made of the response from domain-wall —pair states and an extension of the first-order perturbation

theory derived by Ishimura and Shiba. A reasonable account is obtained of the observed polariza-

tion and intensity of the scattering. The effect of collisions is seen to be increasingly important as

the temperature is raised. The response near the zone center has been compared with the

ideal —soliton-gas theory of Maki. The theoretical prediction, which has the form of a Lorentzian

raised to the power 2, gives a good qualitative description of the temperature dependence of the in-

tensity and width of the scattering.

I. INTRODUCTION

It is now well established that solitons play an impor-
tant role in the dynamics of one-dimensional (1D}magnet-
ic systems. For example, the Hamiltonian of a chain of
classical planar spins in a magnetic field can be reduced to
a sine Gordon Hamiltonian. ' The resulting solitons lead
to a central peak which has been observed in neutron
scattering experiments in ferromagnetic (CsNiFi) and an-
tiferromagnetic [(CH3)4NMnCl& (TMMC}] planar spin
chains. A quantum system of particular interest where
solitons can be observed in the absence of a magnetic field
is the S= —, Ising-type antiferromagnetic chain. At low

temperatures the spin excitations consist predominantly of
pairs of domain walls separated by a lattice constant; these
can be regarded as solitons of unit length. In addition, as
first predicted by Villain, domain walls may be thermally
excited and should lead to a low-frequency component of
the longitudinal neutron scattering. The scattering ex-
tends to a frequency where a square-root singularity
occurs and which obeys a sinusoidal dispersion law. The
existence of the central component in the scattering was
noted in neutron experiments on the 1D magnet CsCoC13,
and in CsCoBrs (Ref. 6) the well-defined inelastic peak
that corresponds to the Villain mode was observed for the
first time. Shiba and Adachi have shown how propaga-
ting domain walls can be studied using ESR as confirmed
by experiment on CsCoC13. This work contains a com-
plete account of the CsCoBri experiments briefiy reported
above. In addition, new calculations of S(Q,co) for the 1D

Ising-type antiferromagnet are presented.
Ishimura and Shiba (IS) have calculated the T=O

spin-wave response of the 1D Ising-type antiferromagnet

by considering domain-wall —pair states, or solitons, of all

lengths. As shown below the perturbation theory from
the Ising limit can be extended to finite temperature to
calculate both the longitudinal and transverse "soliton"
response. The calculation is complementary to that of
Villain, and has the advantage of providing a unified
description of the spin-wave and soliton scattering. It il-
luminates the connection between the single —domain-wall
description of Villain and the domain-wall —pair descrip-
tion of Ishimura and Shiba.

The perturbation theory described above is valid for
wave vectors near the zone boundary. Recently Maki'
has suggested that near the antiferromagnetic zone center
(

~ Q n~ ((n—), the long.itudinal response of the Ising-
type antiferromagnetic chain can be described by consider-
ing an ideal gas of solitons. The experiinental results on
CsCoBr3 provide evidence for such ideal-gas behavior.

The paper is organized in the following manner: Sec-
tion II contains the theoretical derivation of the soliton
response. Next, the experiment is described. In Sec. IV
the results are compared with theory and discussed in de-
tail.

II. THEORY

The magnetic component of the inelastic neutron
scattering from a 1D system of localized spins is deter-
mined by the dynamical spin-correlation function,
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A propagating domain wall in a strongly Ising-type
chain can be called a soliton in the sense that it moves
with a constant velocity and shape and connects two de-

generate ground states. ' It is not a sine Gordon soliton
like those that give rise to a central component in 10 pla-
nar spin systems. ' Villain calculated the longitudinal
correlation function S (Q, a?) that gives the neutron
scattering from states consisting of a single, thermally ex-
cited domain wall. Such single —domain-wall excited
states can only occur in open-ended chains of spins.

For a chain with periodic boundary conditions, the
lowest-lying excitations will occur close to the Ising ener-

gy 2J. The relevant excited states can be obtained from a
Neel state by flipping all spins in a block of v adjacent
sites so as to yield a domain-wall —pair state as shown in

Fig. 2. When the number of spins E is even, the Neel
state has a total z component of spin Sz ——0 and the
domain-wall —pair states can have Sq ——0, +1. As shown
below the scattering from thermally excited dotnain-
wall —pair states has the same form as the
single —domain-wall scattering calculated by Villain. For
this reason, and because the disturbance is the natural one
under periodic boundary conditions, in this paper we shall

refer to the domain-wall —pair states as solitons.
In analogy to the method of IS (Ref. 9) one can choose

a set of basis states corresponding to domain-wall pairs
propagating with wave vector Q. For periodic boundary
conditions and an even number of spins Xp&1 one can
write for states of Sf=+ 1 .(odd v)

S (Q, a?) = f e ' '(S {?(0)S{?(t)&, (2.1)

where a=x,y,z and S{?=N '~ g„e'~'S, is the Fourier
transform at wave-vector transfer Q along the chains of
the spin distribution over the sites r. If the eigenstates of
the system

I E; & and the matrix elements between thetn
are known exactly, or in some approximation, one can
write

s-(Q,~)=z '(P)-g ~
' '

I «~ Is Q IEt& I'

(2.2)y 5(ro E? +—E ) ),

where p= I/kt? T and Z (p) = g~, e

Consider the exchange Hamiltonian of the S = —,
'

Ising-

type antiferromagnet

H =2J g S,'S + ( +2' g (S;"S,"+ t +SfS~+, ), (2.3)

where e lies between 0 and 1.
At low temperatures the effective S = —,

' Hamiltonian
of the CsCoX3 salts should also include" a term
h g,. ( —1)'S,' that describes an effective field It that
arises from both the exchange mixing of Co + single-ion
levels and the interchain interactions. At elevated tem-
peratures this term has been shown to be unimportant"
and is therefore ignored in what follows.

The ground state of H is doubly degenerate and con-
sists of the two Neel states

I
N& & and

I
Nz & related by a

spin reversal at every site. Consider a state
I

n & where the
two parts of the chain are aligned in the ground configu-
rations

I
Nt & and

I
N? & separated by a domain wall be-

tween spins n and n + 1 (Fig. 1). The Ising energy of this
state relative to the Neel state is given by J. When the
term H "~ is included, the state

I
n & is coupled to states

I

n+2&. As shown by Villain, to first order in e the
eigenstates are given by

1/2

Iv Q&o=
2

&~- I&/2

y ge' SJ+ p (S?+p~ )SJ++2~)
I
N, & .

J m=1

(2.6)

I
Q&=N-'»y "{-'"I.&,

The Sz- ———1 states are defined in an analogous fashion.
There are two distinct types of Sr =0 (even v) states:

(2.4)

a
V{?= E{2———4' sin2Q .

a
(2.5)

with E{?——J+2' cos2Q.
The state

I Q& corresponds to a domain wall propa-
gating along the chain with a characteristic momentum Q.
The velocity of a wall is given by

2
v, Q&i=—

'1»
Iv Q&z=—2

IN

v/2 —1

g S,-„.S,+„.„ IN, &,
J m=0

(2.7)

v/2 —I

g S,+, S,-„.„ IN, &.
J m=0

T J J 1' J, 1' J T J 1' J, T ( n)
'

T J T J J 1' J T J 1' J 1'
) n+ 2)

TJTJTJJTJTJT(n+4)
T J, T J T J

'I' J J, 1' J T i n+ 6)
FIG. l. Antiferromagnetic domain walls. The state

I
n )

with a wa11 at position n is coupled to the states
I
n+2).

Within the restricted space consisting only of the
domain-wall —pair (DWP) states, the matrix elements of H
within each of the above types of states are given by

2tQ2 I I 1 Ql &= {?,{? ( V, , V, + {?, V, , V, —2

+ V{'? 6„, „,+p) (2.8)

—2igI
where V{? ——eJ(1+e ). Here Q~, Qz correspond to

the initial and final wave vectors and, since the matrix ele-
ments do not depend on the value of Sz, the external label
on the state vectors has been dropped.

Diagonalizing Eq. (2.8) corresponds to first-order per-
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thtl t4 tlt4 Neel State S T
=0

0 4 0 4 t[%]t 0 0 0 =
I S, = +

I

f4f4[41']%4%4 v=2 Sz, = 0
~4~~[~~~]»~ .=~ S, =-i

FIG. 2. Examples of domain-wa11 —pair (D%'P) states.
Domains of length v flipped from the Neel state of ST——0 can
have ST ——+1 for odd v and ST——0 for even v.

K
UJ
z.'
LIJ

2J(l+ 2e)

2J

2J(I- 2E')

I

7r/2

I8Q& =—2

for odd v, and

' 1/2

v odd

ei8(v+1)/2

' 1/2
2

v even

for even v, with H
I
8,Q ) =E~

I
8,Q ),

i Hv/2

E~=2J[1+2ecosg cos(g —8)] . (2.9)

In the limit %~op the eigenvalues form a continuum.
The exact form of the spectrum has been calculated by
Johnson et a1. ' The spectrum to first order in e is depict-
ed in Fig. 3. We note that 8 plays the role of a pseudo-
wave-vector which modulates the length v of the domains
in each state.

In analogy to Eq. (2.5), one can define a velocity for the
propagation of a domain-wall pair in the state

I 8Q ) as

turbation theory on the Hamiltonian Eq. (2.3), treating
H~ as a perturbation. As pointed out by IS, for a given
value of Q~ the matrix elements of Eq. (2.8) are equivalent
to those of a tight-binding model with free ends, where the
nearest-neighbor transfer integral is V~ . For the intra-

1

band problem considered here, the boundary condition is

unimportant. However, the condition is important for the
calculation of the T=O spin-wave response, which in-

volves interband transitions, as explained more fully in

Appendix I.
To proceed further we consider periodic boundary con-

ditions. For large N the eigenstates of Eqs. (2.6) and (2.7)
are now given as

(2.10)Vs|I
—— E~ —4eJ s——in(2Q —8} .

Bg

The T=O spin-wave response due to transitions from

the ground state to the continuum of DWP states has been

calculated by IS. The resulting continuum of scattering

near co=2J has been observed in experiments on CsCoC13

(Refs. 5 and 14—16) and CsCoBr3." We refer to this

spectrum as the spin-wave response. The spin-wave exci-
tation thus produced is related to the Neel state by a single

spin fiip if we ignore the weak admixture of the
three —spin-fiip state. The state reached in a spin-wave

excitation therefore consists largely of a domain-wall pair
of unit length. These solitons of unit length represent

only a fraction of order 1/N of the solitons of all lengths

that occur in the 2$ manifold. The difference between the
spin-wave response and the soliton response arising from

the intraband transitions is illustrated in Fig. 4.
When the DWP states are thermally excited there will

be a low-frequency contribution to the magnetic response

from transitions within the band of excited states. Longi-

tudinal response arises from transitions with MT ——0, and

transverse response has Mr =+1. The intensity of such

transitions taking the system from one DWP state to
another will be called the soliton response. It involves ini-

tial soliton states of all lengths. From Eqs. (2.2) and (2.8)

the soliton response can be written as

WAVE VECTOR

FIG. 3. Excitation continuum. The upper and lower bounds

are given by 21(1+2'cosQ}.

s (Q,~)= z g e "I(8„Q,Is(I I8„Q, & I' s(~ —E,+E,),
e, ,e,,

(2.11}

s «~)= z 2 ~ '(lo«»gzIstI I8i gi&iI'+10«2Q~Is~ I8i gi&~I'@(~—E~+E }
e).82,

Q) Q2

(2.12)

The matrix elements between the basis states are
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o& 2 Q2 I g I » Q& &o=1,2&v2 Q2 I ~g I v& Qt &i,2=5...,

N
4

' 1/2 ' 1/2

6 6 — — 6
1

Q2 Qi Q& ~ Q2 Q1+Q —~

sinI v)[(Q —m. )/2]I
X exp ji [(v~ —1)/2][(Q —n. )/2] I

and for v2 odd, v~ even,

(2.13)

1
0&v2 Q2 I ~g I

vi Qi &1 =5g, ,g, +g

1/2
—i(Q)+g) ig)

(e 5„„,+e 5„,„,~)),

+ 1
0&v2&Q2 I ~g I vl&Q1 &2 5g2, g~+g

1/2
iQ(v) —1) igv~

(e 5„„, )+e 5, „,~() .

Ignoring the special points Q =m. and Q=O,

g+5
(2.14)

and

Io&~ Q I~g I~ Q & I'= ~[1+ o (2Q +Q —~ )]5, ,5g, ,g, g

I o&~2Q2 I ~g I ~]Qt &2 I
= [1+cos(Q+( &)]5e2,e)+2g5g2, g)+g '2 2

(2.15)

3.0
O
(f)

z'

2.0

CI

O
CC
(3

1.0—
0
Q3

CL
UJ
z,'

pp&ls
0

I ( )

ONE- DI IVIENSIONAL

ISING-LIKE ANTIFERRO-
MAGNET

I I

w/4 m'/2 3m/y

O'AVE VECTOR

SINGLE—DOMAIN-WALL STATES

I ~ K I S o IK) I

DOMAIN-WALL —PAIR STATES

I (K",K"'I $' I K, K ) I

K

OR

FIG. 4. Transitions contributing to the spin-wave and soliton
response. Spin-wave response arises from transitions from the
ground state to the band of first excited states. Soliton response
arises from transitions within the band of excited states. The
energy gap implies the response will be thermally activated.

FIG. 5. Selection rules for states with a single domain wall
and domain-wall —pair states. The straight lines represent prop-
agating domain-wall states and the wavy lines represent S~.
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The squared matrix elements show that to first order in

e, transitions contributing to the dynamic response have
selection rules for two types of "momentum" transfer.
The momentum Ql of a domain of given length v propa-
gating along the chain is changed by Q (Q —m for longitu-
dinal response). Also, the pseudomomentum 8 describing
a domain changing in length either remains unchanged or
changes by 2Q. The selection rule for 8 leads to a square-
root singularity in the response.

It is instructive to compare the results above with those
expected for states with a single domain wall such as those
considered by Villain. A single domain wall of momen-
tum E is coupled by S~ to a state with momentum
K'=K+Q. Allowing for a proper normalization of the

states, the domain-wall —pair eigenstate
l
8,Q ) can be

written as a direct product of two single —domain-wall

states lK) lK')—:lK,K') where Q =K+K' and 8=2K'.
The selection rules for 8 and Q show that

l
K,K' ) is cou-

pled by Sg only to the states
l
K +Q,K') and

l
K,K'+Q) as illustrated schematically in Fig. 5. This

shows that the calculation based only on domain-

wall —pair states completely ignores all effects of collisions
between domain walls, and is therefore equivalent to the
Villain calculation. It is expected that any calculation in
which the number of domain walls is conserved should

yield the same result. Using (2.14) and (2.15) the soliton
response can be written as

—2pJ —pe&)
S (Q,ca)=, g e [5(~ co„)+—5(co —coq)],

Z(P)Ncos (Ql2) ~, e,

S (Q, ca)= g e '[[1+cos(2Q&+Q —8&)]5(co—coa)+[1+cos(Qi+8i)]5(c0—coq)],
2e-P' -p,
Z(P)N g e

where

(2.16}

c0, =4eJ cosQ, cos(Q, —8,},
g =4eJcos(Q| —Q —81)cos(Q|+Q)—coi,

c0q =4eJ cos(Q|+Q —8, }cos(Q,+Q) —c0, .

As N~ 00 the sums are replaced by integrals,

f d8i, Q f dQi
~s

leading to

C —2PJ

Z(P)cos (Q/2)
2C'e-'

S (Q, co) = [Ii(Q,co)+Ip(Q, ~)],

(2.17}

where C' is a constant and
7I' pf0

I 1(Q,co) = f f e '[5(c0—co& )+5(c0—co+)]d8idQ&,
1T pg)

I2(Q, co) = e '[cos(2Q|+ Q —8i )5(co —cozi+cos(Q |+ 8& )5(co—co& )]d8&dQ &
.

The integrals are evaluated as

(2.18)

Il(Q, ~)=
8nIO(2PeJ)e cosh —cotQ(a)g —a) )'

2

(
2 2)1/2

COg —CO

0 for la)
l

&a)g

for l col (cog,

I2(Q, co) = 8rcIO(2peJ—)e~i
sinh —cotQ(co~ —co )'i

2
for

l
co

l
(cipg,

0 for l col &cog (2.19)
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where Io(x) is the modified Bessel function and co(2 =4eJ sing. Using Eqs. (2.17) and (2.19}we find the contribution to
the soliton scattering from transitions within the first band of excited states is

and

S (Q, co) =

Ce +In(2PeJ)e~~ cosh —cotg(co& —co )'
2

Z(P)cos (Q/2)(cog —co )'

(
2 2)1/2

COg —CO

cosh —cotg (co(2 —co )'
2Ce +Io(2PeJ)e~

Z(P)

sinh P ' 'Q (a~' —a~')'"
2 sing

I ~(21
for lco

l
(cog . (2.20)

S =S =0 for
l

co
l &co&, where C is a constant. The

result for S (Q, co) has the same spectral response as that
obtained by Villain. The result for S (Q,co) is new.

Since the calculation above neglects the effects of col-
lisions it is expected that the spectral response will be the
same as that arising from states with only one domain
wall. With the present derivation, however, the soliton
response and the spin-wave response can be understood in
a unified way. The spin-wave response arises from transi-
tions from the ground state to those members of the band
of first excited states which consist primarily of linear
combinations of domain-wall —pair states of unit length.
The soliton scattering arises from transitions within the
thermally populated band of excited domain-wall —pair
states of any length; in the process the soliton changed its
length by + 1 or 0.

Equation (2.20) for the soliton response shows that both
S (Q, co) and S (g, co) have square-root singularities at
the cutoff frequency cocci. Figure 6 shows the calculated
line shape of a neutron scattering experiment at Q =n/2
where S (Q,co)=$ (Q,co). The observed scattering is
proportional to the convolution of S (g, co) with the
spectrometer resolution function,

weakly dependent on Q. These predictions can be checked
experimentally.

As discussed by Villain, the square-root singularities are
expected to be rounded by collisions. This corresponds to
including higher-order terms in the perturbation theory
presented above. The collective mode at co~ has strong
scattering because of the selection rules for the pseu-
domomentum 0. Were it not for the fact that the 8 opera-

tor commutes with H, the square-root singularities would
be broadened. Indeed, one expects that if higher-order
terms are included, the energy eigenstates will no longer
be characterized by 0. An illustrative example where the

eigenstates are no longer states of constant 8 is when H in-

cludes a uniform staggered field. The eigenstates then
form the "Zeeman ladder" discussed by Shiba' and the
low-frequency scattering appearing at elevated tempera-
tures corresponds to transitions between states in the
ladder. Figure 7 shows a calculation of S (Q, co) done by
numerically diagonalizing the Hamiltonian equation (2.8)
for an array of 40 spins. The resulting histograms have
been convoluted with a Gaussian resolution of full width
at half maximum (FWHM) of 0.18 THz to produce the
line shapes shown. Qualitatively it is apparent that the

I(g,ai) oc 1 S(g,co')R (co co')dco' . — (2.21)

Here a Gaussian was used to simulate frequency resolu-
tion. Note the well-defined peak expected at co=co&, the
Villain mode frequency.

The soliton scattering Eq. (2.20) has other characteristic
behavior. The scattering is thermally activated. Note
that, although the expression (2.20} gives the soliton
scattering within the manifold at co=2J and has a tem-
perature factor of the form e +/Z(p), the observed
scattering intensity is the sum of scattering due to transi-
tions within all of the excited-state manifolds. For open
chains or rings at low temperatures the leading-order tem-
perature dependence is then expected to be proportional to
e independent of the boundary condition. Our experi-
ments are consistent with this result.

Another feature of the response is that the integrated
intensity of the longitudinal component diverges as Q~a. ,
while the intensity of the transverse component is only

s (Q, u)
0 = vr/2

k, T/~J = 5.&6

0
FREQUENCY

FIG. 6. Line shape due to soliton scattering at the zone boun-

dary Q =n./2; co& ——4eJ sing is the Villain mode frequency as
described in the text.
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} I

! (b) h/J = 0.05

(o j h/J = 0,00

CL
(Q, u))

7r/2
0.137
/J = 064

LLI

Z

0.00 0.25 0.50
(u/ J

I

0.75

FIG. 7. Numerical calculation of S (Q, co) as described in the
text. (a) No staggered field. (b) In the presence of the Uniform

staggered field h /J=0. 05.

extra term h g,.( —1)'S,* causes the main Villain mode

peak to broaden considerably and shifts more spectral
weight to lower frequencies. The intensity is also dramati-
cally reduced. This may explain why the soliton scatter-
ing was not observed in an early experiment at T=Tz

I

where the interchain field is large [J. Rossat-Mignod,
(private communication)].

The theory discussed so far is not expected to be valid
very near to a zone center. At the zone center the time
between collisions of moving domain walls is much short-
er than I/co~, the characteristic scattering frequency.

n, = , e +Ip(2PeJ), —

and the thermal soliton velocity as

4 sinh(2PeI)
irPIp(2'J)

(2.22)

(2.23)

When ! Q rr! ((ir the—longitudinal correlation function
can be written approximately as

S (Q,co)=
4mn,

2 2 CO

(Q n) +4n, +-
Up Vp

' 2 —3/2

(2.24)

A. Long wavelengths

Maki'p discussed the longitudinal scattering near Q =n,
and suggested that, if the system is approximated by a P
model, the correlation functions may be calculated in the
ideal —soliton-gas limit.

Using the Villain expression for the energy of a soliton
Maki' calculated the total soliton density as

The line shape is similar to that describing the soliton
scattering of a classical (1D) planar antiferromagnet in a
magnetic field. The characteristic temperature depen-
dence and non-Lorentzian line shape can also be checked
experimentally on the Ising-type antiferromagnet near the
antiferromagnetic zone center.

III. EXPERIMENT

+(1+cos 4)S (Q, co)], (3.1)

where 2Q/c= a"z—:a cos4, f(Ic) is the magnetic form
factor, and V'- is the effective volume correcting for self-

absorption of neutrons.
The strategy for observing the low-frequency magnetic

scattering was as follows. Constant ~ scans were per-
formed at various wave vectors at a temperature of 5 K,
where the scattering is dominated by the nuclear in-
coherent scattering (NIS) centered at co=0, plus a fast
neutron background extending to higher frequencies. The
intensity of the NIS at a given wave vector lc was taken as
a measure of V'-„. The same scan was repeated at higher
temperatures, and the smoothed 5-K background was sub-
tracted from the data. The strong intensity of the NIS at
co=0 restricted the measurements of the thermally ac-
tivated magnetic scattering to frequencies greater than
0.15 THz. Figure 8 shows some typical raw data scans.
The lines have been drawn as guides to the eye. The in-

tensity increases markedly at elevated temperatures be-
cause of the thermal excitation of domain-wall pairs. An
inelastic peak is observed at 50 K. By 80 K the region
below the peak has filled in as the domain-wall density is
now high enough for collisions to take place. A summary
of some of the scans performed and the effective volumes
measured is contained in Table I.

IV. RESULTS AND DISCUSSION

Some 50-K data from which the 5-K smoothed back-
ground has been subtracted are shown in Figs. 9—11. The
scattering profiles show a definite peak whose frequency
decreases from its zone-boundary value of 0.89+0.07
THz. If the peak is present in the (1.2,0,0.93) scan, the

The single crystal of CsCoBr3 was described previous-

ly." CsCoBr3 has a hexagonal structure c=6.261 A,
a =7.445 A, with chains of magnetic Co + ions along the
c axis. There are two Co + ions per unit cell, and above
the 3D ordering temperature (T~, ——28.3 K) (Ref. 18) the

cobalt spins lie predominantly along the chain direction.
The CsCoBr& crystal was aligned so that its (h, o, l)

plane lay in the scattering plane of the N5 triple-axis spec-
trometer at the NRU reactor, Chalk River. A neutron
beam reflected from a Si(111) monochromator and col-
limated to 0.6' was scattered by the specimen through a
0.7' collimator for analysis by a Si(111)analyzer operating
at fixed scattered-neutron energy E]. For most scans
E&/h was 3 THz.

For a 1D system with an easy axis in the c direction, the
magnetic scattering intensity is given by

I(7l, co) ~ V'-„f(a ) [sin 4S (Q, co)
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TABLE I. Information used to analyze the soliton scattering into transverse and longitudinal components according to Eq. (3.1).
The symbols are defined in the text.

Wave-vector
transfer

(0,0, 1.07)
(0,0,1.2)
(0',0,'1.3)
(0,0,1.4)

(0.3,0,1.5)

(1.2,0,0.5)
(1.2,0,0.6)
(1.2,0,0.7)
(1.2,0,0.8)
(1.2,0,0.93)
(2.2,0,0.6)
(2.2,0,0.8)

Effective
volume

0.94
1.06
1.16
1.05
1.00
1.56
1.40
1.36
1.37
1.30
1 ~ 19
1.25

(Form
factor)'

f(Pc}'

0.88
0.85
0.83
0.81
0.78
0.84
0.83
0.82
0.80
0.78
0.56
0.56

Transverse
strength

1+cos'4

2.00
2.00
2.00
2.00
1.96
1.16
1.21
1.27
1.32
1.42
1.07
1.12

Longitudinal
strength

sin 4
0.00
0.00
0.00
0.00
0.04
0.84
0.79
0.73
0.68
0.588
0.93
0.88

Temperatures
of

measurements

T (K)

5,80
5,50, 80
5,80
5,80
5,50, 80
5,35, 50, 80
5,50, 80
5,35,50, 80
5,50, 80
5,35, 50, 80
5,80
5,80

frequency is too low to be detected in this experiment.
From Fig. 9 we see that the peak at (0.3,0,1.5) occurs at
the same frequency as the (1.2,0,0.5) zone boundary. The
(0.3,0,1.5} scan is 98% transverse response, while the
(1.2,0,0.5) scan is 42% longitudinal response. The fact
that the peak occurs at the same place is in agreement
with the prediction of Eq. (2.20). The dispersion of the
observed peak is plotted in Fig. 12. The solid line is the
Villain mode frequency, co& ——4eJ sing, with J=1.62 THz
and @=0.137. The parameters were independently deter-
mined from spin-wave measurements and an extended ver-
sion of the IS theory that takes account of exchange mix-

ing and 3D correlations. " The observed peak frequencies
are consistent with the expected sing dispersion law.

150—
, 0.5)

K

The scattering is thermally activated as shown in Fig.
13. Table II shows the integrated intensities above back-
ground at (1.2,0,0.5} for 35, 50, and 80 K as well as the ra-
tios normalized to 50 K. It is apparent that the data are
reasonably described by a temperature factor e + with
J=1.62 THz. As discussed above this is the expected
temperature dependence arising from summing over all
manifolds of energy nJ independent of whether open
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FIG. 8. Thermally activated scattering in CsCoBr3. The

monitor value following letter M is a measure of the number of
incident neutrons.
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FIG. 9. Scattering above background at the antiferromagnet-
ic zone boundary at 50 K. The lines are guides to the eye.
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FIG. 10. Scattering above background at 50 K. Note how

the peak frequencies decrease as q~1, i.e., as Q ~rr.

(chain) or periodic (ring) boundary conditions are used.
When allowance is made for V', f(«), and the polari-

zation factor, measurements at two values of «. with
equivalent values of Q = rr zc/2 can be combined so as to
extract the longitudinal and transverse parts of S(Q,co).
The smoothed line-shape profiles obtained in this way at
Q=rr/2 are shown in Fig. 14. The wave vectors used
were (1.2,0,0.5) and (0.3,0,1.5). According to Eq. (2.20)
the transverse and longitudinal responses at the zone
boundary are identical. The experimental results of Fig.
14 are certaintly consistent with this prediction in overall
shape and intensity.

The experimental integrated intensities of the soliton
scattering at all wave vectors were determined by measur-
ing the areas under the smoothed line-shape profiles and
applying the condition for detailed balance,
S(Q, —ar) =e ~S(Q,ar), to obtain the scattering at neu-

tron energy gain. The intensity near co=0 was estimated
by interpolation. From the pairs of intensities, the ob-
served weights of the transverse and longitudinal scatter-

ing were extracted at five values of Q ranging from 0.5rr

to 0.93~. The results at 80 K are plotted in Fig. 15, nor-
malized to the results at Q =n./2. The solid lines

represent the same quantities calculated by integrating Eq.
(2.20) from —roti to roti, using J and e as above. The
theoretical results are quite consistent with the experi-
ment. The transverse intensity is only slightly Q depen-

dent, while the longitudinal intensity shows a marked rise
as Q tends towards the antiferromagnetic zone center.
The observed longitudinal intensity at Q=O 93r.r is large
but still well below the theoretical prediction. As noted by
Villain, the 1/cos (Q/2) dependence in Eq. (2.20) is likely
a spurious result of the first-order theory. Villain argued
that the true dependence should have the form
( —, )«, +cos (Q/2) to obtain agreement with the known

S (Q) of the 1D Ising model. This removes the diver-
gence of the longitudinal intensity for

~ Q ir
~

&&—rr„ the
inverse correlation length, for «,&0.

Figure 16 shows the intensity ratio of the longitudinal
to transverse soliton intensities as a function of Q. There
are no adjustable parameters in the calculation shown by
the solid line. As expected, the calculated ratio near

Q =rr is too large but otherwise the results are in reason-
able agreement with the experiment.

With the same experimental setup, the spin-wave
scattering of CsCoBr& was also measured at the zone
boundary (0,0,2.5) in order to find the ratio of the soliton
to the spin-wave scattering. One can then obtain the
quantity

Rg ——S (Q)/S (Q)

where

S (Q)= f drrrS (Q, rrr) .

At 50 K, the experimentally deduced value including the
soliton and spin-wave scattering is R„~2——0.6. This can be
compared with the value expected for a pure Ising model,
which is given by

IOOO—

750—
Z
00 5OO—

250-

,0.95)

0
0

(3
IJJ
lZ
U

CsCoBr~
(I.Z,0,~)
50K

J = l.62 THz

e = 0.157

0,0
Q Tr

I r, r I

0—
0 0 0.5 I.O 1.5

FREQUENCY (TMz)
FIG. 11. Scattering above background near Q=rr at 50 K.

WAVE VECTOR
I.O 0.5

FIG. 12. Dispersion of the Villain mode. The solid line is

cotr =4' sing using the known e and 1 which describe the spin-
wave response in CsCoBr3.
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TABLE II. Integrated intensity ratios at (1.2,0,0.5)~

35
50
80

Integrated intensity IT

(arbitrary units)

2282
4768
7257

Igp

0.48
1.00
1.52

e
—pj

e ~Iso

0.51
1.00
1.79

e
—2+1

e '~Iso

0.26
1.00
3.21

1 —exp( —2a., )
Rg ——

1+2 exp( —a, )cosQ +exp( —2s., )

where a, = —ln[tanh(JP/2)]. With the known J of 1.62
THz, we calculate R &z

——0.40 at 50 K. Thus the observed
intensity of the soliton scattering bears approximately the
correct relation to the intensity of the spin-wave scatter-
ing. The small disrepancy that remains suggests that the
theory underestimates the soliton contribution.

In Fig. 13 which showed the 50-K scattering observed
at (1.2,0,0.5) and (1.2,0,0.7), the theoretical lines represent
the convolution of I(Ã, ro) [Eq. (2.20)] with a Gaussian
resolution function of FWHM 0.18 THz. The observed
scattering is much broader than predicted by theory.
Some broadening of the square-root singularity is expected
from collisions between domain walls. The collisional ef-
fects should increase with temperature. Figures 17 and 18
show scattering profiles at three temperatures for the
wave vectors (1.2,0,0.5) and (1.2,0,0.7). The results at both
wave vectors share common features. At 35 K the peak in
the scattering is sharp and well defined. When the tem-
perature is raised to 50 K the peak is visible but clearly
broadened.

Between 50 and 80 K a qualitative change takes place:
Much of the intensity occurs at lower frequencies and the
peak is rounded off into a sloping shoulder. The dashed
lines in Fig. 17 represent the imaginary part of the suscep-
tibility as determined from the smoothed scattering line
shapes with the relation 7"( Q, co ) = (1 —e ~)S ( Q, co).
The peak in the susceptibility also broadens and changes
shape with increasing temperature, showing that the tem-
perature dependence does not arise simply from variations
of the thermal population factor. Results at Q=0.6sr and

[S (Q,cv)] =/Irv +8,
where

(4.1)

and

A =(4srn, vo)

—2/3
4~n, 2 —2[(Q sr) +4n—, ] .

Uo

20-

l5Ml-
l0—

0.8m have the same behavior. The exact calculations of IS
(Ref. 9) of S (Q, ro) for rings of 10 spins are in qualita-
tive agreement with this behavior. The exact calculations
contain the collisional effects and are indicative of the
behavior of the infinite chain.

At present, however, there is no analytic theory that ex-
plains the temperature dependence of the scattering. Such
a theory would presumably have to include the coupling
by the Hamiltonian equation (2.3) of states with p domain
walls to states with p+2 walls.

At the wave vector Q=0.93m. the ideal —soliton-gas
theory of Maki' should be applicable. The transverse and
longitudinal soliton scattering are expected to have the
same shape (but not the same intensity). As the scattering
at (1.2,0,0.93) is dominated by S (Q, os), we compare the
observed scattering to Maki's theory, Eq. (2.24):

200
().2,0,0.5)

50K
20

2,0,0.7)
5QK
M90

I 50

~ IOO

50

3
(3 I0

Og -i

l.50,0 0.5 I.O I.5 0.5 I.O

FREQUENCY (THz)
FIG. 13. Comparison of the observed scattering above back-

ground at Q=sr/2 and Q=7sr/10 with the theoretical curves
described in the text. Inset: temperature scan at (1.2,0,0.5).

0.0 0,5 I.O

FREQUENCY (THz)
I.5

FIG. 14. Smoothed experimental profiles of S (Q, co) and

5 (Q, co) observed at Q =n/2 and a temperature of 50 K.
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FIG. 18. Increasing effect of collisions with temperature at
(1.2,0,0.7). Scattering above background at (a) 35 K, (b) 50 K,
and (c) 80 K. The solid lines are guides to the eye.
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present it can only be concluded that, with the limited
data available, the —', power law for the spectrum is con-
sistent with experiment.
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V. CONCLUDING REMARKS

The dynamic soliton response of the 1D S = —, Ising-

type antiferromagnet has been calculated to first order in
e. The result for the longitudinal scattering agrees with
the calculation of Villain. The result for the transverse
soliton response is new.

Experiments on CsCoBr3 have revealed that at elevated
temperatures a low-frequency component of the magnetic
response appears with a well-defined inelastic peak. The
peak shows that there exists a propagating collective mode
in the soliton gas. The dispersion of the peak, as well as
the intensity and polarization of the scattering, can be
reasonably described by the theory, using parameters
determined independently from spin-wave measurements.
The scattering is broader than predicted by the theory.
This may be expected on the basis of collisions, and the
measurements confirm the increasing effect of collisions
with temperature. The detailed behavior is, however, still
not well understood theoretically.

Finally, the response near Q =a. has been compared
with Maki's theory based on a gas of solitons. The experi-
mental results at different temperatures are consistent
with the spectral form and intensity predicted by the

(THz )
FIG. 19. (Intensity) vs square of frequency at

Q= (1.2,0,0.93). (a} 35 K, (h} 50 K, and (c}80 K. The solid lines

are results of least-squares fits to the data as described in the
text.

theory.
Note added: Recent calculations have been made of the

soliton response at Q =a. for a ring of 12 spins by T.
Schneider and E. Stoll [Phys. Rev. B 26, 3846 (1982)].
Their histogram spectrum extends to about 0.4 THz so
that detailed comparison, in the region where most of the
data exists, cannot be made at present.
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TABLE III. Fitted and calculated parameters in the Maki theory.

Temperature

I (calculated)
I (fitted)
I /I, (fitted)
I /I 5p (calculated)
c /c Sp (fitted)

c/c5p (calculated)

35 K

0.14 THz
0.32 THz
0.74
0.79
0.52
0.52

50 K

0.17 THz
0.43 THz
1.00
1.00
1.00
1.00

80 K

0.25 THz
0.62 THz
1.44
1.43
1.79
1.77

APPENDIX I: BOUNDARY CONDITIONS
IN THE TIGHT-BINDING MODEL

In first-order perturbation theory the Hamiltonian for
the Ising-type chain, Eq. (2.8), is formally equivalent to a
nearest-neighbor tight-binding model with one free end.
The local energy is equivalent to 2J and the nearest-
neighbor transfer is given by V& . Position r in the tight-

1

binding model is related to domain size v. For odd-length
domains, v=1,3, . . . , r =(v+ 1)/2. In particular, the
domain of length v= 1, which has one spin flipped from
the Neel state, corresponds to the surface term r = l.

The spin-wave response at T=O arises from transitions
from the ground state to the first excited states, coupled
by matrix elements of the form

) (E ~S& ~

G) )
. Since

the first-order ground state is only slightly different from

the Neel state, the surface term v=1 dominates the spin-

wave response. The open-ended boundary condition is
therefore essential for calculating the spin-wave scattering.

On the other hand, for the soliton response arising from
transitions within the band of excited states, the contribu-
tion of the surface states is only 0(1/N). The boundary
condition is thus not important in the X~~ limit.

The decreasing importance of the boundary condition
as N becomes large has been verified by calculations of the
response to order e for chains of length up to 80 spins,
with periodic and open boundary conditions.

Because the spin-wave states comprise only 0(l/N) of
the thermally excited states, it is clear that in the Ising-

type system the thermally activated scattering is dominat-
ed by solitons. This is not the case for XY and Heisenberg
systems, where two-magnon scattering can make an ap-
preciable contribution. '
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