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In the vicinity of a tricritical point an n-component spin system is shown to have continu-

ous transitions which are driven by fluctuations (they would be first order according to
Landau s theory). We show that spin anisotropies which imp1y crossover to lower symme-

try (e.g. , of m-component spins with m &n) may turn these fluctuation-driven continuous

transitions first order via tricritical points. In cubic systems, which exhibit fluctuation-

driven first-order transitions, the anisotropy may yield two consecutive tricritical points.

We present a detailed renormalization-group analysis of these situations with emphasis on

the importance of the sixth-order terms in the Ginzburg-Landau-Wilson continuous-spin

Hamiltonian. A list of possible experimental realizations is also given.

I. INTRODUCTION

In most cases Landau's theory' provides a correct
qualitative description of phase transitions. The
main effect of fluctuations emphasized in the last
few decades is to change critical exponents and de-
tails near critical and multicritical points. Modern
critical phenomena theory has given a general ex-
planation for these new features, associating them
with fixed points of the renormalization-group (RG)
transformations. ' A second effect of fluctuations
which has been less emphasized is to move phase
boundaries in the parameter space. For example, the
critical line of a simple second-order transition is
shifted to lower temperatures (compared to
Landau-theory prediction). Although this shift is
not universal, i.e., it depends on all the parameters in
the Hamiltonian (including the "irrelevant" ones), it
has important practical implications.

Similarly, one expects shifts in the borderlines be-
tween regions of continuous and discontinuous tran-
sitions, i.e., in tricritical borderlines. We have re-
cently emphasized such shifts for isotropic n

component spin tricritical lines, and discussed the
"fluctuation-driven continuous transitions, " i.e.,
transitions which are predicted by Landau's theory
to be first order but are turned by fluctuations to be-
come continuous. The "opposite" effect, of
"fluctuation-driven first-order transitions" has been
earlier found to occur whenever a stable fixed point
of the RG does not exist or is out of reach. '

A very useful tool in the study of critical phenom-
ena has been the application of symmetry-breaking

fields. In particular, breaking the symmetry be-
tween different spin components (by a "quadratic
anisotropy") yields the well-studied bicritical phase
diagram observable, e.g. , in anisotropic antifer-
romagnets under a magnetic field, " in structural
transitions under uniaxial stress, ' etc. Several re-
cent theoretical papers' observed that a quadrat-
ic anisotropy may turn fluctuation-driven first-order
transitions back into continuous ones. This effect
was indeed observed in MnO (Ref. 21) and in
RbCaF3. In a recent paper we discussed the "in-
verse" effect, in which fluctuation-driven continuous
transitions are turned first order by anisotropy. We
also mentioned briefly the possibility that there may
exist a region in the parameter space for which the
anisotropy first turns the fluctuation-driven first-
order transition into a continuous one, and then
turns it back into first order via two consecutive tri-
critical points. The aim of the present paper is to
give the full details of these calculations.

Our analysis is based on a RG study of the con-
tinuous Ginzburg-Landau-Wilson n-component spin
model. ' Sec. II contains a detailed discussion of
fluctuation-driven continuous transitions. We em-
phasize the importance of the sixth-order terms in
the Ginzburg-Landau-Wilson expansion, and show
that such transitions will always occur near tricriti
cal points of isotropic n-component spin systems. In
Sec. III we show that when this happens, application
of a quadratic symmetry-breaking field g turns the
transition first order again at a tricritical point,
which is subsequently located using a large quadrat-
ic anisotropy expansion. In Sec. IV we analyze the
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small quadratic anisotropy limit and use RG
methods to calculate universal amplitude ratios
characterizing the tricritical points. In systems
which exhibit fluctuation-driven first-order transi-
tions, increasing g may yield two consecutive tricrit-
ical points. A well-studied example of fluctuation-
driven first-order transitions concerns systems with
cubic symmetry. ' In Sec. V we discuss such sys-
tems with much detail and show that it is possible to
map the n-component cubic model, with sixth-order
terms included, into one of cubic symmetry in which
these are absent. This procedure enables us to locate
the tricritical points with the use of the well-known
critical behavior of the truncated cubic model. In
Sec. IV we apply the large quadratic anisotropy lim-
it to locate the new tricritical points. Section VII is
devoted to a preliminary RG analysis in which we
present qualitative arguments to show the existence
of two consecutive tricritical points. The analysis
contains a new discussion of the effects of the
sixth-order cubic terms near the cubic fixed point.
In Sec. VIII we discuss possible experimental reali-
zations of the new effects predicted in this paper.
Section IX contains our conclusions.

II. FLUCTUATION-DRIVEN CONTINUOUS
PHASE TRANSITIONS

To understand the origins of fluctuation-driven
continuous transition consider the usual isotropic
Ginzburg-Landau-Wilson (GLW) Hamiltonian for
n-component spins [S(x )] in d dimensions, '

d~ 2+ 2+

+u, I
S

I
'+O(

I
S

I
')]

where r —T —Tz (Tt being the Landau transition
temperature) and u4, u6, etc. , are assumed to be al-
most temperature independent. The model (1) with
u4 (0 and u6 & 0 (for thermodynamic stability) may
be used to describe tricritical behavior. Landau
showed' that in the absence of fluctuations (1) yields
(i) a ft rst order tran'sit-ion for u4&0 and u6&0 at
r =u4/2u6, (ii) a continuous transition for u4 &0 at
r=0 (in this case u6 is unimportant), and (iii) a tri
critical point for u4 ——0 (u6 &0) at r=0.

To incorporate the effects of fluctuations and
study the quantitative changes they induce in the
phase diagram we use the RG approach. Al-
though we are concerned mainly with the tricritical
behavior of (1), we construct differential RG recur-
sion relations which will enable us to go beyond the
tricritical region, associated with the Gaussian fixed
point (for d & 3, see below), and study the critical re-
gion associated with the Heisenberg fixed point (for
d (4, see below), as well. With this in mind, and

keeping terms of appropriate order, the flow of r,
u4, and u6 (assumed to be small) under the differen-
tial RG transformation is found to be

l
=2r +4(n +2)K~ u 4 ( 1 r),—

du 4

dl
= (4—d)u4+ 3(n +4)Kqu 6

(2)

—4(n +8)K~u4, (3)

du6

dl
=(6—2d)u6 —12(n +14)K~u6u4, (4)

K '=2 '17 r(d/2) .

Note that in Eqs. (2)—(4) we have deliberately left
the d dependence in various terms and in K~. This
is done to emphasize that the results to be obtained
concerning tricriticality (associated with the Gauss-
ian fixed point) will be correct not only for d & 4 but
rather for 3 &d &4 (see below). In Eq. (2) we have
expanded the propagator factor as (1+ r) '=1 r, —
and in Eqs. (3) and (4) we have replaced (1 + r) by
unity because as long as r &O(l) the solutions are
not affected to 0 (u4, u 6). Note that to leading order
u6 does not generate new contributions to r [Eq. (2)]
under the differential RG iterations (these would in-
volve two independent momentum integrations over
infinitesimal shells of width 5l and therefore vanish
in the limit 5l —+0). On the other hand, from Eq. (3)
it is clear that under the RG iterations u6 does gen
crate new contributions to u4, which implies that the
correct quartic scaling field u4 is a combination of
u4 and u6 given by

u4 ——u4+C(n)u6,
C(n) =3(n +4)Kg/(d 2) .

To leading order in u6, Eqs. (3) and (5) yield

(5)

Q4 —2

dl
=(4—d)u4 4(n +—8)Kqu 4 . (6)

obeys the equation

The set of Eqs. (4), (6), and (7) possesses a trivial
Gaussian fixed point (t =u 4

——u6 ——0) at any d. In
particular, for 3 & d (4, this fixed point has two

To this order one may also replace u4 by u4 in Eq.
(4). Replacing u4 by [u4 —C(n)u6] in Eq. (2), we
find that the temperature scaling field

t =r +2(n +2)Kq[u4+ 3(n +4)K~u 6/2(d —2)]
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relevant scaling fields t and u4 (with eigenvalues
A, , =2 and A,4 4 ——d,—respectively) and an irrelevant
one u6 (with A,6 ——6 —2d). Note that at d=3, u6 be-
comes marginal, yielding logarithmic corrections.
Thus, the doubly unstable Gaussian fixed point is
expected to describe tricriticality for 3&d&4. The
equations also yield a (nontrivial) Heisenberg fixed
point of order e=4 —d, i.e., t =0, u6 ——0, and
u 4 e'/——4(n+ 8)Kd. In particular, for d &4, this
point has one relevant scaling field t (with
A, , =2—[(n + 2)/(n + 8)]e) and two irrelevant ones,
iI).u 4

——u 4
—u 4 and u 6 (with A, 4

——e and
iP6 ———2 —[(n + 26)/(n + 8)]e, respectively). The
singly unstable isotropic Heisenberg fixed point is
therefore expected to describe criticality for d & 4.

If we were interested only in the tricritical region,
then it would be sufficient to concentrate in the
close vicinity of the Gaussian fixed point, i.e., u4 —0,
u6 —0, and t=O. In that limit, and for 3&d&4,
Eqs. (4), (6), and (7) with only the linear terms be-
come exact, yielding Gaussian exponents. However,
to approach criticality, it is necessary to include the
nonlinear terms. The solutions of Eqs. (4), (6), and
(7) applicable in both the tricritical and critical re-
gions (taking the appropriate limits, see below) are
given to O(u4, u6) by

t (i) = t (0)e21/Q(i)(n+2)i(n+8)

t (0)=r +2(n +2)Kd

&& [u4+3(n +4)Kdu6/2(d —2)], (8)

u4(l) =u4(0)e( "/Q (l),
u4(0) = u4+C(n)u6 (9)

(6—2d)l/Q(i)3(n +14)i(n +8)

u6 & 0 (10)

where

Q(l)=1+[up(0)/u f, ](e"—1) .

Note that the factor Q (l) in (11) reflects the
Gaussian-to-Heisenberg crossover. In the limit
u4(0) = u 4, one has Q (1)=e', yielding the
Heisenberg-type critical behavior. On the other
hand, in the limit u4(0) «u 4, one has Q(l)=1,
yielding the Gaussian-type tricritical behavior.

Equations (8) and (9) show that for u4(0) &0 and
t(0)=0 the Hamiltonian flow evolves towards the
Heisenberg fixed point, yielding a continuous phase
transition. On the other hand, for u4(0) &0 the
stable fixed point is not accessible Iteration up . to
t(l)=1 and matching to the Landau theory then
yields a first order transition-. ' The point
t(0) =O,u4(0) =0 is therefore tricritica/, marking the
borderline between these two regimes. In terms of

the original variables (u4, u6) this implies that fluc-
tuations shift the line of tricritical points u4 ——0,
u 6 & 0 (predicted by Landau theory) down to
u4(0) =0, see Fig. 1.

Comparison with the Landau result (u4 ——0) now
shows that in the range —C(n)u6&u4 &0 we can
consider the continuous phase transitions as being
driven by critical fluctuations. The crucial role
played by u6 has been ignored in many earlier RG
calculations. Although technically irrelevant (in the
RG sense) for d & 3 [see Eq. (10)], u6 & 0 is essential
for stability whenever u4 &0, and must therefore be
included in the RG analysis. We would like to em-
phasize that the irrelevance of u6 manifests itself
primarily in its incapability to affect the asymptotic
critical behavior of the system.

III. ISOTROPIC MODEL
IN THE LIMIT OF LARGE

QUADRATIC ANISOTRQPY

We now add the quadratic anisotropy,

n —m & m m

(12)
where S„and S are the (n —m )- and m-
component parts of the vector S which will generate
a crossover from the n-component critical behavior
to that of the m- [or (n —m)-] component one for
g& 0 ( & 0). This follows simply from the fact that
for g= 0, there is a single temperaturelike variable r
for all the n components, whereas for g&0 there are
ttvo: (i) r =r —[(n —m)/n]g for the first m com-
ponents, and (ii) r„=r + [m /n]g for the remain-
ing ( n —m ). Therefore, for g & 0 (g & 0) the m-
[(n —m)-] component correlation length g (g„)
diverges at criticality, while g„(g' ) remains fin-
ite. For convenience we consider only g& 0, the re-
sults for g & 0 being obtainable by replacing g ~—g
and m ~n —m.

If u4 & 0 then Eq. (12) generates the bicritical

&/ D///r"D'l)V'YRlY &8178
FIG. 1. Schematic RG flow diagram in the (u4, u6)

critical plane for d (4. Line of tricritical points u4(0) =0
is associated with the Gaussian fixed point (G). Points to
the right of this line flow to the stable Heisenberg fixed
point (H). Cross-hatched region (u6 &0) is unphysical.
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phase diagram shown in Fig. 2(a). Bicritical phase
diagrams are predicted both by Landau and RG
theories; the only effects of fluctuations are (i) to
shift TL down to Tz (bicritical temperature), and (ii)
to induce a tangential (instead of a finite slope) ap-
proach of the continuous transition lines to the T
axis at the bicritical point T =Tz,g =0.

In this section we show that in the range
—C(n)u6&u4& —C(m)u6, the application of the
anisotropy field g (&0) may turn the fluctuation-
driven continuous transition expected for the n

component system back into first order beyond some
tricritical points [Figs. 2(b) and 2(c)].

For g »1, the fluctuations in the (n —m) com-
ponents of S„~become small, i.e., r„~&&r~, and
we can integrate S„our of the partition function
using a perturbation expansion in powers of u4 and
u6 to obtain the effective m-component spin Hamil-
tonian'

gal

(a) (b) (c}

FIG. 2. Schematic (g, T) phase diagrams. Dashed
(solid) lines represent continuous (first-order) transitions.
TP is a tricritical point. Transitions for g&0 (g&0) are
into an m- [(n —m)-] component phase (we chose
m&n —m). (a), (b), and (c) correspond, respectively, to
u4 & —C(m)u6, —C(m)u6& u4 & —C(n —m)u6, and
—C(n —m)u6 & uq & —C(n)u6.

jeff + 2 m + 2 eff m + 4 m

+u',"~s ~'+o(is ~')],
where to leading order in u4 and u6 one has

r,tt=r +O(ug, u6)

u 6 ——u6+O(ugu6, u 6, u 4),eff 2 3

with

r„=r + [m /n]g

and=r —[(n —m)/n]g +0 (u4, u6),
u 4

——u4+ 3(n —m)Ii(r„)u 6

—4(n —m)I2(r„)u4+ 0(u4u6, u 6),

(14)

(15)
I

Ik(x) = d'q
(2~)" (x+q )"

The effective m-component Hamiltonian (13) will
have a tricritical point at u 4

——0 [see Eq. (5)], i.e.,

u 4, ——[u4 +C(m)u6 ],=uq, +3(n —m)[I&(r„) Kdl(d —2)]u—6 —4(n —m)I2(r„)u4 ——0 .

g, =—3(n —m)Kdu 6/d [u4+ C(m)u6] . (18)

The integrals l, (x) and I2(x) are monotonically de
creasing with x. However, for x »1 (i.e., for suffi-
ciently large g) one has Iz(x) « I&(x). If in addition
—C(n)u6 & u4 & —C(m)u6, then u q will change
sign as function of g, becoming negative for suffi-
ciently large g (see Fig. 3). For very large x, one has

Ik (x ) = [Kd /d]x [kKd /(d +2)]x—
+O(x —k —2)

Keeping terms of O(x ), Eq. (17) may, in princi-
ple, have two solutions (corresponding to two possi-
ble tricritical points); however, in the large-g limit
only one of these is acceptable In Sec. I.V we shall
see that in systems with cubic symmetry the ex-
istence of an additional quartic variable may yield
two acceptable solutions, i.e., two consecutive tricrit-
ical points. In the present case, the tricritical point
occurs at

Note that the validity of (18) in the large-g limit im-
plies that u4+C(m)u6 &0; therefore, strictly speak-
ing, we have only demonstrated the existence of (18)
for u4 & —C(m)u6.

Up to this point we assumed that uq (and u6) does
not depend explicitly on g. In general, such a depen-
dence could lead to a change in the sign of u4. If
this happens, then Figs. 2(b) and 2(c) could arise
trivially even in the context of Landau's theory.
However, in that case the phase diagrams would not
exhibit the amplitude ratios listed below. In most
practical cases, the direct dependence of u4 on g is
weak. In the next section we shall complement (18)
by finding the shape of the tricritical curve for small
g [Eq (»)]

IV. RCx ANALYSIS GF THE TRICRITICAL
REGrION

In this section we shall demonstrate the oc-
currence of tricritical points at small anisotropy
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fields (g «1) in the region 0&uq+ C(n)u6« u q [i.e., in the limit when Q (l)=1; see (11)]. As
explained in Sec. III the integration over S„~ is
justified only when r„»r [or equivalently
r„=O(1)while r~ =0]. For small g in the critical
region r =r —O(g)=0 we also have r„
=r+0(g) «1, showing that fluctuations in all n

components are almost equally important. A naive
attempt to eliminate S„ in this case will produce
infrared divergences at small momenta ' resulting
from the fluctuations in S„.A rather direct way
to overcome this difficulty is to use the RG recur-
sion relations to map the almost critical initial Ham-
iltonian A into a Hamiltonian A (l). The basic idea
behind this approach is to choose l =1~(t,g) such
that A (I*) is noncritical with respect to fluctuations
in S„,i.e., r„(1*)=O(1).At I*, a simple per-
turbation theory in powers of u&(l*) and u6(l*) (see
Sec. III) can be used to eliminate S„(fora review
on this approach see Ref. 23), obtaining an effective
m-component Hamiltonian of exactly the same form
as (13) in which all the coefficients are I* dependent.
At this stage the tricritical point is found as in Sec.
III. The solutions of the RG recursion relations are
subsequently used to express the answers (obtained
in terms of the Hamiltonian parameters at l*) as
functions of the original parameters (at I=Q).

When g & 0, the GLW Hamiltonian for n

component spins [S(x)] in d dimensions is given by

X ~ + ~P'~ m

+ ~rn —m lSn —m

+u~ fSf +u, fSf'+O(fSf')], (19)

where r~ and r„were defined before. Under
iterations of the RG to leading order in u~ and u6
the renormalized Hamiltonians A (l) remain in the
parameter space (r,r„,u4, u6). To O(u&, u )6the
differential recursion relations for r~(l) are

tropy of the fourth- and sixth-order terms uq(l) and
u6(l) in (19) is conserved. This means that the RG
flows in the (u 4, u 6 ) plane are not affected to
0 (uq, u6) by the breaking of the isotropic quadratic
symmetry, which implies that Eqs. (3) and (4) for
u&(l) and u6(l), respectively, are still applicable. In
order to solve Eqs. (20) and (21) we reintroduce the
original variables r and g [see Eqs. (1) and (12)].
The evolution of r is then dictated again by Eq. (2),
and that of g is dictated by

dg
l

=2g —8E~u 4g, (22)

where to leading order in u6 we have replaced u4 by

u~ [see Eq. (5)]. The solution of (22) is

g ($) gp 21/Q ($)2/( +8) (23)

with Q (I) given in (11). Note that in the limit
uq(0) «u q, i.e., Q (l)=1, one recovers the Gaussian
exponent Xs =2.6

Having solved the recursion relations, we select a
value of 1*by requiring6

r„(l*)=1+0(ug,u6) . (24)

At this point the renormalized Hamiltonian ~((+)
is noncritical with respect to fluctuations in S„
Thus the trace over S„can be perforiried precise-
ly as in Sec. III, yielding the effective Hamiltonian
(13). The various parameters in (13), which now de-
pend on l*, are given by Eqs. (14)—(16). In A, tt(l*)
we easily identify a temperaturelike variable [see Eq.
(g)],

t~ff = rgff +2( m +2)KJ

X[u4 +3(m +4)K~u6 /2(d —2)] .

Tricriticality (t) will be obtained when t,tt,
=u 4, ——0. To leading order, the condition t,ff g

—Q

yields

rm

l
=2r~ +4(m +2)K~u4(1 —r~ ) =t, (l*)—[(n m)/n]g, (1*)=—0, (25)

+4(n —m)Kquq(1 r„), —

+4mK~u&(1 r) . —

(20)

(21)

with t (l) and g (I) given by (8) and (23), respectively.
To satisfy (24) at tricriticality it is sufficient to im-
pose

t, (l~)+ [m /n]g, (l~)= 1,

Provided that r (1) and r„(l) do not become too
large [i.e., r; (I) & O(1)], one may assume that the iso-

which, with the use of the definition of r& ~(l ),
ensures the validity of (24). The condition u 4, ——0
is given [see Eq. (17)] by

u q, ——[u4 (l~)+C(m)u6 (l*)],=u4, (l~)+3(n —m)[Ii(r„(l*)) Kq/(d —2)]u6(l*) =—Q, (27)
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where we have neglected the term of O(u4) in (17).
Note t at to leading order in u6, r„(l*)in I~ can
be replaced by unity [see Eq. (24)].

If the n-component Hamiltonian (1) is almost tri-
critical, then one has u 4(0)=0 or equivalently
u4(0)/u 4 « 1, which implies Q(l )=1. In that
case, as mentioned before, one recovers the Gaussian
model and Eqs. (8)—(10) and (23) reduce, respective-
ly, to t(l)=t(0)exp[2l ] with

t(0) =[T T~(g—=0)]/T~(g =0)

given in (8),

ratio B /B„ is given by

B /B„=(n —m)/m . (31)

gt ~m tt

where

(32)

Using Eq. (25) and the definitions for t(l*), g(1*),
and exp(l*) given above, we can locate the tricritical
points in Figs. 2(b) and 2(c). For g& 0 [Fig. 2(b)] the
tricritical point is given by

u 4( l) =u 4(0)exp[(4 —d )1],
u6(l) =u6exp[(6 —2d)l], and

(33)

u4, i=[u4+«n»6]~=B g~

with

(29)

= —d —12

Bm =[3Rd/(d —2)—3I)(1)](n —m)u6 .

A similar expression with B„and —g, replacing
B~ and g, is obtained for g&0. We have therefore
shown that as function of g, the tricritical point
(u4 ——0 at g=0) splits into two tricritical lines (Fig.
3) which emerge from it tangentially (P & 1 in
3&d &4 dimensions) to the u4 axis. The universal

I
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I
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FIG. 3. Schematic (g, u4) phase diagram
m &n —m. Heavy (tricritical) lines separate regions of
continuous and first-order transitions.

and g(l)=g exp[2l ]. Subtracting (25) from (26) we
obtain g (1*)=1,which implies

l
g

1 /2 (28)

Inserting the values for u4(l*), u6(l*), and exp(l*)
into (27), we obtain

A =n/(n —m) .

A similar expression with A„and —g, replacing
A~ and g, is obtained for g&0. The universal ratio
A~/A„~ is given by

A /A„=m/(n —m) . (34)

V. TRICRITICALITY IN SYSTEMS
WITH CUBIC ANISOTROPY

The best-studied example of fluctuation-driven
first-order transitions is that of systems with cubic
symmetry. ' We therefore limit our discussions to
this example. We start by replacing Eq. (1) by

These results are valid for 3 & d & 4. At d =3 they
may be modified by logarithmic corrections, and
the exponents lt and p describing the curves in the
(u4, g) and (g, t) planes, respectively, will have a dif-
ferent dependence on d for d & 3.s

One can summarize our discussion in terirrs of the
Hamiltonian flows. We start above the line
u4 ——u4+C(n)u6 ——0 in the (u4, u6) plane (Fig. 1),
i.e., when the n-component system exhibits continu-
ous phase transitions, and iterate l* times. For suf-
ficiently large g almost no iterations are needed to
reach r„=1 and to eliminate S„.Therefore
l~=0 and a trajectory's length (which is related to
l ~) is very short. In that case the flow ends
below the m-component tricritical line, i.e.,
u4+C(m)u6&0, and the m-component transition
becomes first order. On the other hand, for small g
a large value of l* is needed and the flow crosses the
m-component tricritical line, ending aboue this line.
In that case the m-component transition remains
continuous. Hence, we expect that for some value g,
the flow will reach precisely the m-component tri-
critical line, yielding a tricritical point.
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where A t is the usual isotropic GLW Hamiltonian
given in Eq. (1) and A c is given by

n n

X U a+X
a=1

+ y g g s.'s', +o(
I
s

a=1 P=1
P@a

(36)

The parameters v, x, and y are assumed to be almost
temperature independent.

In the present paper we concentrate on the case
v &0 and in Sec. IX discuss only briefly the case
v&0. The critical properties of the cubic model
with positive definite quartic terms were reviewed,
e.g., in Refs. 3 and 25. As long as the quartic terms
are positive definite, i.e., u4+v & 0 (v &0), Landau s
theory' predicts a continuous phase transition at
r=0 (in that case the sixth-order terms are unimpor-
tant). Moreover, the symmetry of the ordered phase
is determined only by the sign of v. The tetragonal
(TE) phase (ordering along a cube axis) occurs for
v &0, while a trigonal (TR) one (ordering along a
cube diagonal) occurs for v &0. First-order transi-
tions are predicted when the quartic terms are nega
tive, i.e., u4+v & 0 (v & 0). In that case higher-order
terms are essential for the stability of the free energy
and may play a role in the determination of the pos-
sible ordered phases. In the simplest case, an addi-
tional orthorhombic (OR) phase (ordering along a
cube face diagonal) is possible due to the competi-
tion between the fourth- and sixth-order terms. For
example, the n=3 cubic crystal BaTi03 (Ref. 26)
undergoes a sequence of three first-order transitions,
the first one being into a TE phase (the additional
phases are OR and TR). Our assumptions that
u4+v &0, v &0, ensure (within Landau's theory) a
continuous transition into the TE phase.

For a TE distortion Landau's theory predicts tri-
criticality at r=0, u4+ v=0 (v &0), and u6+x &0
(for stability). As shown in Ref. 3, in the absence of
sixth-order terms, fluctuations tend to shift the tri-
critical boundary into u4+3v/(4 —n) for v &0.
This shift generates a region in the (u4, v &0) plane
in which, although the Landau stability criterion
u4+v & 0 is fulfilled, the stable (for n &4) isotropic
(Heisenberg) fixed point is inaccessible, resulting in
fluctuation-driven first-order transitions. ' If one
starts below the classical (Landau) instability boun-
dary (u4+v &0) of the n-component system, or if
(after symmetry breaking) the resulting effective m-
[or (n —m)-] component Hamiltonian has negative
fourth-order terms, it is crucial to include positive
sixth-order terms for stability of the free energy.

In the preceding sections we have seen that th
Gaussian fixed point describes correctly the tricriti-
cal behavior of an isotropic system not only for
d & 4, but rather in the whole range 3 & d & 4. In the
cubic case, however, the tricritical behavior (for
v &0) is associated with the cubic fixed point '

which is of O(e). Therefore, to incorporate the ef-
fects of fluctuations in the cubic case we apply RG
methods in d =4—e dimensions and assume that u4
and v are of O(e) (initially and throughout their
flow). '7

Consider the Hamiltonian (35) with u4 and v of
order @=4—d. To leading order in e the renormal-
ized Hamiltonians A (1) (under the RG iterations)
remain in the original parameter space
(r, u4, v, u6, x,y). To this order, and to O(u6, x,y), the
RG differential recursion relations for r(l), u4(l),
u 6(i), x (I), and y (l) are found to be

dr
l

=2r +4(n +2)K4u4(1 r)+ 12K~v—(1—r), (37)

+6K4y,

dv 2

r
= ev 36K4v 48K—4u 4v + 15—K4x

(39)

du6

E

=( —2+26)u6 —12(n + 14)Kgu6u4

—36K4u, v —24K,yu4, (40)

dx
l

= ( —2+ 2e)x —180Kgxu4 —180Kgxv

—144K4u 6v —4(n —7)K4yu ~, (41)

dl
=(—2+2m)y 4(n +23)K~yu—~

—84K4yv —60K4xu g
—144K4u 6v, (42)

with K4 ——1/8' Note that in. the limit (v, x,y)~0,
i.e., the isotropic case, Eqs. (2)—(4) are recovered.
Also, u 6, x, and y do not generate new contributions
to r (see Sec. III). On the other hand, from Eqs. (38)
and (39) it is evident that under the RG iterations
u6, x, and y do generate new contributions to u4 and
v. Following the arguments of Sec. III it is possible
to eliminate these contributions by defining two new
quartic scaling fields, u4 and v, given to O(u6, x,y)
by

dug 2=eu4 4(n +—8)K4u 4 —24K4u4v +3(n +4)K4u 6
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u4 ——u4+ C(n)u 6+C2(n)y,

v =v +C)(n)x +C3(n)y,
with

C(n) = (n +4)Kg, C)(n) = Kg,3 1

2 —6 2 —6

6 1
Cq(n) = K4, C3(n) = (n —7)Kg .

2 —6 2 —6'

(43)

Q4 —2=eu4 4(—n +8)Kgu 4
—24Kgugv, (46)

In terms of u4 and v, Eqs. (39) and (40) are replaced
to leading order in u 6, x, and y by

dv

l
=ev —36K4v —48K4u4V . (47)

Note that Eqs. (46) and (47) are precisely those
which describe the evolution of the quartic variables
(u4 and v) in the usual n-component cubic system
without sixth-order terms. This "mapping" from
(u4, V) to (uq, v) via transformations (43) and (44) en-
ables us to extract the critical properties of the cubic
model with sixth-order tel iris from those of the
same model without them. Note that a similar
transfof Illation, u4~u4 [Eq. (5)], was performed in
the isotropic case.

For v &0, the tricritical boundary in the (u4, V)
plane is given by W(n) =0, with

W(n)=u4+3V /(4 —n) =u4+3V/(4 n)—+C(n)u6+8(n)x +A (n)y, (48)

where

3 (n)=C2(n)+3C3(n)/(4 —n),
B(n) =3C)(n)/(4 —n)/(4 —n),

and C(n) is given in (45). Equation (48) represents a
surface in five-dimensional (u4, v &0, u6, x,y) criti-
cal (i.e., T=TII) space. Points below this surface
will exhibit first-order transitions (no accessible
fixed point), points on it will show tricritical
behavior associated with the cubic fixed point
(u&,vc,u6 ——xc ——yc ——0), and points above it will un-

dergo continuous transitions associated (for n &4)
with the stable isotropic (Heisenberg) fixed point
(u4, vH =u6 =xH =yH =0). SIIlce It Is alIllost III1-

possible to visualize a five-dimensional space we
present a schematic diagram showing the location of
the n [and m--j component tricritical planes (for
v & 0) in the tridimensional subspace (u 4,v, u 6,
x =y=0) as predicted by RG theory.

Figure 4 shows that the two tricritical planes
W(n)=0 (plane n) and 8'(m)=0 (plane m) inter-
sect at line a. This intersection generates two re-
gions, a and b, in the (u4, v, u6) subspace. In the full
five-dimensional parameter space the tricritical
planes become four-dimensional hypersurfaces
which intersect at a three-dimensional "line." In
what follows we shall not need the explicit equation
of this line.

I

Fig. 5(a). We shall now show that the sixth-order
terms may turn Fig. 5(a) into Figs. 5(b) or 5(c).

As before, we start with the large-g limit. For
g && 1 fiuctuations in the (n —m)-components
of S„are small and can be integrated out of the
partition function following the methods outlined in
Sec. III. As a result we obtain the following effec-
tive m-component cubic Hamiltonian:

Ijeff=jeff+ eff ~

where A, ff is the effective m-component isotro-
pic Hamiltonian given in (13) and ~~f is an effec-
tive m-component cubic Hamiltonian given by

VI. THE CUBIC MODEL IN THE LARGE-
ANISOTROP Y LIMIT

We now consider the cubic system with quadratic
anisotropy, adding Eq. (12) to Eq. (35). In the ab-
sence of the sixth-order terms Ref. 17 predicted that
if the n-component system has a fluctuation-driven
first-order transition (close to its tricritical point)
then the anisotropy may yield the phase diagram of

FIG. 4. Schematic RG diagram showing the location
of the n (m-) compon-ent tricritical plane denoted as n

(m ). Planes intersect at line a. Cubic ( C), Heisenberg
(H), Ising (I), and Gaussian (G) fixed points are shown.
For visual clarity we did not include the RG flows.
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m m
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a=1 a=1

m m
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(51)

g il g ii
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To leading order in u4, v, u6, x, and y we find

v,tt=v +(n —m)yI, (r„),
&efr=» Jeff-—5 .

(52)

(53)

The equations for u~ [(15)] and u6 [(16)] remain
unchanged, and that for r,tt is given by (14) with the
additional contribution 12(n m)K4—I

& (r„)y.
Note that Eq. (52) raises the possibility that v,tt may
change sign as function of g if v and y have different

FIG. 5. Schematic (g, T) phase digrams for the cubic
case, with v(0. The value of u4 decreases from (a) to (c)
and notation is as in Fig. 2.

signs (this would imply y » —v). Such a situation
needs further investigation W. e shall therefore as-
sume in what follows that the sign of v, tt is con-
trolled by that of v. In that case the Hamiltonian
(50) will exhibit tricritical behavior [Eq. (48)] at
W,ft(m) =0, with

W,ff(m)= W(m)+3(n —m)I~(r„)[u6+y/(4 m)] —4(n——m)Iz(r„)u4,
with

(54)

W(m) =u4+3v l(4 —m)+C(m)u 6+8(m)x +A (m)y

[see Eqs. (48) and (49)]. If one starts just below the
m-component tricritical plane (outside region a,
see Fig. 4), i.e., W(m ) & 0 and in addition u 6
+y/(4 —m) )0 (more complex situations could be
realizable; however, these need further investiga-
tion), then W,tf(m) will change sign tutee as a func-
tion of r„(or equivalently of g). For sufficiently
large g one has W,tf(m)=W(m) (0 and the transi-
tion is first order. As g is lowered, there is a range
in which I~ (x) &&I2(x) (see Sec. III) and the second
(positive) term in (54) may overcome both W(m) and
the last (negative) term, so that W,tt(m) )0 and the
transition becomes continuous beyond a tricritical
point. Lowering g further (still in the range g »1)
the last (negative) term may finally dominate the
behavior of W,tt(m), making it negat ve once more
beyond a second tricritical point, i.e., the transition
becomes first order again [see Figs. 5(b) and 5(c)]. It
follows, then, that one may expect the occurrence of
two consecutive tricritical points; however, one must
still check that both of them are compatible with the
assumption of very large g (note that a similar argu-
ment was presented in Sec. III for the isotropic case
where we checked and found that only one tricritical
point fulfilled the above mentioned requirement. )

Following Sec. III we expand Ik(r„), k=1,2
[in Eq. (54)] in powers of r„'~ to order r„
Denoting the tricritical value r„~,=R„we find

a(u4, u6,y)R, +b(u6, y)R, + W(m)=0,
with

(55)

R, =(—b/2a)[1 —b, '/ ],
with b =1—4(a/b)[W(m)/b] for 1)b, &0. For
b, =0, i.e., W(m)= W*=b /4a, one has R, & R,2——

b/2a. For 6= 1, i.e—., W(m) =0, one has
R, &

—— b la, R, 2 0. On—e positive s——olution R, =R,
&

is obtained for 6& 1, i.e., W(m) &0, and no real
solution exists for 6 &0, i.e., W(m) & W*. We thus
find two consistent solutions if

~
b/a

~
((1 and

a (uq, u6,y) = —(n —m)lC4[2u4+u6+y/(4 —m)]/2,
(56)b (u6,y) =3(n —m)E4[u6+y/(4 —m)]/4,

and W(m) given in Eqs. (39) and (49). Note that in
the present calculation we have assumed g) 0, and
therefore only positive (R, )0) solutions of (55) are
acceptable. Moreover, our previous assumption
u6+y/(4 —m) & 0 ensures that b & 0 and a (0 [see
(56)]. In the limit g » 1 (or equivalently r„~&&1)
one has 0 & R «1, which indicates that only those
roots of (55) which are positive and small are com-
patible with our assumptions. Equation (55) will
yield two positive solutions

R, ) ——( b/2a)[1+6, '/ —]
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b/a &4W(m)/b. The simplest way to fulfill both
requirements is to choose x and y of 0 (u6),
u4»u6, and u4+3U/(4 —m) &0 (i.e., W(m)~0 ).
Note that in the isotropic case (Sec. III), the simul-
taneous existence of R, ~

and R,2 would have implied
u4 »u6 and u4 ——C(m)u6 [i e. , W(m)~0 ],
which are evidently incompatible. It is only the ex-
istence of the additional quartic variable U which en-
ables the simultaneous fulfillment of both require-
ments, thus making it possible to obtain two tricriti-
cal points. In terms of g the two tricritical points
are located at

g, t ——( —2a/b)[1+4'~ ]

g, 2 ——( —2a/b)[1 —6'~ ]
(57)

To summarize the large-g limit calculation, we
present in Fig. 6 lines of tricritical points in the
(g, u4) plane for increasing values of u6 (with x and
y set to zero for simplicity). When u6 ——0 (solid
lines), one has b=O in Eq. (55). In that case the
problem reduces to the usual cubic one treated in
Ref. 17. There is a single tricritical point at
g, =[—a/W(m)]' which exists only for W(m)
&0, i.e., u4& —3U/(4 —m), and terminates at the
(g=O) n-component tricritical point (point A in Fig.
6). The limit g~O+ will be discussed in Sec. VII
where we show that the lines of tricritical points ap-
proach the u4 axis tangentially. For u6 ——0 (u6&0)
this occurs at point A (B) of Fig. 6. By turning on

itg

III
I I

I i

I

FIRST-OR DER
TRA N SIT I ONS

I

I

F I R ST-0RDE R
TR AN S I TION

OUS
ONS

FK1. 6. Schematic (g, u 4) phase diagram with
m &n —m for u6&0, x =y=O. Tricritical lines (solid
lines for u 6

——x =y =0 and dashed lines for u 6 ~ 0,
x =y=O) separate regions of continuous (above the lines)
and first order (below the lines) transitions. Limiting
values of u4, for ~g, ~

~oo, are given by W(m)=0.
Points A and B correspond to 8'(n) =0.

u6 &0 the lines of tricritical points (dashed lines in
Fig. 6) are shifted towards more negative values of
u4 (in particular, for g=O, point A is shifted to point
B) .As explained before, a single tricritical point g,
is obtained for Q& W(n), W(m)&Q. In the range
W* & W(m) (0 ttoo tricritical points g„and g, 2 are
obtained. Note that the region of continuous transi-
tions enclosed by the region of first-order ones
grows wider as u6 increases. The same type of
behavior is realizable for g & 0 and m ~n —m.

VII. PRELIMINARY RG ANALYSIS
OF THE TRICRITICAL REGION

In the limit g « 1. the integration over S„(if
initially r„&r ) can be performed only after 1*
iterations (see Sec. III). At this point one has
r„~(l*)=O(1), which allows the elimination of the
noncritical (n —m)-components [using a simple per-
turbation expansion in powers of u 4( l*), v (1*),
u6(l*), x(l*), and y(l*)] to obtain an effective m-
component cubic Hamiltonian of exactly the same
form as (50) and (51) in which all the coefficients
are 1* dependent. We then locate the tricritical
point using the tricriticality condition (54), i.e.,
W ff(m, l*)=0. The answers, obtained in terms of
the renormalized parameters [u4(l*),U (l*),u6(l*),
x (1*),y (1*)]are then related to the initial parameters
[u4, u, u6, x,y] by solving the recursion relations of
the RG transformation.

When g&0 (g & 0), the quadratic term (r
~

S
~

)/2
in the GLW Hamiltonian (50) splits into two terms,
i.e.,

(r JS
/
+r„/S„[ )/2,

with r and r„defined in Sec. III. Under the
iteration of the RG, (35) and its renormalized coun-
terpart A (1) remain in the same parameter space to
leading order in e. To O(e, u6, x,y) the differential
RG recursion relations for r~(l) and r„~(1) are
given by Eqs. (20) and (21) (with Kd replaced by K4)
to which new contributions (generated by U), i.e.,
12K4U(1 r) and 12IC—4U(1 r„), respectively—,
have to be added. Provided that r (1) and r„~(l)
do not become too large [i.e., r;(l)(O(1), i =m, n
—m], the RG flows in the (u4, u, u6, x,y) space are
not affected [to O(e)] by the breaking of the isotro-
pic quadratic symmetry. This implies that Eqs.
(38)—(42) are still applicable. The equations for
r~(l) and r„(l) can be solved by the same pro-
cedure adopted in Sec. IV, namely by reintroducing
the original variables r(l) and g(l), which decouple
the recursion relations for r (1) and r„(l). Under
the RG transfoririation the evolution of r and g is
given by
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=2r +4(n +2)K4u&(1 r—)+12K4v (1 r—), (58)

=2g —8L4u4g —12EC4Vg . (59)

Given u4(1) and v(l), the solutions of (58) and (59)
are obtained with the use of methods similar to
those in Ref. 17. Defining Au4(l)=u4(l) —u4 and
4v (I)=v (1)—vc, the solutions may be written

g (1)=exp(ill )g(l),
l

(;(l)=(((0)exp —f [8Kxkx4(l')
(60)

and

+ 12Kqhv(1')]dl'

r (1)= t (1)—2(n +2)Kgu4(1) —6K~v (1),
t (1)=exp(k. ,l)t(l),

((I) t(0)exp =—f [4(n -p2))(', kx„()')

(61)

where the eigenvalues

+ 12Kqhv(l')]dl', (62)

A, , =2—[2(n —1)/3n]e,

A~ =2—[(n —2)/3n]e
(63)

correspond to the unstable borderline cubic fixed
P01Ilt

u 6, x, and y in the vicinity of the unstable cubic
fixed point to calculate universal amplitude ratios.
This follows from the fact that the RG flow takes
the system away from the linear region, and it is
precisely in that region where tricriticality occurs.
Note that in the isotropic case (Sec. III) the assump-
tion u4(0)/u 4 «1 was in a sense equivalent to a
linearization in the vicinity of the Gaussian fixed
point; however, in that case the assumption was jus-
tified (as was checked explicitly) because tricriticali-
ty occurred in a region close to the n-component tri-
critical line u&(0)=0, and still far from the stable
Heisenberg fixed point. Although in the cubic prob-
lem the situation is different (because the RG flow
takes the system away from any stable fixed point),
an analysis based on a linearization in the vicinity of
the cubic fixed point will still produce all the
relevant qualitative features and serve as a prelimi-
nary starting point for a more complete analysis of
the problem. In particular, the various exponents
obtained from such an analysis should be correct be-
cause these should depend only on the nature of the
fixed point.

Linearizing Eqs. (58), (59), (46), and (47) about the
cubic fixed point, we obtain

A, I
g(l)=ge ', (65)

A, ,lt(1)=t(())e ', t(0)=r+2(n+2)K4u4+6K4v,

(66)

u 4 ——[1/12K4n]e,

vc ——[(n 4) /36—K4n ]e,
c~6 =&c=3'c=o

(64)

u4(l) =u4 + [2(4—n)/(n +2)]
X [3W, (1)/(4 —n) —W, (1)/2], (67)

v(l) =vc —[2(4—n)/(n +2)][W,(l) —W2(l)],
To solve for uz(1) and v(l) we first transform to
u4(l) [Eq. (43)] and v(l) [Eq. (44)]. Their respective
equations (46) and (47) have been solved some years
ago in Ref. 17 with the use of techniques developed
by Rudnick. ' The solutions are parametric' ' and
cannot be expressed as simple functions of l. In
principle, given uz(l) and v(l) we can solve Eqs.
(40)—(42) with u4 and v replaced by u& and v to ob-
tain u6(l), x (1), and y (1) (generally the solutions will
again be parametric). CJiven u4(l), v(l), u6(l), x(l),
and y(l) as functions of 1, one transforms back to
u4(1) and v (1) and afterwards salves far t(l) and g(l)
in Eqs. (60) and (61). We should like to emphasize
that in the cubic problem it would be quantitatively
erroneous to linearize the equations for g, t, u4, v,

(68)

W[(l) = W[(0)e '

W[(0) =u 4+ v /2 —[(n —1)/36K4n]e,
(69)

W2(l)= W2(0)e ',
W2(0) = W(n) =u4+3v/(4 n), —

2 [(4 , n)
——/3 n]

—e

(70)

and As, A,„u4, and vc were defined, respectively, in
Eqs. (63) and (64).

Linearization of Eqs. (40)—(42) now yields

x' =(—2+2e) x
6(n +5) 0 6
12(n —4) 15(n —1) (n —7) x

3n
(
12(n —4) 15 (8n —5) y

(71)
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The three eigenvalues associated with these equa-
tions may be written as

k6; —— 2—+2@ e—x;/3n +0(e ),
where x; are the roots of the cubic equation

x —(29n+10)x +(258n +288n —132)x

(72)

(u6(l), x (l),y(l)) w(l, b„(n),b„(n))e "
with

2 14
b (2)= —, , by(2) = ——,

b„(3)= ——,, by(3)= —3.891 .

(74)

The coefficient w is equal to a linear combination of
I

(—720n +1260n +1260n —3240) =0 . ('73)

For n = 1 this has a single real root, x=0, recovering
the expected Gaussian eigenvalue A,6 ———2+ 2e.
For n=2 the roots are x;=14, 24, and 30, i.e.,
A,6;——2 —e/3, —2 —2e, —2 —3e. For n=3 we find
x;=(67+V313)/2, and 30, i.e., A.6;——2 —0.7393m,
—2 —2.7051m, —2 —4e/3. Similar solutions can be
worked out for higher values of n, but the cubic and
Heisenberg fixed points are expected to interchange
roles for n )4. '

The initial values of u6, x, and y may now be ex-
panded in terms of the eigenvectors of the above
eigenvalues. After a large number of iterations,
(u6(l)~(l),y(l)) will be approximately proportional
to the eigenvector of the least negative eigen-
value, i.e., A6; ——2 —a (n)e, with a(2) = —, and a(3)
=0.7393. Having calculated the corresponding
eigenvectors, we find

u6(0), x(0), and y(0) which represents the projection
on this eigenvector,

w =0.45u 6+0.5625x —0.0375y,

~=0.3148u6+0.9516x —0.3391y, n =3 .
(75)

In what follows we shall assume that w & 0.
Having solved the recursion relations in the linear

regime we select a value of I* by requiring' (24)
with t(1) and g(l) given, respectively, in (66) and
(65). At that point the renormalized Hamiltonian
A (1*) is noncritical with respect to fluctuations in

S„~ which are then eliminated in the usual way
(Sec. III) to obtain the effective m-component cubic
Hamiltonian (50). The various parameters in (50)
(which now depend on 1*) are given by Eqs.
(14)—(16), (52), and (53). In A,ff(l") we easily iden-
tify a temperaturelike variable t,ff r ff —0(e)—. Tri-
criticality (t) will be obtained when t,ff,
= W,ff,(m)=0. To leading order, the condition

ff t 0 implies Eq. (25) with t (1) and g (1) given,
respectively, in (66) and (65). Finally, the condition
(54), i.e., W,ff, (m)=0, is imposed with u4( ), U( ),
u6(l), and y(l) given, respectively, in (67), (68), and
(74). One should note, however, that the term of
0 (u 4)=0(e ) in (54) is of higher accuracy than the
one we have been working with, i.e., 0 (e),
throughout this calculation, and therefore should be
neglected. Recall that in the large-g limit analysis of
this term was responsible for the existence of an ad-
ditional tricritical point (see Sec. VI); however, in
the g ~&1 limit the mechanism is different. Substi-
tuting (25) from (26) we obtain g (l*)=1, which
[with the use of (65)] implies

(76)

Equation (54) now becomes

u4(l~)+3U (1*)/(4—m)+ C(m)u6(l*)+8 (m)x (1*)+A (m)y (l~)+ 3(n —m)I
&
(1)[u6(l*)+y (l~)/(4 —m)]=0 .

(77)

Substituting u4 and U from (43) and (44), this becomes

u4(l*)+3u(l*)/(4 —m) ——,K4(n —m)ln2 u6(l*) ——,ln2K4(n —m)y(l~)/(4 —m) . (78)

We now argue that for large 1* one may replace u6(l~), x (1*),and y(1*) by their limiting behavior [Eq. (74)].
Inserting also the values for u4(l), U(l), and exp(l*) the tricriticality (t) condition (78) becomes

Ag, '+Bg, '
Cg, '+ 8'2, (0)=0, — (79)

where

y] ——A, p/A. g [(4 n) /6n——]e, y—2
——(Xp —A. $ ) /A. g

——[(4+2n) /6n]E,

Q3 —(A2 A6 &)/Ag= 1+[(1/3n)+a (n)/2]e
(80)

i.e., g3 ——1 + e/3 for n =2 and g3= 1 + 0.4808m for n =3. The coefficients in (79) are given by
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3 = [ [3(n —m)(n +2)]/[(4 —n) (m +2)]](—vc), B = ( [6(n —m)]/[(4 —n)(m +2)] j Wi(0),
C = [(n —m)(4 —m)(n +2)X4]/[2(4 —n)(m +2)][3ln2+3 in2bz(n)/(4 —m)]iv .

(81)

(82)

Note that in the regions of interest A, B, and C are positive whereas W2(0) &0. When g —+0, the first term
dominates the g dependence (P& & f2 & gz) of Eq. (79), and we obtain

Wz, (0)= W, (n) =[u4+3u/(4 n—)], o:g, ',

where we have deliberately not written the ampli-
tude explicitly to emphasize that the present calcula-
tion is only correct qualitatively for nonuniversal
features. Note that the relation gi —A.z/As, which
depends only on the nature of the cubic fixed point,
is quantitatively correct (in fact it could be obtained
from scaling arguments in the vicinity of the un-
stable cubic fixed point). Moreover, since Pi &1, it
follows that the line of tricritical points approaches
the (g=0) tricritical point W(n) =0 (points A and B
in Fig. 6) tangentially to the uq axis. Eqs. (82) and
(48) show that as u6 (&0) is increased for given
values of u4, v, x, and y, the tricritical points occur
for lower values of g, (see Fig. 6). Similarly, for
given g, v, x, and y, u4, is shifted towards lower
values (e.g. , from A to B in Fig. 6) as u6 ( &0) is in-
creased.

From Eq. ('79) it is clear that there is a range of
values for W2(0)= W(n) for which tivo solutions
(g, i and g, z) exist. Note that the new effect predict-
ed here is expected to occur in regions below the m-
component tricritical plane, i.e., for

~

Wz(0)
~

&
~

W(m) ~. This follows from the fact that the
function

F(gt)=~gt +Bgt Cgt—
grows initially (due to the first two terms) reaching
to its maximum at g,

* and then bends back (due to
the last negative term). It follows then that for

~

W(m)
~

&
~

Wz, (0)
~

&F(g,*), the line —W2, (0)
=const will intersect the curve F(g, ) turice, thus
yielding two tricritical points.

In this section we have presented a preliminary
RG analysis through which we tried to show the
qualitative mechanism leading to two consecutive
tricritical points. In terms of RCr flows, one should
note that although u 6, x, and y are irrelevant (decay-
ing to zero for sufficiently large l), they may drive
[u4. +3v/(4 —m)] towards higher values in the first
few iterations. Later, v takes over (being relevant
near the unstable cubic fixed point} in driving u4 to-
wards negative values. If one starts sufficiently
close to the m- [or (n —m)-] component tricritical
plane and below it (just outside region a of Fig. 4),
then the RCx flow crosses the plane twice. In region
b of Fig. 4 the RG flow will drive the system to-
wards the m-component tricritical plane, and there-

fore we again predict the diagrams of Figs. 2(b) and
2(c).

It is worthwhile emphasizing that all our results
were based on the model Hamiltonian (35) in wllich
many higher-order terms were ignored. Although
these higher-order terms are irrelevant, they are ex-
pected to modify the scaling fields and thus change
explicit expressions like (48). However, they will not
change the qualitative features of the phase dia-
grams. Because of these additional irrelevant terms,
one should not apply our conditions for obtaining
these diagrams, e.g., u 6+y/(4 —m) & 0 or w & (),
directly to real systems. Particular cubic systems
(with v &0) may exhibit any one of the diagrams in
Figs. 2 and 5.

It should also be emphasized that we have ignored
here explicit direct dependence of uq, v, u6, x, and y
on the anisotropy g. Such dependences may yield
the diagrams of Figs. 2 and 5 already within
Landau's theory. However, Fig. 5 will be obtained
within Landau's theory only if (u4+v) has a very
special dependence on g (it must change its sign
twice). Such restrictions are not necessary in our
theory. In addition, fluctuations will modify the
shapes of the diagrams and the related amplitude ra-
tios.

VIII. EXPERIMENTAL REALIZATIONS

To observe the new crossover predicted in Figs.
2(b} and 2(c) we must search for isotropic n
component systems which are also tricritical and
may be subjected to symmetry-breaking mechanisms
of the type given in (12) (for a discussion see Sec.
III). All (n =2)- and (n =3)-component physical
systems that we are aware of fail to enter this
category. The system of He- He mixtures
is described by an (n =2)-component isotropic
model ' ~ which exhibits a tricritical point. Howev-
er, there is no experimentally available quadratic
symmetry-breaking mechanism to break the symme-
try of the complex order parameter associated with
the superfluid transition. Transitions to incom-
mensurate phases, e.g., in K2Se04 (see Ref. 30)
where the phason mode is unpinned, are usually
described by isotropic (n=2)-component models. In
such cases, however, the relevant quantity is again
the phase of a complex order parameter and we run
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into the same problems as before, even if the system
could be made tricritical (which is difficult in itself).
In fact, most tricritical systems in nature are of the
Ising (n = 1) type, e.g., compounds undergoing
structura/ phase transitions such as ND4C1, '

NH4Cl, the a-P transition in quartz, metamag-
netic systems such as FeClz, etc. Obviously in this
case the symmetry cannot be broken.

It is therefore necessary to consider (n & 4)-
component systems. ' " These systems are charac-
terized by complex symmetries and exhibit
fluctuation-driven first-order transitions due to the
lack of an accessible and/or stable fixed point.
Their critical behavior is not characteristic of an iso-
tropic system (the GLW Hamiltonians which
describe these compounds contain a number of
fourth-order invariants' '"). However, under suit-
able symmetry breaking they will behave effectively
as an isotropic system which can be made tricritical.
A subsequent breaking of the symmetry will pro-
duce the new crossover predicted in this paper. A
possible realization of this type is the fcc type-II an-
tiferromagnetic compound MnO (n=8)."' A uni-
axial stress p &p, =5 kbar (Ref. 21) along the [111]
direction turns the fluctuation-driven first-order
transition of the eight-component antiferromagnetic
order parameter into a continuous one described by
an hexagonal two-component (S~,Sz ) order-
parameter vector [in the (111)plane]. ' Note that in
a hexagonal system the isotropy is broken only in
the sixth- and higher-order terms [for example, in
the present case (two-component system)]; there is
an additional terra (S~ —3S&Sz) which is invariant3 2 2

under rotations of 60. We believe that this should
not alter our predictions. Moreover, other com-
pounds with hexagonal symmetry, which show tri-
criticality and can be subjected to quadratic symme-
try breaking may provide additional experimental
test grounds for our predictions. For p &p, we
predict that a magnetic field (which in an antifer-
romagnet couples quadratically to the order parame-
ter) in the (111) plane will yield Figs. 2(b), 2(c), and
3 (u 4 is represented here by p, n =2, and m = 1).

To realize two consecutive tricritical points [Figs.
5(b) and 5(c)] we must look for cubic compounds
undergoing first-order cubic-to-tetragonal phase
transitions (u &0) which can be made tricritical and
in which the symmetry can be broken as in (12). We
suggest that the perovskite-type compounds BaTi03
(Ref. 26) or KTa„Nb& „03 (KTN) (Ref. 35) may be
suitable candidates. Increasing the hydrostatic pres-
sure on BaTiO3 (Ref. 36) or the concentration x in
KTN (Ref. 35) moves the parameters u4, u, u6, x,
and y through the n-component tricritical surface
8'(n) =0 given in (48), crossing in their way the m-
component tricritical surface 8'(m) =0 (for g&0) or

the (n —m)-component one (for g&0). Note that
this is achieved without breaking the symmetry of
the order parameter, but rather via a renormaliza-
tion of the various parameters through their depen-
dence on p or x. As this pressure (concentration) is
increased we predict that additional uniaxial stress
along, e.g. , [100],will yield the sequence of diagrams
shown in Figs. 5(a)—5(c) and 2(a) (n=3,m=1,2).

In a recent experiment a phase diagram like the
one shown in the upper part of Fig. 5(c), with m= 1,
has been found for the compound KMnF3 under
uniaxial stress along [100]. This perovskite crystal
(with u&0) is also a suitable candidate. In fact, in
some sense it is even better than BaTi03 because it
undergoes a weak first-order transition (BaTiO3 ex-
hibits a strong one). This implies that the parame-
ters in KMnF3 are probably close to the regions in
which the new effects are predicted to occur,
whereas in BaTi03 they are not (a hydrostatic pres-
sure of about 33 kbar is required to obtain a tricriti-
cal point3 ). In the above-mentioned experiment no
hydrostatic pressure was needed, which confirms
our arguments. We may say that the parameters in
KMnF3 lie in the region just below the Ising
(m= 1)-component tricritical surface (which is also
the instability surface). However, we must em-
phasize that in KMnF3 there is an additional com-
plication (not taken into account in the present
analysis) —its Lifshitz ' character, which could af-
fect the phase diagrams. We believe (and the experi-
ment confirnis this in some sense) that at least quali-
tatively our conclusions should remain unchanged
for m = 1 (for m & 1 there is no accessible fixed point
for Lifshitz systems of cubic symmetry and the
transition is expected to remain first order22).

Another possible realization of Figs. 5(b) and 5(c)
is TbP. "20 ~ A uniaxial stress or a magnetic field
along [111] may turn this n=4 fluctuation-driven
first-order transition into an n =3 (cubic) continuous
one. Additional uniaxial stress along [111],[111],
or [111]will then yield our new effect.

IX. CONCLUDING REMARKS

In the present paper we have shown that critical
fluctuations are able to driven an otherwise first
order transition (predicted by Landau theory which
neglects fluctuations) into a continuous one. We
have denoted this new type of phase transition as
fluctuations-driven continuous. We have shown
that they will always occur near tricritical points of
isotropic n-component spin systems.

Subsequently, we have shown that by applying a
mechanism which tends to weaken the critical fluc-
tuations such as a quadratic symmetry-breaking
field g, the fluctuation-driven continuous transition



DANIEL BLANKSCHTEIN AND AMNON AHARONY 28

becomes first order beyond a tricritical point, as in
Figs. 2(b) and 2(c). We would like to emphasize that
additional mechanism, which do not necessarily
break the symmetry of the order parameter, but
nevertheless weaken critical fluctuations, are possi-
ble. For example, we have recently shown ' that ap-
plication of hydrostatic pressure or uniaxial stress
perpendicular to the layered structure of some
metamagnetic compounds (these do not break the
symmetry of the order parameter) such as FeC12,
may induce new types of tricritical points (at which
the order of the phase transition changes). This new

type of crossover follows from the weakening of
critical fluctuations due to a dimensionality shift
from d =2 to 3 (see also Ref. 43). Additional
mechanisms, such as increasing the range of the in-
teractions, inducing a change from quantum to clas-
sical behavior, weakening of random linear fields,
etc., which tend to weaken fluctuations, may induce
similar effects.

Moreover, we have shown that in systems which
show fluctuation-driven first-order transitions
(which occur near tricritical points), there is a range
in which the symmetry breaking first turns the
fluctuation-driven first-order transition into a con-
tinuous one, and then turns it back into first order,
via two consecutive tricritical points [Figs. 5(b) and
5(c)].

A very important conclusion from the present
analysis is that under certain conditions (e.g. , nega-
tive fourth-order terms), higher-order (e.g., sixth-
order) terms in the GLW Hamiltonian (which are
usually neglected due to their irrelevance in the RG
sense) may play a crucial role. We have stressed
that although such variables (usually called
"dangerous" irrelevant variables) are incapable of af-
fecting the asymptotic critical behavior, they may
prevent it from occurring at all.

In this paper we limited the discussion to v~0
and u& + v&0, so that the ordered phases near the
transitions are tetragonal. As we mentioned in Sec.
V, the sixth-order terms may cause additional tran-

g il gal g 1 i

TP

(0) (b) (c)
FIG. 7. Conjectures schematic (g, T) tetracritical phase

diagrams for the cubic problem with U&0. Notation is as
in Fig. 2.
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sitions at lower temperatures, e.g. , into the
orthorhombic phase. A full analysis within the or-
dered phases is left for future studies.

The assumption that v &0 ensured that the phase
diagrams exhibited a bicritical point [Fig. 2(a)].
When v&0 (and u4 &0), tetracritical points are ex-
pected [Fig. 7(a)]. When the tetracritical point
occurs near the n-component tricritical point (on its
continuous side), calculations similar to those of
Secs. III and IV will modify Fig. 7(a) into Fig. 7(b).
When the n-component system has a first-order
transition then the situation becomes more compli-
cated and the phase diagram probably turns into
Fig. 7(c). Detailed calculations within the ordered
phases here are also left for the future.

In conclusion, we have shown that the interplay
between critical fluctuations, dangerous irrelevant
variables, and symmetry-breaking mechanisms
yields many new kinds of tricritical points. We
hope that the large number of physical realizations
that were suggested in Sec. VIII will stimulate fur-
ther experimental checks on our predictions.
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