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The dynamical response of a spin-glass is studied at the mean-field level for models in which the
total magnetization is conserved. The first model considered is totally dissipative, like the conven-
tional relaxational ones, but the Langevin equation is diffusive. In the k~O lixnit, the diffusion
constant is unaffected by the proximity of the spin-glass transition, but the region of k space in

which hydrodynamics is valid shrinks to the origin as T~Tg. In the rest of k space, the dynamics
are effectively the same as in the relaxational model, with a relaxation rate ~ T—Tg. At Tg, spin
correlations have the t '~' behavior of the relaxational model. Mode coupling is added in the
second model, and a self-consistent calculation gives a transport coefficient ~ [1n(T Ts)]'~'—[and
~ (1nco)'~ at Ts]. Sound propagation is also examined, and the sound-damping rate is found to have

similar logarithmic behavior. The sound speed varies smoothly through Tg. Below Tg we find new

singularities in the transport coefficient, spin-correlation function, and sound damping.

I. INTRODUCTION AND MODELS

An understanding of the dynamical behavior of spin-
glasses seems not only to be essential to the interpretation
of a wide variety of experiments, but also to be rather
helpful in clarifying the mysterious nature of the equilibri-
um spin-glass state. ' To date, however, most of the
dynamical theories along this line have dealt with models
in which the spin dynamics are purely relaxational. For
metalhc Ruderman-Kittel-Kasuya- Yosida (RKKY) spin-
glasses, Korringa relaxation of the impurity spins makes
these models natural. Even for insulating spin-glasses, it
would appear that such models are appropriate for very
long times, since the presence of random anisotropy or di-
polar forces breaks the rotational invariance of the
Heisenberg model and eventually makes the total magneti-
zation relax. However, these symmetry-breaking terms
may be quite small, thus many experiments may not be
sensitive to this feature. It is therefore relevant to exam-
ine the dynamics of rotationally invariant models in which
the total spin is conserved.

We have, in fact, studied such models a few years
ago. ' In the present paper we examine systematically the
questions raised there in the light of progress made in the
intervening time in understanding the dynamics of relaxa-
tional models. %e also have to revise and generalize some
of the conclusions we reached then.

As in that work, we use Langevin soft-spin models to
facilitate the formal perturbation theory. The effective
Hamlltonlsn ls

venient to define b, =g. 5;J; b, occurs frequently in our
formulas below.

We consider two kinds of dynamics. In the first model,
thc I.angevin equation

2'= I &V' + rt;(t)
5S

(1.2)

is purely diffusive. The notation V means a lattice
second derivative; its Fourier transform is

d
—K (k)= —2 g (1—cosk& )~ —k as k ~0 . (1.3)

=1&V' +VS;x+I;,SJ.+f;(t) .
ss,-

(1.4)

Following the conventional terminology of the critical
dynamics literature, we call this a "mode-coupling"
model. In either model the noise rl;(t) satisfies

pe "{rt; (t)rt;tt(t'))=2T1 + (k)5(t t')5,tt. —

The appearance of I'OV rather than the simple constant
—yu of relaxational models refiects the conservation of
spin.

In the second model, BS;/Bt acquires another term,
representing the nondissipative motion of the magnetic
moments in the exchange fields of their neighbors,

where the exchange bonds J;~ src independent Gaussian
variables with zero mean and variance 6;j. It is con-

For formal purposes, it is convenient to generalize all

the foregoing to 3n-component spins, with the equations
of motion (1.2) and (1.4) valid for each of the n triplets of
components S (1(I ( tt). This permits ail expansioil 111
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1/n, in analogy to the strategy of De Dominicis and Peh-
ti in a different problem.

The diagrammatic perturbation theory for these models
(in both the lattice coordinates and k space) was described
in Ref. 7, to which the reader is referred for details. Here
we just mention that a solid line stands for the susceptibil-
ity, a small square for the interaction u, and a closed circle
for the mode-coupling vertex AJJ. The bonds Jlj. in the
equation of motion are represented by wavy lines, and the
averaging of these random factors is given by linking
them together in pairs, the resulting linked pair giving the
variance b„.j. Correlation functions C,J(t) are indicated by
"circled lines" in the standard fashion. ' Equivalently
they can be thought of as made up of two susceptibility
lines joined by a noise vertex Ap(k) =2/I pK (k). In gen-

eral, we can write

proportional to the local strain of the lattice; this change
is of the same sign as the original bond strength, regard-
less of whether the bond is ferro- or antiferromagnetic.
This is supposed to represent the situation in, e.g.,
Eu„Sr& „S2, where, for example, moving two magnetic
ions closer together increases wave-function overlap and,
thus, the magnitude of the exchange, whatever its sign.
This model is slightly different from those studied earlier

by us and Khurana, "' where the strain was coupled ef-

fectively to the spin magnitude S; rather than to S;.S;+, .

For our purposes here it is effectively the same as that
considered recently by Fischer. '

In diagrams we indicate the phonon propagator by a
wavy line. Having now run out of diagrammatic symbols,
we cannot consider any further variants of these models in
this paper.

C(k, ro) =6(k, ro)A(k, co)6(k, —co), (1.6)

C(k, ro) = ImG(k, co)
2T

(1 7)

was violated in the presence of the randomness. What is
true is that one cannot use A =Ap in Eq. (1.6),

ImG(k, co)@
i
6(k, ro)

i

'
TI pK (k)

but this is not the FDT. Fortunately, no incorrect con-
clusions were drawn from this statement; on the contrary,
the necessary vertex corrections replacing Ao by A were in
fact taken into explicit account.

we w111 also want to examine sound propagation ln
these models. " ' We do this by adding a dynamical
piece to the bonds J,z ..

J,t+e ~J't+. =&, i,t+. (I+g~„A„»

where V& is a lattice gradient and f;& is a lattice displace-
ment field. The phonons have a zeroth-order Hamiltonian

Hp ———,
' g [Cp(Vqf;p) +rr;„] with m;q g;.q (1.10)——

and a coupling to the spins, by virtue of (1.9},of

Hsp =g' g Jr, t+e„~i 4 ps St+a„
l,P

where A(k, ro) is a dressed noise vertex, as in Refs. 3 and
4.

Incidentally, in Ref. 6 it was incorrectly stated that the
fluctuation-dissipation theorem (FDT)

II. PURELY DISSIPATIVE MODEL;
SUPPRESSION OF DIFFUSION

A. T~Tg (m~O)

At the level of approximation we adopt throughout this
paper (leading order in 1/z, where z is the coordination
number of the lattice and spin dimensionality n = ap), the

spin susceptibility is dressed by the self-consistent self-

e~ergy insertions of Fig. 1. Thus we effectively consider a
spherical model, whose statics were solved by Kosterlitz
et al. ' The loop diagram is frequency independent, so we

just incorporate it into the static inverse susceptibility r
along with the zero-frequency part of the term propor-
tional to 6:

0

6 '(k, to)= +r+ —g [6(k,O}—6(k, ro)] .
I'pK (k)

(2.1)

We observe immediately that since g is k independent,
the transport coefficient, defined as the inverse of the
coefficient of irolk in —6 '(k, ro), is unchanged from
I p. However, if we define a k-dependent generalized
transport coefficient I (k, ro } by

6 '(k, ro) = +r, (2.2)
I'(k, ro)K (k)

the result I'(k, O)-+1 p holds only for k —+0. To see this,
just expand the last term in Eq. (2.1) in ro. For co~0 we
let

The I.angevin equation for the lattice is simply that for
coupled damped oscillators

+b1 1

1 (k,O)K (k) 1 pK (k)
(2.3)

lP ~+ 2+7 p
g

+tip (1.12)

with the driving noise subject to

g e "(g;„(t)g,„(t'})=2TypK'(k)5„+(t t') . —

(1.13)
FIG. 1. Self-energy diagrams for the purely dissipative

In this model the local exchange is changed by an amount model.
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and solve for b. We obtain simply

b= 1 +b G'(k, o)r~'(k)

so that

b
5 ~ 1

r Nrc(1 —5110) k K (k)

where

II,=—g G (k, O) =—,.1 2 1

N k r

(2.4)

(2.5)

(2.6)

I' ~ Vui/k

—————Diffusive linewidth ———————~~~

Normal diffusion

L&

Since Ellfi~l as T~Ts, b diverges as (T Ts) —', and
I ' can be written as

K'(k)a 01+
r(k, o) r, 1 —all,

[1+K'(k)g']=r,

(2.7a)

(2.7b)

Q ~ lT-Tgl 8 p
2

FIG. 2. Regions of (k,co) space with different effective
dynamics for the purely dissipative model of Sec. II.

in terms of a spin-glass correlation length g. [The param-
eter aii in Eq. (2.7a) is the average of 1/K (k) over the
Brillouin zone that appears in (2.5). It is finite for d & 2.]
Thus whenever g k »1, the effective static kinetic coef-
ficient I (k, o}K (k) is approximately k independent rather
than proportional to k,

1

I'(k, o)K (k)

2
0(".

I 0 T —Tg
(2.8)

Hence when T is near Ts, the co—+0 dynamics in most of
k space are relaxational rather than diffusive. There is a
small region (kg«1) where hydrodynamic behavior is
still present, but it shrinks to nothing as T~Tg. The
behavior of the effective kinetic coefficient in the relaxa-
tional region is the same as that for the previously studied
relaxational models, ' ' namely, a critical slowing
down. From now on we set r =T, so the susceptibility
follows a Curie law above Ts.

aoroK (k)
I (k,co)K (k)=I OK (k)1+

( —i~r~,'/T)'"
(2.10)

Thus at every k there is a characteristic frequency
oik=T(ask) I ok below which the spin transport be-

comes singular. In this region

—iI @co

' 1/2

r(k, co)K (k) =
COT

(2.11)

again in correspondence with the result for relaxational
models. '"-"

This same analysis also applies above Tg whenever the
co b (ro) term in (2.9) is much larger than the linear term
on the left-hand side. This amounts to the condition
co » TI ~0/g .

B. T=T (andre»Treaolg )

The above static calculation has a frequency region of
validity that shrinks to nothing as T~Tg. We proceed to
treat the situation at Ts as we did in Sec. II A for T & Ts,
but we include the frequency dependence of the effective
transport coefficient r(k, co), or, equivalently, of the pa-
rameter b in (2.3). Now, to find a nontrivial result, the
right-hand side of (2.1) must be expanded to second order
in b(co), since the linear terms which led to (2.4} cancel
when b, llo ——1. Truncating the expansion at the first op-
portunity, we obtain

ImG/~

icoao ~—b (~)—i~b(a))(1 —611 ) = +0 I T
(2.9)

I I

Ioa/S Io a k

I

&ok

where we have approximated EIIO-1 except on the left-
hand side. At Tg, the left-hand side vanishes, so
b(co) ceto '~ . Equivalently, the effective kinetic coeffi-
cient is

FIG. 3. Schematic picture of the neutron line shape expected
in the model of Sec. II. The dotted line is the continuation of
the normal diffusive Lorentzian.
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C. Line-shape analysis

The resulting shape of the spectral density ImG (or of
the neutron scattering line shape a: ImG/co) can be quite
interesting. Figure 2 shows the regions in (k, co) space
where the anomalous kinds of behavior we have discussed
occur. There is a large area where the usual hydrodynam-
ics is valid, but below the line pip/I pk T = (apk) and for

kg & 1 the diffusion becomes effectively relaxation-

al (I - ilk ). Within this latter region there is a further
dividing line ro/I'pk T=a plk g, well below which I' be-

comes approximately frequency independent, but above

which one finds the singular frequency dependence (2.11}.

We note that for kap &&1, both crossover frequencies
T(kap)21pk~ and TI ~p/g are small compared to the
diffusive linewidth TI,k . Thus what one expects to ob-

serve is a narrow peak on top of the normal diffusive
Lorentzian line (Fig. 3). The width of the extra peak is
roughly Tl ~ /g and its height (

ccrc

/I p) is a factor
(gk) greater than that of the underlying diffusive line.
The extra peak has co

' wings extending out to roughly
pi =TI pu k N.ote that the width of the extra peak is not
the static limit of the effective kinetic coefficient calculat-
ed in Sec. II A. That quantity was proportional to g or
T —Ts, while the linewidth was proportional to g or
(T —TE) .

III. MODE-COUPLING MODEL

We now add the spin precession term to the equation of motion, as in Eq. (1.4). Now the transport coefficient can be
changed from I'p, even at k =0. We take as our starting point the corrections calculated above and proceed to do pertur-
bation theory in the (formal) mode-coupling parameter A, . We start with the equation of motion (1.4), which we write
out explicitly as

+rp 5kp —J(k,p) Sp(co)= ——g I [Sp(cubi) Sp (co2)]Sk p p ( pii ——pip)
I pK'(p) N

p p (2m }'

I pK (k)&4N P~P

dc@i rjk(co}
X Sp(pii) x Sp (pi —p~i)+2n' I pK2(k)

(3.1)

Perturbation theory proceeds by iteration and averaging over the distribution of J's. We have seen that for A, =O this
averaging leads to an effective kinetic coefficient 1 (k,ro)K, so we can sum up the effect of all the terms of Fig. 1 by re-

placing the left-hand side of (3.1) by

Gi '(k, co)Sk(ro) =— +r Sk(co) .
I'( k, co)K2(k )

(3.2)

What about the right-hand side, in particular, the A, term? We argue that the correct procedure is to replace the 1 pK in
the denominator there by I (k,co)K as well. This makes the effective equation of motion

5Sk(r) = —I dt'I (k, t —t')K (k)rS„(t')+, g I[J(k —p p') —J(k —p',p)]S (t) &&S (t)]+i)„(t) . (3.3)
p~p

That is, the corrections we have made so far just replace I p by I (which has nonlocal space and time dependence} but do
not change the A, term in the equation of motion. This is physically reasonable —a change in the friction coefficient
should not change the undamped (inertial) term in the equation of motion. [There is no explicit term proportional to u

on the right-hand side of Eq. (3.3) because at the present one-loop order (sufficient to first order in T —Tg ) effects of the
quartic interaction have been included in the definition of r (Fig. 1).]

We now proceed to calculate the further corrections to the effective transport coefficient when A&0. The first correc-
tion comes from Fig. 4. Following Ma and Mazenko, who worked out the corresponding problem for a ferromagnet,
we identify the bubble in the diagram as G (k, 0)5I /I', where I' is the effective kinetic coefficient in Eq. (3.3):

T = g( [J(k pp') J(k —p',p—)][J(p——k, —p') —J(p +p', k)])„sr
I (k, co) NI (k,co)K (k) p,p

let)
C p p G PtNP,N —CO

2m I'(p, co')K (p)
(3 4)

As we noted above, in most of reciprocal space, the correlation and response functions, as well as I E, are independent
of momentum. Thus we replace them on the right-hand side by local p-independent quantities. Then the average over
the distribution of the J's and the sum on p and p' is straightforward. Using a nearest-neighbor model, for which

(J(ki,k2)J(k3, k4)),„= g [cos(k»+k3&)+cos(k» k4„)]5k,+k, —
N1 „

(3.5}
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coupling corrections just described. Then Eq. (2.11) be-

comes

k,co 1 (k,co)K (k) =
1/2

i I {co)co

aoT2
(3.9)

I

p ep gap

FIG. 4. Lowest-order mode-coupling correction to the
response function.

in most of k space, and thus
1/2

2~o
C(k, co) =

TI {co)co
(3.1O}

we find a k-independent result:

dco', , aoT
5r(~) = J' C(~—~ )G(~ ) —rI ~

' 1/2

(3.6)

These modified forms must then be put into the calcula-
tion of 51 {co). Equation {3.6) then becomes

~ ao~ dco' 1 ~ ao d lnco'
51 (co}=

2T d 2n co'I (co') 2nd I '(co')

(3.1 1)

As far as the singular behavior is concerned, we can take
the G(co') in the integral to be independent of frequency.
Since C also has inverse-square-root behavior, the integral
is logarithrnically divergent at m=0 and T —Tg. There is
a natural upper cutoff for the integration at co'= Tl pap
the lower cutoff depends on T —T and co. For co=0 and

2
g

T & Ts, the lower cutoff is TI pap/g, leading to

5r(O) = ln
2A, ap

(3.7)
n'dI p ao

In the other limit (T —Tg ), the lower cutoff is co itself:

~ ~o TIQ
5I (co) = ln

z + , i n sgnco—, (3.8)
2n'1 pd aP co

i

again to logarithmic accuracy. We note that 5I has an

imaginary part (finite in the co~0 limit at Tg ), so there is
a hint of a tendency to propagate waves in the spin-glass
phase. These corrections are manifestly the leadings ones
in a 1/d expansion.

In Ref. 7 the result 5I cc g was obtained by a combina-
tion of two errors. The first was that a bad approxima-
tion for C(co—co') was used: It was taken to be a
Lorentzian of width Tl (k,O)K (k). As we have seen, the
true line shape has inverse-square-root wings and a central
peak which is much narrower than Tl'(k, O)K
[0((T—Tg) ) instead of 0(T Tg)]. The seco—nd was
that the replacement of I o by I (p, co') at the right-hand
vertex of the diagram was ignored. This is a very serious
error in most of reciprocal space (pg»1). [A technical
note: whether to call this correction a vertex or a self-

energy correction is a rnatter of convention. Here we fol-
lowed this formalism outlined by Ma and Mazenko, '
where 6 is the dynamical susceptibility. In the alternative
formalism' where the factor (I K )

' is absorbed into 6
instead of appearing in the vertex, these corrections are
propagator (self-energy) corrections rather than vertex
corrections. ]

We now make the calculation self-consistent by feeding
these corrections back into the calculations of Sec. II. We
recalculate I (k, co) as we did there, but with I p replaced
by I (co)=I o+5I (co}, the result of including the mode-

The upper cutoff in the integral is at co'=TI (co')ao and

the lower cutoff is at the larger of TI (co')a pl( and co. In
the high-frequency region [co» TI {co)a o /f'] we set
51'{co)» I o, so 51'(co)=I (co}. Then it is clear that a
I (co) proportional to (lnco ')' will solve (3.11}. Keeping
only the leading singular term, we get

A, ao TI Q
2 2

' 1/2

I (co)= lnndap2 '/ co
/

(3.12)

in this region [and for all co g& TI (co)ap at T~]. We can
fix the imaginary part by analyticity, i.e., by letting
ln

~

co
~

'~in
~

co
~

'+ ,

'iver

sgnco, —sowe have
' 1/2

Qor(~)= ln
TFQ

ap fcoi

+ l VT sgnM

41n'i TI'p/ap
i

co
i

(3.13)

at small co. The imaginary part of I {co) thus goes to zero
at co=0, in contrast to the finite limit found [Eq. (3.8)] in
the non-self-consistent calculation above. In both the real
and the imaginary parts of I the anomalous behavior is
weakened by the self-consistency effects. As co~0 our re-
sult goes over to

1/2

4A, ap
r(O)=

Kd ao

(again keeping only the leading log). These results could
have been obtained, within factors of v 2, by simply re-
placing both 51 (co) and I p by I (co) in {3.7) and (3.8); that
is, the fact that the I '(co') appears inside the integral on
the right-hand side of Eq. (3.11) rather than as an external
I '(co) factor makes only a quantitative difference. The
same fractional logarithm is obtained either way because
I '(co') varies so slowly relative to 1/co' itself. The con-
dition for the validity of the results (3.12)—(3.14) is clearly
that the singular correction 51 {co) must be much larger
than 1 o. In the opposite limit, Eqs. (3.7) and (3.8) apply.

%'e do not go explicitly through a line-shape analysis as
in Sec. II0 again, since the only change is that wherever
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I 0 appears in that discussion it should be replaced by
I {co). With this slightly nonlinear distortion of the fre-
quency axis in Fig. 2, the previous description remains
valid. We expect these corrections to be very hard to
detect experimentally, since they involve only logarithmic
corrections to power-law behavior. The exception to this
statement is the long-wavelength region k(&pl, where
there is no power law to mask the logarithm.

Though we have only considered the case of infinite
spin dimensionality so far, the critical properties above Tz
are not expected to change (as long as we are above the
upper critical dimensionality) for finite n T.his was
shown exphcitly for the relaxational model in Ref. 18.
The point is simply that the multiple-loop corrections to
Eq. (2.1) all remain finite as T~T~, so they just lead to a
corrected r. The generalization to the diffusive case and
A,&0 are trivial.

IV. SOUND PROPAGATION

We now couple sound to the spin fluctuations via the
model of Eqs. (1.9)—(1.13). To leading order in the re-
ciprocal of the lattice coordination number, we then just
have to compute the polarization bubble to lowest order
(g ). It is simplest to compute it in real (lattice) space, as
shown in Fig. 5(a):

lmll(k, ~)
P N

k ru

3g Qo
ln min

2 fT p

TI o

&0 ao fee/
(4.4)

found them to be near Tz in most of the Brillouin zone

(kg»1). We now Fourier transform and take the long-
wavelength limit, since sound wavelengths of interest are
many lattice spacings:

II(k, c0)= I C(co')G(co co'—) . (4.2)
3kg 5 dm

d 21T

We note that for this model, vertex corrections of the

types we consider in Ref. 11—both those involving the
ladders of random bonds [Fig. 5(b)] and those from the

u(Si) interaction [Fig. 5(c)l~o not contribute at the
present level of approximation. (They do not vanish iden-

tically [see, e.g., Fig. 5{d)],but they are beyond mean-field
theory. )

We first note that II(k, co) is finite everywhere, and so
the sound speed and attenuation remain fmite. Now con-
sider the imaginary part

ImII(k, ro) = I C(co')C(co —co'), (4.3)
3Nk g 6 dco

4Td 2m.

using the FDT on (4.2). The integral is the same type of
logarithmically divergent quantity we encountered in Sec.
III. Thus the damping function

CN GQ) —N2' {4 1) without mode coupling, and

3g Qo
y(co) = ln min

A, v'md
(4.5)

for A&0 (to logarithmic accuracy). These divergences are
much weaker than those found for the model of Ref. 11.

We can obtain the change in sound speed from

where we have taken the sound to be propagating in the e]
direction and have taken the response and correlation
functions to be independent of momentum, as we have

l+e i+e i+e
5c (T)=c (T) c( oo ) = —II(k,0) ~0 .

k
(4.6)

(b)

This is quite simple to evaluate exactly for the present
model. We apply the Kramers-Kronig method to Eq.
(4.3):

y
dm Imll(k, co)

3kgb
2Td 2' 2'

(4.7)
Since C(t) =1 at r =0, we have simply

5c {T)=—,T&T~.2 3gh
2Td

(4.8)

FIG. 5. (a) Diagrams for II;J. The wavy lines represent the
factors JJ in H,~. (b) Example of a vertex correction involving a
ladder of pairs of random bonds. This class of corrections van-

ishes. (c) Example of a vertex correction involving strings of
bubbles. These also vanish. (d) Nonvanishing kind of vertex
correction involving "maximally crossed" ladders.

Fischer' found this behavior for high T, but from (4.7)
we can see that it holds everywhere above Tg.

V. EFFECTS OF WEAK ANISOTROPY

In this section we consider briefly what happens to our
results when the magnetization is not quite conserved.
This could come about from dipolar forces or (random)
anisotropy. We will assume that the effective Hamiltoni-



SPIN-GLASS DYNAMICS %ITH CONSERVED MAGNETIZATION

an (1.1) remains rotationally invariant, but that the dif-
fusive equation (1.2) is replaced by

as, 2 OH' =(-y,+I o'1)') + ~;(I)
Bt 5S;

(5.1)

with a corresponding change I oft ~1+ +yo in thc
noise statistics (1.5). This means there is a characteristic
length i=(l o/yo)' beyond which the spin dynamics
look relaxational rather than diffusive. Our results have
to be modified for q & i '. (We will assume i »ao; i.e.,
the magnetization is almost conserved. )

We start by repeating the calculations of Sec. II with
these changes. This is straightforward. In place of (2.7)
we find a general k-dependent relaxation rate y(k, O} given

by

Qo
y '(k, O)=, + . (5.2)

y, + I oK'(k} I'o(1 —&11o)

The parameter a o is now the average of [yo/I"o
+K (k)] ' over the Brillouin zone, but for large I/ao
this is nearly the same as before. For g/i(&1, y(k, 0)
goes as

yo k

y(k, 0)= I ok', I '&(k((g
I o/g, k))g

(5.3)

y(k, co) = yo+ I pk
1/2

ao
(yo+ I ok )—l 6)Eo

instead of (2.10). Thus the characteristic upper cutoff fre-
quency on the oi '~ behavior of y(k, ol) is now

cok=l o(l +k ) Tuo (5.6)

and remains finite even at k =0.
Turning to the behavior of the spin-correlation function

for general k and co described previously by Fig. 2, the
changes can be summarized as the following. (1) For
g((l, there ls Iio change, Qxccpt tllat tllc "noHI181 dif-
fusion" region now has I =yo/k + I o instead of I = I o.
(2) For g»1, the normal diffusion region no longer ex-
tends down to co =0 for kg (& 1. The upper shaded boun-
dary is given by (5.6), which remains finite [=Tyo(ao/
l)I] as k~0. This can be described pictorially by letting
the horizontal axis be k —I instead of k (i.e., moving
the vertical axis i to the right).

Flglll'c 3 ls ilot c11811gcd, cxccpt tllat tllc 110III181 dlf-

For g » i ' the diffusive region disappears, and we find

y(k, O) =I o/g' for all k. Thus the asymptotic behavior is
similar to that of the relaxation model —the relaxation
time becomes enhanced,

Tg
jeff ~0 T —T

(5.4)

but the ~o is ao/I o rather than yo '. Similarly, Eq. (2.9)
for b (oi} at finite co remains essentially unchanged. At Ts
we find

fusive linewidth TI ok should now be Tl o(k +i ), and

the crossover frequency olk where the oi '~ wings of the
central peak begin to rise above the normal Lorentzian is
TI oao(k +i ) . The qualitative shape of the line is the
same as before.

When mode coupling is added as in Sec. III, corrections
to I o, but not to yo in (5.1), are generated. These correc-
tions are still given by (3.12) —(3.14). One can sce that
this is true because the small region of k space where the
finite yo makes any difference [k &min (g ', I ')] is so
small that its contribution to the integral for 51(co) or
I (oi) is negligible. Thus we have in place of (5.3)

yo, k((1 '[I o/I (0)]'

y(k, ~)= r(0)k', [I,/I" (0)]'"i-'«k «g-'
I (0)/g',

(5.7}

in the low-frequency region co « Tl"(oi)ao/g, with I (0)
given by (3.14). Similarly, instead of (5.5),

yo+ I (co)k
y(kyoto)

TQO
1+ yo+ I (co)k—iNI (co)

(5.8)

where I (co) is given by (3.12), for

TI.'(oi)ao/g «co «Tl (ol)(k +i ) .
As in the case without mode coupling, the presence of a
nonzero yo in (5.8} makes very little difference except at
very small k. At k =0, the boundary between cu

'~ and
noimal Lorentzian behavior in C(k, ~) [the frequency
above which y(k, oi) =yo] is now given by

coo ——Tyo(aoil) I o/I (a)o) . (5.9)

Thus one reaches the normal Lorentzian region of Fig. 3
at a slightly lower frequency than in the y=O case dis-
cussed above.

Tllls dlscussloll llas bccll for tllc case I )&ilo, wllcrc thc
nonconservation of total spin is a sinall effect. What is
perhaps unexpected is that in the presence of mode cou-
pling, the results (5.7) and (5.8) also apply in the opposite
limit, where yo(k) =—yo+I + (k) is nearly k independent.
%e can see this by repeating the self-consistent calculation
for I"o——0. The mode coupling still generates a term in
y(k, oi) proportional to K (k}, and the coefficient of EI is
1ogarithmically divergent at Tg. Thus as one approaches
the transition, this E term dominates the yo, and the cal-
culation of I'(k, co) is then just the same as in (3.9), leading
to the result (5.8} again. The calculation of I'(co) again
follows (3.11)—(3.14), because in most of k space
y(k, oi)=( —i~1'(ol)/aoT)' . [Actually, the I o inside the
the logs in (3.12) and (3.13) must be replaced by I'(oi) it-
self. Indeed, it should be for self-consistency in the previ-
ous cases as well, but this was beyond the leading log or-
der from which we were working. Here with I'o ——0 we
should use yo in place of I ~o at the corresponding level
of approximation. ] Thus the presence of the precessional
terms in the equation of motion generates log' correc-
tions to the spin-correlation function power laws, regard-
less of whether the spin is conserved.
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This means that even for RKKY spin-glasses, where
Korringa relaxation is the dominant dynamical mecha-
nism, these log' corrections exist in principle. However,
their observability is limited by the rapidity of the Korrin-
ga process —in our model, the fact that yp is so large. In
order to find the size of the true asymptotic region, we
calculate the mode-coupling-induced 5I to O(A, ) and
compare ap 5t with yp. The 5t we get is just (3.7), ex-

cept that I p is replaced by ypap. Thus we find the condi-
tion

7TdQ pfp
2 2

T —T «T expg g i2 (5.10)

which exhibits explicitly the exponential difficulty one
might encounter in trying to observe the asymptotic
behavior.

Finally, what is the effect of a finite yp on sound propa-
gation? The answer is simple: Since the sound self-energy
bubble (4.1) or (4.2) involves k sums over the whole Bril-
louin zone, yp plays no important role (just as it failed to
affect the mode-coupling bubble contribution above). The
conclusions of Sec. IV therefore stand unchanged.

UI. T &Tg

For n = ao, the low-T phase of the relaxational model is
quite simple. It is a marginal state, with the same power
law in the correlation function for all T & Tg as described
above at Ts. ' (This happens because the equation that
determines q turns out to be equivalent to the condition
that the effective kinetic coefficient vanishes at co =0.)

In the absence of the precessional term in the equation
of motion, the situation in our diffusive model is equally
simple. The correlation and response functions are just
the same as we found in Sec. II at Ts—the hydrodynamic
region of k space has disappeared (for co=0) and the
correlation function goes as co

When we include mode coupling, however, the situation
changes qualitatively. Now there is a term in 5r(co) pro-
portional to the E-A order parameter q, which comes from
the part of C(co —co') in (3.6) proportional to a 5 function.
Indeed, it is the dominant term for small co in the spin-
glass phase. Writing

C(co)=G (0) 2TRe
r(k, co)K (k)

(6.4)

where I is again given by (3.9). Thus
1/2

QpT
C(co) =—Re

i c—or(co)

' 1/3
~3 2a pTd

A, qco

(6.5)

Without mode coupling, this is just
1/2

3g2 2Q pT
5y(co) =

2d I @co
(6.7)

The power law is thus modified by the precessional
dynamics in the low-frequency region. For co»(A, q/
2d) apTI p, I (co) is smaller than I p, and the correlation
function goes back over to its critical co

'~ behavior.
C(co) obeys a kind of qualitative dynamical scaling shown
in Fig. 6. Our result appears to disagree with that of Bray
and Moore, who find only a quantitative change as a
consequence of precessional dynamics. They are of course
dealing with a different situation, well below Tz and more
like that described at the end of the preceding section,
where precessional dynamics are added to a system dom-
inated by fast relaxation (yp)) I pap ). Nevertheless, the
arguments we used there apply again: The generation of a
large 5I by the mode-coupling dynamics makes yp effec-
tively disappear from the calculation and the results (6.4)
and (6.5) are recovered, independent of I'p and ) p. The
method of Bray and Moore is very different from the
present one, so we have not been able to trace the source
of the discrepancy. It could just be that the co

'~ term
found here goes away at low T (where their calculation is
done), but there is nothing in the present theory to suggest
that it does not persist to low T.

We turn now to the effect of the marginal spin dynam-
ics below Tg on sound propagation, which is straightfor-
ward. From Eq. (4.3), we find a new piece of the ima-

ginary part of II(k, co) proportional to qcoC(co). Thus the
damping function y(co) acquires a piece proportional to
C(co) [in addition to (4.4)]:

5y(co) = C(co) .3g 6
2T

(6.6)

C(co) =2m.q5(co)+C(co), (6.1)

we obtain from (3.6) the result
' 1/2

A q QpT5r(~)=
2d —r I @co

(6.2)

which clearly dominates the old logarithmic term at low

frequency. Making the calculation self-consistent as we

did in Sec. III, we get
(7 )

1/2

C(co) c m = constx(T-79j 2

I
/

/

/ 1
C(~) oc

9

2
$2q Q pT

r( )= —ir(~)~)

1/2

(6.3) Tg

Thus I (co) is now proportional to ( ico) '~, and th—e
correlation function is

FIG. 6. Behavior of C(co) with mode-coupling and marginal

dynamics. The logarithmic term aside, C(co) can be written as
co

' 'f((& 'rg)'/co)—
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[The term proportional to q is proportional to 5(co) and is
therefore discarded, since what we want to compare a
finite-frequency experiment with is the limit of II(k, to) as
~~0. Physically, this means we assume the experiment
is done during a time the spins remain frozen. ] Thus we
find

5c (T)= — 1 —q
3

2Td
(6.11)

Comparing (6.11) with (4.8), we see the result that ct
varies smooth1y through Ts (in contrast to previous results
for different models). Only the second derivative changes
discontinuously at Tg. The new result appears to be in
agreement with the experiments of Hawkins and Tho-
mas. By expanding (4.12) around Ts, one easily finds
that 8 (5c )/BT =O((Ts —T) ) below Ts, i.e., the curva-
ture goes to zero as one approaches Tg from below.

The formula (6.11) also tells us that c returns at T =0
to the value it would have in the absence of spin-glass ef-
fects (b =0) if 1 —q ~ T2 at low T. If 1 —q is linear in T,
c remains less than c (ao ) as T~O. These observations
may be of some use in fitting data, as possible constraints
on the separation of the magnetic and nonmagnetic contri-
butions to c (T).

This is of course based on the calculation of Il(k, to) at
m=0. When the imaginary part of H has a"sgnm
behavior, we expect from analyticity that ReII also has an
co term. Thus for the mode-coupling case, 5c ought to
have frequency dependence in this region cc

~

tv
~

t~ . For
A, =O, it would be ~'~ behavior. This would appear as a
deviation from linearity in the measured dispersion rela-
tion c0(k), with an effective k ~ or k'~ term, respective-
ly. [Such a deviation from linearity would appear at Tg,
or even above Tg for tv » TI ~0/g, but there the correc-
tion would only be logarithmic (a small k ink term), and
would be very difficult to detect. ]

Finally, one can extend these results to finite n (again,
as long as d is above the upper critical dimensionality) by
taking advantage of the results of Sompolinsky and Zip-
pelius. ' For the relaxational model, they argue that, at

Beton and Moore2' also find both to '~t and lnl/~ to
~

terms in y(to) in their low-T theory. The to
' term was

also found by Fischer' '4 and by Khurana' (for a dif-
ferent model). With the precessional dynamics, (6.6) gives

3/2 2 OT
5y(to) = (6.8)

k gN

This is not in agreement with Beton and Moore because
our C(co) is different from theirs, as explained above.

For the sound speed we proceed from (4.7), using the
low-T form (6.1) for C. We find, by integrating (6.1) over
all co, that

C(t =0)=1—q .

Thus 5c (T) has a term similar to (4.8), multiplied by
(1—q), from the CC term in (4.7). There are two (identi-

cal} cross terms in ReII, each equal to

3k
(1 ) (6.10)

least near Tg, one needs only to keep the simplest
multiple-loop term (a single bubble). The result is that the
exponent in the power law C(co) cc to "can be expanded as

( Ts —T)
x =—+ ' +O((T, —T)') . (6.12)

2 n.n(3n+2)Tg

(Note that n as defined here is —,
' of their n ).It is then

simple to generalize the arguments leading to (6.3) and
(6.5). We find that I'(c0) and C(t0) are both proportional
to to '~"+". Similarly, the sound-damping results (6.7)
and (6.8} become proportional to to ' and to "~"+",
respectively.

VII. CONCLUSIONS AND COMMENTS

The results of this paper can be summarized briefly.
(1) The introduction of a conserved total magnetization,

via the I OV term in the equation of motion (1.1), makes
surprisingly small changes in the mean-field dynamics
from what one finds approaching Tg in purely relaxation-
al models. In most of k space, the dynamics exhibit the

same critical slowing down as if S were not conserved.
Only for a region of wave numbers kg~&1 in the center
of the Brillouin zone is the normal diffusive behavior seen
in the static limit. On the other hand, we found that for
small k the ordinary hydrodynamic behavior is recovered
at larger co ( » I oTk "ao). The resulting line shape
C(k, to) is not simple for general k, but for small k it is
approximately a narrow peak of width =I OTao/g with
co

' wings, sitting on top of a usual diffusive Lorentzi-
an.

(2} The further introduction of precessional terms
(mode coupling) in the equation of motion leads to weakly
divergent transport coefficients [~(into)' or (In()'~ ]
and similar root-log corrections to the ~ ' power law in
the correlation function and line shape.

(3) Our model for sound propagation leads to a loga-
rithmically divergent sound-damping coefficient. The in-
clusion of precessional terms changes the log divergence
to a root-log one similar to that in the transport coeffi-
cient.

(4) Below Ts, the results depend on which theory of the
spin-glass phase we adopt. In the "short-time" theory of
Ref. 3, the results turn out to be symmetric around Ts.
For the longer-time situation of a marginally stable equili-
brium or quasiequilibrium state, there are more profound
changes —an to ' divergence in the transport coefficient
in the precessional model and to '~ behavior in C(to) in-
stead of the previous to ' form, and singular sound
damping —y(co)-c0 ' or to ' with or without preces-
sional dynamics, respectively. In both theories, the sound
speed varies smoothly through Tg.

(5) The inclusion of a spin-nonconserving term in the
equation of motion does not affect these results at all
(asymptotically close to Ts).

The applicability of our mean-field results, which are,
formally speaking, based on a large dimensionality expan-
sion [recall the factors of 1/d in, e.g., Eqs. (3.8) and (4.2)],
to real materials is problematical. Neutron scattering
and dynamical susceptibility measurements show a gra-
dual slowing down, with the generation of a wide spec-
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trum of relaxation rates over a range of temperatures well
above the true transition temperature (defined, e.g., by the
departure of the dc field-cooled susceptibility from its Cu-
rie high-T form. This important feature is absent from
our high-d calculations. Nevertheless, we may hope that
some qualitative features of our theory may persist (in less
singular form) in d =3. We suggest that neutron spectra
be examined in the light of our proposed line shape. In
particular, both the suppression of spin diffusion for
kg»1 and the enhanced transport coefficient (kg&(1)
are characteristic features to look for. While we do not
expect the simple mean-field result g~ (Ts T) —'r to be

valid, it is possible that the dependence of the dynamical
parameters on the true g could be reasonably given by the
present theory. At the present level of theoretical under-

standing of these problems, g would have to be determintxi
empirically in such an analysis.

We also hope that the present theory will be useful for
future theoretical efforts to describe the true three-
dimensional situation, in that they give a clue about how
to add spin conservation and precession effects, once some
understanding of the underlying gradual slowing down is
achieved for simpler models.
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