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Magnetic susceptibility of ferromagnetic metals: Application to nickel
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Expressions for the transverse and longitudinal magnetic (spin) susceptibility of ferromagnetic
metals» which have been de11ved froII1 density-functional tIleory In the local-density approximations
are simplified and made practical for computation through a transformation from a Fourier repre-
sentation to an orbital representation. The method is applied to a calculation of the transverse sus-

ceptibility of ferromagnetic nickel at T=O. Results are obtained for spin-wave energies and widths

using a serniempirical band structure.

I. INTRODUCTION

The response of a system to a small magnetic perturba-
tion is described by linear-response matrices, the wave
vector, and frequency-dependent susceptibilities. If the
system is ferromagnetic, it is necessary to consider
separately the transverse and 1ongitudina1 susceptibilities.
The 1atter is coupled to the charge response, so that the
dielectric function is derived from the same calculation as
is the longitudinal susceptibility. In a paramagnet, the
spin and charge responses are not coupled.

Experimental information concerning the dynamic
magnetic susceptibility is obtained from the measurement
of the cross section for the magnetic scattering of slow
neutrons. ' Consider the double differential cross section
for the scattering of a neutron into solid angle 0 with en-

ergy transfer E =Irtto. The momentum transfer in the pro-
cess will be written as

k; —kf ——p, =p+Kg,
where p is a vector in the Brillouin zone and K, is some
reciprocal-lattice vector. The basic result is

dIg kf
d0dE k; 1 —exp( ficolktt T)—

5 tt
—', 1m{[X ~(p, co)] I . (1.1)

-,p A'

In this expression kf (k;) is the magnitude of the final (in-
itial) neutron wave vector, ct,p designate rectangular com-
ponents, and X~ is the s selement of -the dynamic-spin-
susceptibility tensor matrix.

We shall be concerned here only with cubic ferromag-
nets at T =0 K. In this case, one has two distinguishable
susceptibility quantities. Let the direction of magnetiza-
tion of the sample define the z axis. Then we have two
parallel and one perpendicular susceptibilities

=X~ and X, respectively. However, it is now cus-
tomary instead to introduce X+ and X + (Ref. 2),

X +X~=—,'(X ++X+ ). (1.2)

In addition, we have the symmetry relations
ReX+ (p,co)=RCX +(p, —co),
ImX (p, co)=—ImX (p, —co) . (1.3)

Therefore, knowledge of one of the objects X+ or X +
for all frequencies is sufficient to determine the total

transverse contribution. %hen neutron scattering mea-
surements are made with polarized neutrons, it is possible
to separate the contributions of X+ and X +, and this
has been accomplished in a recent experiment.

Modern investigations of the dynamic susceptibilities
were initiated by a fundamental paper of Izuyama, Kim,
and Kubo. These authors applied the random-phase ap-
proximation to a one-band Hubbard Hamiltonian. The
band was treated in a tight-binding approximation. Their
result for the transverse susceptibility X+ is

+ —(0) ~~(~ )
X (p to)

(1.4)
1 —VX+-'"(p,~)

'

in which V is the electron-interaction parameter of the
Hubbard model. and g' ' is the so-called noninteracting
susceptibility. They also obtained a formula for the longi-
tudinal suscept1bility ln the saIIle approximation. Multi-
band generalizations of Eq. (1.4) have been given by
several authors; these frequently involve some restric-
tions of the interaction or approximations concerning
wave functions.

The structure of Eq. (1.4) is quite important. If the
dcIIGII1111ator s11ould vaIIIsll for soIIlc Ical co fof a glvcII p,
the transverse susceptibility would have a pole. This pole
would correspond to a spin-wave excitation. In fact,
X+ ' ' is usually a complex function but the spin-wave
energy is given by the energy at which the real part of the
denominator vanishes, and the hfetime can be determined
from the ratio of the imaginary part to the energy deriva-
tive of the real part.

There have been many attempts to improve the treat-
ment of many-body effects beyond the random-phase ap-
proximation. %e do not discuss these here. Our attention
is devoted to attempts to take the actual, complicated
band structures of real transition metals into account. A
major investigation of this type was reported in 1970 by
Lowde and %indsor. They compared neutron scattering
measurements of the magnetic response function of nickel
over a temperature range from T, /2 to 2T, with results of
calculations in which Eq. (1.4) is used in combination with

a calculation of X+ ' ' based on a simple tight-binding
model of a d band. Lowde and Windsor presented con-
tour plots of the theoretical and experimental susceptibili-
ties in an to,p plane at four temperatures, which, although
noisy, can be interpreted as showing a basic, qualitative
agreement in shape and in temperature dependence.

The work of Lowde and Windsor was extended in sig-
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nificant respects in a series of calculations culminating in
the paper of Cooke, Lynn, and Davis. ' These authors
considered more realistic band models of both nickel and
iron. The bands were derived from calculations for the
paramagnetic state of the material through the introduc-
tion of an exchange splitting which gives the correct mag-
netic moment. This splitting defines the effective
electron-electron interaction in a multiband generalization
of Eq. (1.4). Spin-wave dispersion curves were obtained
which are in good agreement with experiment for both
metals. In addition, the existence of an optical spin-wave
mode for certain values of p was predicted, also in agree-
ment mith experiment.

The work we are reporting here is based on density-
functional theory in the local-density approximation. It
was shown in previous work" that this approach leads to
a multiband expression for the transverse susceptibility
which has a structure similar to that of Eq. (IA), but with
a different definition of the effective interaction which is
determined by the exchange-correlation potential and the
magnetization density in the underlying band calculation.
An expression for the longitudinal susceptibility has also
been derived under the same approximation. ' It is possi-
ble to obtain an explicit formula for the spin-wave stiff-
ness coefficient from the density-functional result just
mentioned for the susceptibility. Rather good numerical'
results for this quantity have been obtained in the case of
nickel. Our objective here is to study spin-wave lifetimes
as well as energies. In this paper we will present the for-
malism which makes possible practical calculations of
both transverse and longitudinal susceptibilities on the
basis of these formulas. Numerical results will be present-
ed for the transverse susceptibility of mckel with the use
of a semiempirical band structure. In future work we

hope to study the dependence of the susceptibility on the
underlying band structure, and also to obtain numerical
results for the wave-vector and frequency dependence of
the longitudinal susceptibility.

II. THEORY: TRANSVERSE SUSCEPTIBILITY

The transverse wave-vector and frequency-dependent
spin-susceptibility matrix for a ferromagnet is given,

I

within the local spin-density approximation, by the expres-
sion"

(2.1)

In this equation go is the non-self-consistent susceptibility
matrix (we do not write the indices + —,etc., from this
point) and A is a matrix representing Vf(r )/Mo(r ), Mo
being the (dimensionless) magnetization density per atom,
and V/(F), the interaction leading to ferromagnetism,
which is self-consistently determined in the course of a
band calculation. ' The basis vectors for the representa-
tion discussed are plane waves whose wave vectors are
reciprocal-lattice vectors. An expression has also been de-
rived for the longitudinal spin susceptibility within the
same approximations': It mill be discussed in Sec. III.

Equation (1) should be compared with the result ob-
tained in the random-phase approximation to the Hubbard
model. The latter is of similar appearance, except that the
matrix character of the quantities is neglected, A is re-
placed by the interaction constant, and go does not con-
tain form factors. The matrix inversion indicated in Eq.
(2.1) is the principal topic of concern here (a similar situa-
tion arises in regard to the longitudinal susceptibility as
will be discussed subsequently}. In previous work, the ma-
trix to be inverted has been approximated as one of mod-
est size (15X15 in a particular application to nickel' ).
We believe, however, that the convergence of this type of
calculation as the number of reciprocal-lattice vectors is
increased is governed primarily by the spatial extent of the
wave functions of the magnetically active electrons. Since
the 3d-electron wave functions in iron and nickel are quite
compact, it is likely that the matrices must have dimen-
sions of several thousands in order to obtain converged re-
sults.

Therefore, it seems improbable that attempts at direct
evaluation of Eq. (1}can yield conclusive results. We are
led to consider approximations which enable an analytic
solution to the matrix inversion problem associated with
(1).

The essential approximations are those which lead to a
sort of factorization of Xo. To see what is involved, we re-
call the general expression for go,

&&o(»». ~= ——g &n k le ' s+ li k+p&&ik+p le " s+
i „p E„(k ) Ei( k + p ) +co+iri— (2.2)

The following conventions and notations are used in this paper:
l
n, k ) is a Bloch state belonging to band n and wave

vector k; its energy is E„(k ) and its occupation probability is f„(k ) (a Fermi function). The operators s+ (s } raise or
lower the electron-spin state. The band index implicitly specifies the spin (in the assumed absence of spin-orbit cou-
pling). Odd-numbered bands are occupied by electrons of spin parallel to the majority ( t), even-numbered bands belong
to minority ( t) spin electrons.

I.et us consider the explicit expression for the matrix elements in the situation where, as in our band programs, the
electron wave functions are expressed as linear combinations of localized orbitals:

(2.3)

in which N is the (large) number of cells in the crystal considered, R„ is a lattice vector, u;( r —R„) is the ith orbital basis
function, and c;„(k) is a (real) normalized eigenvector component determined by diagonalization of the single-particle
Hamiltonian. We denote the matrix element considered simply by M,
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M—:(n, k
~

e ' s+ ~j, k+p) =pe "gc;„{k)cji(k+p )f u;(r )e ' uj(r —R„)d r .
P l)J

(2.4)

We have dropped s+, as it is sufficient to require
henceforth that! refers to down spin and n to up spin.

The essential conditions for the simplification of the
matrix inversion were already discussed by Sokoloff.
With reference to Eq. (2.4), it is necessary that the matrix

element should be expressible as a sum of products of k
independent factors which depend on the reciprocal-lattice

vector and functions of k independent of K, . In order for
this to happen we have to abolish the sum over direct-
lattice vectors. We must neglect the overlap of wave func-
tions on different sites in (2.4), which means in turn that
the basis functions for the band calculation are treated as
independent of k. This assumption, which is, strictly
speaking, in violation of Bloch s theorem, is in fact incor-
porated in other calculations of transition-metal suscepti-
bilities. The approximation of neglecting overlap in the
susceptibility calculation is not unreasonable for d bands
where the overlap is in fact small. We believe that it is
consistent with this point of view not to include s-d hy-
bridization either.

It may be supposed that once we have neglected wave-
function overlap, we have retreated to the form-factor ap-
proximation in which the eigenvector coefficients c;„are
replaced by 5;„, and only diagonal cases of the integral
(i =j) are retained so that the entire susceptibility matrix
element is the product of a form factor depending on p,

Ii(p, )= Ju;(r )e ' ui(r )d r, (2.5)

and then write

M=gc„;(k )Iij(p, )cij(k+p ) . (2.6)

Additional approximations are not required in the formal
theory beyond this point. We will discuss the evaluation
of the I;i subsequently.

We can now write the non-self-consistent susceptibility
matrix elements in the form

[Xo(p,e))]„=QIj(p,)lij ( —p)))'ij, i'j'{p ro)
~ ~

»J)
l,J

in which

(2.7)

and an energy-dependent factor. This approximation is
rather frequently employed, but we will see that it is not
necessary. We can retain much of the structure of the

solid-state wave functions, in particular the k-dependent
mixing of the different angular symmetries of the dom-
inant "central-cell" d-state wave functions. So in fact, we
ought to be able to investigate the reliability of the form-
factor approximations.

We express our reciprocal-lattice —vector integrals as

[f„(k ) —fi(k+ p )]c„;(k)cij(k+ p )c„;(k )cij (k+ p )
Vlji j P&

!,n, k En(k ) Ei(k+ p )+e—)+i'm!
(2.8)

J), ——5),—g g A( K, —K„)Ij ( p „)y ij; j Ii j'( —p, ) .

We require J '. This can be written in the form

(2.9)

(J ')„=5„++g A(K, —K„)Iij(p„)Sj,jl;j ( —p, ),

(2.10)

It is important that the y's do not depend on the
reciprocal-lattice vectors.

The self-consistent susceptibility is now considered fol-
lowing the method of Sinha, Gupta, and Price. ' Recall
that A in (1) is the Fourier transform of a spatially period-
ic function. Let us denote the matrix in the denominator

by J. Its matrix elements on the reciprocal-lattice —vector
basis are

in which a new matrix S, whose indices refer to the orbital
basis, has been introduced. Consideration of the product
J 'J leads via a straightforward calculation involving
only some relabeling of indices to

(2.1 1)

in which all indices refer to the orbital basis and

Xj,'j QI j( p, )A(K,——K, )li~—(p, )y, ;j—. (2.12)
S)C)

l, m

At this point, we have exchanged the problem of inverting
a very large matrix on the reciprocal-lattice basis for the
problem of inverting a smaller matrix (I —X) on the orbi-
tal basis. This is the essential step of our procedure. Fi-
nally, we have to form the product XoJ '. This leads to

{&)))={&0)))+gIij {P))l'ijij''(P o)) g
~ ~

»J)
l,l

QI; j{—p„)A(K„—K )Ii~{p ) Si~,l'~ {p N)lr~ {—p~) .
N)N

{2.13)
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It will be observed that the summations over
reciprocal-lattice vectors occur in Eqs. (2.12) and (2.13) in
forming one type of quantity: a matrix in the band indices

considering the determinant of the matrix I —X in Eq.
(2.17). Let D (E) denote this complex function,

B,", ,~ =+I,, ( p„)A(K„K~)I~(p„)
Q, W

(2.14)
D(p, co) =det(I —X) . (2.18)

Then the spin-wave energies are found from the equation

X„(P,ai)= g Ij(Ps)rj; jI; j ( —P, ), (2.15)

which is independent of energy. This sum, although

lengthy, needs to be done only once for each wave vector

p considered.
Equation (2.13) can be written in the following way

analogous to the formula Eq. (2.7) for Xp..

Re[D(p, E)]=0, (2.19)

which determines the dispersion relation E(p}. There

may, of course, be more than one solution of this equation
in which case there is a possibility of an optical spin-wave

mode. If Ep is an energy at which Eq. (2.19) holds, we

find on expansion of D(E) near Ep that the spin-wave

width I is given by

in which ImD (Ep)

ReD'(Ep) ' (2.20)
~IJ I j Ylj l j + g Ylf lm ( PN)Blm, l'm '( P )Si ~' i,i ' »pi)

l, m,
I', m' in which D'=dD/dE. The susceptibility then has a

(2.16) resonant denominator

It is easily verified that the matrices Y and B are sym-

metric with respect to the interchange of orbital pair in-

dices. Equation (2.16) can be rewritten again in the form,
after some algebra,

1

(E Ep) +1—/4

and the spin-wave peak (in energy for given p) has the

shape of an asymmetric Lorentzian.

ij ij''=P Yij 1m[('X) ]im i'j' &

l, m

(2.17)

in which X=BY is the matrix defined in Eq. (2.12). The
quantity I may be regarded as the susceptibility, calculat-
ed on the orbital basis.

It should be observed that the matrices involved in Eq.
(17) have dimension n Xn, where n is the number of
bands considered (five in the present case), rather than

n Xn as might initially be expected. Reduction to n Xn
form will occur only if off-diagonal terms with regard to
the band indices in the form factors I and the reduced sus-

ceptibilities y are disregarded, i.e., under the approxima-
tion

Iij =Ii~ij s l ij,ij''=3 ii'~ij ~ij'' .

The energies and widths of spin waves are found by

III. LONGITUDINAL SUSCEPTIBILITY

The local-density (approximation to density-functional

theory) result for the longitudinal susceptibility was given

in Ref. 12. The coupling of spin- and charge-response
functions leads to an even more formidable result for this

quantity then for the transverse susceptibility. We will

show below how under the same approximations described
in the preceding section expressions are obtained for the
longitudinal-response functions which are reasonably
practical to evaluate.

We begin with Eq. (2.31) of Ref. (12} in which the
longitudinal-response functions are given formally by an

expression which is a generalization of Eq. (2.1) to the
longitudinal case

Xpp Xpo

X+p X~+

1+(I,+I,)a+(I,—I, )b —(I,—I, )c —(I,+I, )b —(I,+I, ) I', —I,
—(r, —r, )a —(I „+I,)b 1+(I,+I,)c —(r, —r, )b r, —r, r, +r, (3.1)

In this equation the X s are (infinite) matrices on the reciprocal-lattice-vector basis representing the charge and spin

response; thus, for example, X is the usual longitudinal susceptibility. The I (o = &, }) are matrices whose elements

on the basis are

f„(k ) —f,(k+p )

l}ln i„g E„(k ) —Ei(k+p )+pi+i'
(n, k~e '

~l, k+p)(l, k+p~e '
~n, k) . (3.2)

The symbols in (3.2} have the same meaning as in (2.2).
However, it is to be noted that in this case the bands n and
l correspond to the same spin (o} whereas opposite spins
were involved in (2.2). The quantities a, b, and c are ma-
trices representing derivatives of the spin-dependent ex-
change potentials. The expressions for the elements are
given below: and

4

0'0', 0'

1
av.

bst= 4 g 0' Ks K.c
P

(3.3)

(3.4)



CALLA%AY, CHATTERJEE, SINGHAL, AND ZIEGLER

plicit use of indices as much as possible through the use of
matrix notation. Thus we rewrite I;,~ as given by (3.2)
with the use of the approximation leading to Eq. (2.7) as

2
V, (p, ) =Sir/p, , (3.6) I ~=I y I, (3.8)

(3.7)
The integral is carried out within a unit cell of volume Q.

Equation (3.1) requires the inverse of a matrix whose
elements are 00 dimensional blocks. However, the situa-
tion can be alleviated if we follow the methods of the
preceding section. In order to simplify somewhat formid-
able problems of notation, we find it useful to suppress ex-

I

g =rr+ri (3.9a)

(3.9b)

Then Eq. (3.1) becomes

where I [IJ(p,)] is now a matrix whose rows are labeled

by (pairs of) orbital indices and whose columns are labeled

by reciprocal-lattice vectors. I is the transpose of the
matrix, while y (y,J. ;~ ) is a square matrix whose elements

refer to pairs of orbital indices. In addition,

Xpp XpQ'

X+p XQ~

1+I gIa+I hIb —I hIc —I gIb
—I hIa —I gIb 1+I gIc+I hIb

—I gI —I hI

I"hI I gI
(3.10)

Now define

L] ——gIa +hIb,

L2 ——hIc +gIb,

L3 ——hIa +gIb,

L4 ——gIc+hIb .
We require the inverse matrix

1+I L) —I L2

—I L3 1+I "L4

A formal result for the inverse of a 2 X2 matrix whose elements are block matrices is

(A BD 'C) ' ——(A BD 'C) 'B—D
—(D —CW -'B)-'CW -' (D —CW -'B)-'

We see by comparison of (3.12) and (3.13) that

A =1+I L( .
It is readily verified

(3.11a)

(3.11b)

(3.11c)

(3.11d)

(3.12)

(3.13)

(1+I L i )
' = 1 I ( 1 +L iI") —'L

i . (3.14)

The significance of the formal manipulation involved is that whereas I Li is an enormous matrix on the reciprocal-
lattice-vector basis, LiI is a matrix of reasonable size on the orbital (pair) basis. Hence it is practical to invert

1+LiI . We can apply this technique to the more complicated expression which appears in Eq. (3.13).
To simplify the notation slightly, we shall define matrices (in the band indices) P;, i = 1,2, 3

P; =L;I
Consider, for example, the quantity which appears in Eq. (3.13),

(D —CA 'B) '= [1+I [Lg pi(1+pi) 'L—2] j

=1—I [1+6—A(1+4) '6] '[L~ —43(1+Pi) 'Lz].

(3.15)

(3.16)

~,=I'[[1+0. 0(1+0 ) '4»] '—
X [g —P&(1+&, )-'h] JI . (3.17)

After considerable algebra of this type, we arrive at ex-
pressions for the linear-response functions. The longitudi-
nal spin susceptibility is given by

What is particularly to be noted about this formula is that
the evaluation of the quantity in curly brackets involves

only manipulations of matrices defined on the (relatively)
small basis of pairs of orbitals. Even so, the expression is
quite complicated. Let us note that in the paramagnetic
limit in which
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(('ii ——0, h =0,
X =I [(1+$4) 'g)I

=I [(1+gIcI ) 'g]I .

(3.18)
ip R

eij jj Q+e

X u;(r )uj(r )g(r )

This formula is quite analogous to the expression (2.17)
for the transverse susceptibility (apart from the suppres-
sion of indices}. We also have

Xpp= —I ([1+Pi—A(1+6) '6) '

X [g —$2(1+$4) 'h] ))I . (3.19)

This expression determines the dielectric function matrix
of a ferromagnet. In the paramagnetic hmit,

X~= I—[(1+Pi) 'g)I

Ir[{1—+gIaIT) 'g]I . (3.20)

Similarly, we find the cross response functions X z and

Xpg p

X,=I'[[1+6—A(1+(()i} 'P2) '

x [h -Ni(1+Pi)-'g] lI ~

Xp = I'{[1+—0i Ni(1+6—) '6) '

&[h 02(1+0—4) 'g))I

(3.21)

(3.22)

These quantities (X z and X~) vanish in the paramagnetic
limit.

IV. TRANSPORMATIQNS: A LIMITING CASE

The preceding expressions for response matrices are
quite complex, particularly in the case of the longitudinal
functions [Eqs. (3.17)—{3.22)]. Some insight into the na-
ture of these expressions is obtained if we transform to a
real-space form.

We see from Eqs. (3.11) and (3.15) that the essential
quantity to consider has the form

e...", =fu, (r}uj(r)8(r }u;.(r )uj.(F)der . (4.6}

We can use this transformation to extract an interesting
result in a limiting case. Let us suppose we have only a
single band and a single type of orbital. This idealized sit-
uation corresponds to the tight-binding "S" band often
considered in discussions of magnetic materials, although
it is not a realistic description of actual magnetic materi-
als. We will consider the uniform (ai=O,p~O} longitudi-
nal susceptibility of such a system in the paramagnetic
state via Eq. (3.18). The quantity IcIT reduces to

IcI = —U= f—u (r)c(r)d r (4.7}

(indices are not written since there is only one orbital).
The quantity U replaces in this case the usual interaction
constant of the Hubbard model.

It is quite straightforward to show that in the limits
considered here, including the neglect of the overlap of
wave functions on different sites, that

hm g(p, ai)= —fG(E) dE,d
Q)—+O~

(4.8a)

where G(E) is the density of states and f is the Fermi
function. Thus in the additional limit of zero temperature

g(0,0)=G(EF) . (4.8b)

Xu;(r —R )uj(r —R~)der . (4.5)

Although Eq. (4.5) contains terms involving orbitals on
different sites it would be consistent with our discussion in
Secs. II and III to neglect them, and so to arrive at the ap-
proximat1on

(4.1)
Thus, we have for the umform susceptibihty matrix,

in which 8 is a matrix in the reciprocal-lattice vectors.
We are to regard e as a matrix in the bands (indices cor-
respond to pairs of bands). When indices are restored, we
have

G(EF)
[X (p =O,co=0}]„ I(K,}I(K,)

8" 'j QI"(—p )8(K———K )I"(p )
st

(4.2)

We insert the definition of the Ij [Eq. (2.5)] and use the
fact that 8(K, —K, ) is a Fourier coefficient of some
periodic function e{r):

ge ' =Q+5( r —r ' —R&),
s

in which R„is a direct-lattice vector. Then we find

(4.4)

8(K, —K)= d're ' ' 8(r )d r . (43}
NQ

Thc sums ovcf 1cc1pfocal-1att1cc vcctofs may then bc caf-
ried out with the aid of the identity,

The quantities I are form factors. We have only rederived
a standard formula, but we have an explicit expression for
the Stoner enhancement. This result is equivalent to that
obtained by Vosko and Perdew' and by Janak's if the cor-
responding approximation about wave functions are made
in their formulas.

Although the algebra is a bit more complicated, a simi-
lar result can be obtained in the ferromagnetic case. The
uniform limit (p =O, co =0) of the longitudinal susceptibili-

ty 1s to bc d1scusscd. This liIIlit has pfcv1ously bccn con-
sidered within local spin-density-functional theory by Ya-
mada, Yasui, and Shimizu' by a different approach. We
shall confine our remarks here to a hypothetical single
(but spin-split} band, single orbital, ferromagnet because in
this case the matrices P; [Eq. (3.15)] become scalars. It is
important to note in the analysis of Eq. (3.17) in this case
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that the matrix a [Eq. (3.3)] has one diagonal element
which tends to infinity. We find when we take the limits
and use the generalization of Eq. (4.8) for a ferromagnet

[X (p =O, a)=0)],t =I(K, )I(K, )X,

in which

(4.10)

1 1 1

4 G, (EF) G, (EF)
(4.11)

V. METHOD OF CALCULATION

It is apparent from Eqs. (2.7) and (2.12) that the calcu-
lation of the transverse susceptibility requires computation
of three types of quantities: (1) the effective interaction
A( Vy/Mo), (2) the form factors Iz, and (3) the reduced
susceptibilities p'j j The ingredients of the longitudinal
susceptibility are similar, but are manipulated in a more
complex fashion. For reasons discussed in the next sec-

where U is given by Eq. (4.7). This result is, in form, the
same as that obtained in the Stoner-%ohlfarth picture,
and confirms the designation of U as the Stoner parameter
of the present theory.

tion in this paper, the interaction quantities A are deter-
mined by a fit to experimental data. This section is
focused on the calculation of the form factors and the re-
duced susceptibility.

We begin with the form factors. It is convenient and
consistent with the band-calculation procedure to suppose
that the orbitals u; have the form of a common 3d radial
function times an angular function K;(r")

u;(r )=R(r)K;(r), (5.1)

in which E; is a Kubic harmonic belonging to the
I 25 or I iz representations. For future reference, we shall
define

E, =Nxy /r, Ki Nyz/r——, K3 Nxz/r——

(5.2)

K4 N(x' —y'——)/2r', K, =N(3z' —rz)/(2v 3r'),

where the normalization constant N(15/4m)'
so that

fK~KJdo =5,J. (5.3)

(do will denote an element of solid angle). Then consider

IJ(p )=fu(r )e 'i''"uj(r )d r=g( —i) (2l+1)fR (r)JI(pr)r dr fK(r)Pi(cos8 )K(r)der .
I

(5.4)

The standard expansion of a plane wave in spherical
waves has been employed. The particular choice of angu-
lar functions employed here implies that only /=0, 2,4
can contribute. Hence we have

Iij(p)=5JI' '(p) SI' '(p)CJ '(—p)+9I' '(p)C' '(p)

(5.5)

in which

involving five exponentials. Therefore, we write

I'(p)=Q I I'"(p,g, +g ),
jk

in which (with the aid of a tabulated integral )

I'"(p,g)= f r e ~j'i(pr)dr

(5.9a)

I' '(p) =fR (rj)i(pr)r dr (5.6)

R (r)=g cjr'e
j

(5.8)

C "(P)=fK; (r )Pi(cos6 )K (r")dn . (S.7)

The CJ'(p) are polynomials in the components of p.
They can be computed quite straightforwardly by elemen-

tary means. One can simply express the Legendre polyno-
mials in terms of the rectangular components of p and r,
use the explicit expression for the Kubic harmonics, and
do the integrals which are elementary. This process leads
to the formulas given in Table I. Rather complicated re-
sults involving sums over Clebsch-Gordan coefficients
have been obtained by other authors but our results are
quite simple. The reader should note that in Table I, the
notation x =—p„/p, etc., is used.

The radial integral was computed using Clementi wave
functions. We have performed the computation for both
the d s ( F) and d s'( D) atomic functions. These func-
tions are combinations of the form

I —5 I —4 3 p
2 2 2

(5.9b)

The object iFi is a hypergeometric function. However,
since I —4 is an even negative integer or zero, the function
is just a polynomial.

The d s' radial wave function is somewhat more ex-
tended spatially than the d's function.

Consequently,
the

I;~(p) are more longer ranged in p for the dss case than
for d s'. However, sums over reciprocal-lattice vectors
involving I& [as in Eq. (2.12)] will not converge until p,
becomes large compared to the most important g in the
expansion of the wave function (or, alternatively, if ro lo-
cates the peak of the 3d function p, ro must be large).
Consequently, large numbers of lattice vectors must be in-
cluded for both radial functions, but the convergence is
somewhat faster for the d s' functions than for d s .

The most complicated portion of the calculations con-
cerns the evaluation of the quantities y, g, and Ii [see Eqs.
(2.8) and (3.9)]. Consider the sum over wave vectors in
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Eq. (2.8). This has to include all k in the zone, but nor-
mally one has available results pertaining to the "irreduci-
ble wedge, "

—,', th of the zone in the case of a cubic crystal.

Then we can express the sum over all k as a sum over the
I

k in the irreducible wedge combined with a sum over

group operations, a, which generate all k in zone from

those in the wedge, 8'. Thus

1 - - c„;{ak)cij(ak+ p )c„;(ak )cij (ak+p )
V" '' { ) nfl(ak ) —fi{ak+p)]

a kEW 1'n E„(ak ) E—„(ak+p)+co+i'
(5.10}

The energies are of course unchanged if a k is replaced by
k. This is also true for the Fermi factors which depend

on k only through the energy. However, the transforma-
tion properties of the c's must be considered. In this case

we have the rule (when k is not a point of degeneracy),

c„,.(ak )=X„(a)QD,I(a)c„t(k ),
I

(5.11)

where DJI is an element of the representation matrix

TABLE I. Polynomials C~;"(p ) defined by Eq. (5.7). Note

that C' ' is related to C' ' and a polynomial S as shown. In these

expressions, x =p„/p, etc.

describing the transformation of the orbitals uj(r) under
the operations a, and g, (a) {=+1) is the character of the
operation a in one of the one-dimensional representations
of the relevant group (the cubic group in this case).

Equation (5.11) follows from the fundamental rule for
the transformation of the Bloch wave function P„(k,r},
providing this is a nondegenerate state,

ag„(k, r )=1(t„(k,a 'r )=X„(a)f„(ak+r ) .

(5.12)

To see that Eq. (5.11) follows from Eq. (5.12}, substitute

the expansion (2.3) for {('i(k,a 'r ). The transformation
formula for the orbitals uj is used, which we take to be

(i,j)
{1,1)
(1,2)

{1,3)
(1,4)
(1,5)
(2,2)
(2,3)
(2,4)
(2,5)
(3,3)
(3,4)
(3,5)
(4,4)
(4,5)
(5,5)

(i,j)
(1,1)

(1,2)

(1,3)
(1 4)
(1,5)

(2,2)
(2,3)
(2,4)
(2,5)
(3,3)
(3,4)
(3,S)

(4,4)
(4,5)
(5,S)

( (2)
ij

{x +y —2z )/7
3xz/7
3yz/7

0
—2V 3xyy7

(y'+zz —2xz)/7
3xy/7
—3yz/7
V 3yzn

(x +z~ —2y )/7
3xz/7

V 3xzg7
(x'+ —2z )/7

3(x' —y')/7
—(x +y —2z )/7

1=4
I4) & 5 (2)

Cij —
24 Sij 2 ~ij 8 ~ij

S;,.

z +5(x +y )+6z (x +y )+18x y
4xz(x +3y +z')
4yz(3x +y +z')

4xy(x' —y )
—4V 3xy(x'+y')

x +5(y +z )+6x (y +z )+18y z
4xy (x2+y 2+ 3z2)

—4yz(2~ +z )

4V'3yz'

y +S(x +z )+6y (x +z )+18x~z
4xz(2x +z )

4V 3xz'
z4+ 7(x @+yes)+6(x 2y2+y2z2+x 2z2)

—2V 3{x'—y')
9z +3(x +y )+6(x y +y z +x z2)

u, (a 'r )=AD(, (a}uI(r } . (5.13}
I

Then a straightforward argument leads to (5.11).
Since we are considering in this work only a relatively

small number of momentum-transfer vectors p along the
axes of high symmetry, there are some additional sym-
metries which can be exploited. j.et us consider operators
P which have the property

N=P
(we do not consider cases where p is on the surface of the
zone). These operators form the group of p (denoted az)
which is a subgroup of the cubic group. If there are n

operations K&, the integer quantity m,

gives the number of vectors in the star of p. We may then
select m operators denoted 8; (8i E},such that th——e cubic
group, 6, can be expressed as a sum of right cosets

6 =Kp +Kp82+ ' ' ' +Keg~

Thus any operator a in g can be written in the form

a =pi8J,
where P; is one of the operators in az. Then since the
band energies are invariant under the operators of 6,

Ei(«+p )=Ei(k+a 'p }=Ei(k+8 'P 'p )

=Ei(k+8; 'p ) . (5.14)

We note that the occupation functions f are functions of
the energies only, and therefore also satisfy Eq. (5.14).

All these considerations lead us to rewrite Eq. (5.10) in
the form
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f„(k ) fi(k+8 'p )
)'ii, i'J ={—)g g ~ g gc„;(Pek )c„j(Pek+p )c„;(P8k )cij'(Pek+ p ) .

k cw En(k } E—i{k+8 '
p )++in &

(5.15)

The summations are written in the order in which they are actually performed. The summation over p includes all the

operators in ~~, and that over 8 includes the m operators 8 defined above. Note that we must use Eq. (5.11) to deter-

mine the eigenvectors at the rotated point p8k. Then Eq. (5.15) can be rewritten as

f„(k ) —fI(k+8 'p }

ni e I ewE„(k ) —E&(k+8 'p )+m+iri

Xg gD;, (pe)DJb(pe)D;, (pe)DJ'g(pe)c„, (k )cib(k+8 'p )c~(k )crab(k+8 'p ) .
P u, a'

b, b'

Since the D s are a (reducible) representation of the cubic group, we can write, for example,

D,.{Pe)=gD,,(P)D,.(8) .

(5.16)

Then the sum over the members p of the group ofJi can be performed formally by defining

U(i j;i',j ';c,d;c', d') =g D;,(p)DJ&(p)D;, (p)D&'d {p) .

We then obtain

f„(k ) fi(k+8 —'p )
y" "=(—)

n, i e +kcs E„(k ) —E,(k+8 'p)+rg+iq

X g g U(ij;~',j ';c,c',d, d')D„(8)Dqb(8)D, , (8)D, s (8)
N, Q, C,C,
b, b' d, d'

Xc~(k )c@(k+8 'p )c~(k )c@(k+8 'p ) .

Only in the somewhat unphysical extreme tight-binding limit in which the k dependence of the eigenvectors is totally
neglected and the bands n are placed into one-to-one correspondence with the orbitals i does y simplify in a major way.
Then one obtains

, ~ m fi(k} f;{k+8 'p)—
) /J, l 1 5PISJ J~

k~ii E;(k )—E;(k+8 'p)+~+ii)
O«proced«e is to separate Eq. (5.18) into real and imaginary parts using the identity

'I

hm(x+iri) '=P —=i~&(x) .
g~o X

(5.19)

Note all the other quantities Eq. (5.18) are real.
I.et us c~nsid~r the imaginary part of )' The sum over k in the wedge is regarded as an integral, and the 5 function

gives rise to an integral over surfaces in the wedge of constant energy difference, co,

f.(k )—fi(k+8 'p } Q f„(k )—f((k+8 'p )
X '' =

3 dS~
E.{k }—Ei(k+8 'p)+~+in (2~)

~

V' [E (k) E,(k+8 'p)—~- (5.20)

ImyiJ;i {p,v}
ReyiJ,"(p, ri) )=—P dv.

V—N
(5.21)

The integral is evaluated by the linear analytic tetrahed-
ron method. The real part of y is then obtained as
the Hilbert transform of the imaginary part

In spite of the simplifications introduced by our ap-
pl'oximatlons in regard to matrix elements, the QUIDerical

calculations are quite lengthy. This is due to the large
number {325)of elements y;; ' that have to be determined
for each value of p and co. We have therefore investigated
whether the "diagonal" appI'oximation, which sets
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Yjjl j IJ~I j}lljj {5.22) (6.1)

would be sufficiently accurate. We calculated
Im(X ++7+ ) for a single value of p [(2ir/a)( —,',0,0)],
as a function of aj both using (5.22), and also including all
elements of y. The results agreed very well for all ener-
gies, indicating that the diagonal approximation is suffi-
ciently accurate.

Our calculations were based on the semiempirical band
structure of Weling and Callaway. The reasons for this
choice and some of the physical problems involved are
discussed at the beginning of the next section. It is to be
mentioned here that we considered the lowest six {out of
nine) bands, and retain only the d-orbital components of
the eigenvectors. We used a grid based on 240 points in
the irreducible —„th wedge of the Brillouin zone.

VI. RESULTS AND DISCUSSION

The results reported here are based on the semiempiri-
cal band structure determined by %cling and Callaway
which is in substantial agreement with both Fermi-surface
and photoemission measurements. This choice was made
on the belief that the susceptibility would be sensitive to
the exchange splitting. The semiempirical band structure
is subject to some uncertainties in regard to possible incor-
poration of final-state effects (in regard to photoemission}
but probably gives a reasonably correct account of the ex-
change splitting. It would, of course, be of interest to re-
peat the susceptibility calculation using the "first-
principles" bands. We hope to report that calculation in
the future.

An obvious difficulty connected with the use of semi-
empirical bands is that the radial 3d wave function is not
determined. We have therefore used an atomic wave func-
tion for the calculation of the form factor. Results have
been obtained both with the Hartree-Fock wave functions
for the I' state of the d s configuration and for the D
state of the d s' configuration. The form factor based
on the d s function is somewhat more extended in
momentum space because the wave function is more com-
pact in position space. However, because we introduce an
adjustable constant to represent the interaction this makes
little difference to our most important results. Those
shown are based on the d s function.

The most serious problem connected with the use of the
semiempirical band structure concerns the quantities A
[see definition following Eq. (2.1)t. The basic assumption
here is that there exists some local potential from which
the empirical band structure could be derived, but we ob-
viously do not know what it is. For lack of any better op-

tion, we replace the matrix A„=A(K, —K, ) by a multiple
of the unit matrix

~st ~~sf ~

where the constant A. becomes our single adjustable pa-
rameter. A rough estimate of A, can be made on the basis
of the semiempirical bands if we replace the quantities in-
volved in its definition by suitable averages. Presumably,
the averages should be taken with a typical 3d-electron
wave function. Then

in which lL,„ is the average exchange splitting for which
we use 0.3 eV. The average of the magnetization requires
us to consider the fact that the d electrons occupy only a
small fraction, f, of the volume of the unit cell. Then

(Ma(r) }=I ~
itjM (r)

~

'( ,' ){—p,—p,)d—'r

1=(——, )—(n, n, ) —. (6.3)

The factor of ——,
'

results from the definition of M em-

ployed in Ref. 11, and n, ~, ~
is the number of majority

(minority) spin 3d electrons per atom. Thus

A, =f =0.5f
n, —n,

(6.4)

(in units of eV), where we have used n, n, =—0.6. The
fraction f is in fact reasonably small as the maximum of
the d'-electron wave functions is well inside the cell. A
reasonable guess as to the fraction of the cell volume in
which the magnetization density is important is probably
in the range of 10—20%, leading to

A, =0.05 —0.10

(measured in eV). We determine the value of A, by fitting
our results as closely as possible to the observed s~in-wave
spectrum for small p. We take this to be given by

'

aj=Dp (1—Pp ), (6.5)

where D is the spin-wave stiffness. However, there are
some problems. We can make calculations only for values
of p corresponding to grid points on which the band struc-
ture is calculated. These points may be characterized by
integers (ni, n2, n&) so that the vector p is given by

2~ ~& ~z

a 12
'

12
' l2

Thus the smallest value ofp for which we can make calcu-
lations is»th of the I —X distance in the zone. Asp in-

creases, there are significant departures in theory and in
experiment froin the form of Eq. {6.5) both in regard to
magnitude and in regard to directional anisotropy. We
find a substantial degree of agreement with experiment for
k =0.094 eV.

Our results for the spin-wave energies are shown in Fig.
1, where they are compared with those obtained from the
empirical formula, Eq. (6.5), with D =593 meV
0 2 0
A, P=0.68 A which represents the observed spin-wave
spectrum at low temperatures according to the measure-
ments of Mook and Lynn. '

The agreement between the calculated and the experi-
mental energies is fairly good, showing that our calcula-
tion reproduces the essential features of the spin-wave
spectrum. As p increases, the results deviate from the rep-
resentation of Eq. (6.5) with the larger deviation occurring
in the (111)direction. This is qualitatively in accord with

in which Mo(r) is the magnetization density. We have

(6.2}
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FIG. 3. Imaginary part of the transverse susceptibility for p
along the [111] axis. The left energy scale refers to

p =(2m /12a)(1, 1,1); the right scale pertains to the two curves.
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FIG. 1. Calculated spin-wave energies for wave vectors along

the [100] and [111]axis. The dashed short curve represents the

empirical fit to the experimental spin-wave energies given in

Ref. 31.
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the results of Mook and Tocchetti. However, their re-
sults pertain to room temperature, so direct comparison is
not possible.

As the spin-wave energies increase, so does the width.
This is apparent from Figs. 2 and 3 in which we show the
imaginary part of the E,=E,=0 element of the combined
transverse susceptibility matrix (X ++X+ ) for five
values of p along the [100] axis and three along the [111]
axis. The curves flatten and broaden with increasing p.
Numerical results for the energies and widths are con-

tained in Table II. [The widths were determined from Eq.
(2.20).] The experimental results of Ref. 31 cannot be
compared directly with our calculation. However, a rough
estimate based on Fig. 9 of Ref. 31 indicates reasonable
agreement for low energies.

The calculations of Cooke, Lynn, and Davis' predicted
the existence of an "optical" mode in the (100) direction
which interacts with the "acoustical" mode in the neigh-
borhood of p =0.25 A, at an energy of about 150 meV.
This mode was observed in the room-temperature mea-
surements of Mook and Tochetti. Our T=0 calcula-
tions indicate a weak, broad optical spin-wave mode
which for p of about 0.25 A ' has an energy of roughly
280 meV, about twice that reported in Ref. 33.

A second point of difference between our results and
those of Ref. 10 is that although we observe some flatten-
ing of the spin-wave dispersion curve, we have not found
F. (p) to decrease with increasing p up to the highest values
ofp considered here.

In addition, we find a small secondary maximum in the
susceptibility for r0 =80 meV in the case of
p=(2n/a)( —,', ,0,0). The real part of the determinant

D (p, co) has a local minimum in magnitude near this ener-

gy, but does not pass through zero. There is also a nearby
maximum in the imaginary part of the non-self-consistent
susceptibility. It is not clear whether this feature of the
susceptibility would survive in a more refined calculation
but its occurrence here indicates the possibihty of struc-

TABLE II. Calculated energies and mdths of spin waves.

20-'

IOO I50
(u (meV)

200 250

PIG. 2. Imaginary part of the transverse susceptibility

(X ++&+ ) for p along the [100] axis. Curves are labeled by

the value of p ln units of 2'/(120).

p (m/6a)

(100)
(200)
(300)
(400)
(500)
(111)
(222)
(333)

10.2
51.0

102
143
167
34.7

110.2
161.2

V (meV)

2.9
21.9
32.2
33.6
38.8
13.4
43.9
53.7
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FIG. 4. Contour plot of the imaginary part of the transverse
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FIG. 5. Contour plot for p along the [111]axis.

ture in X(p, co) which need not be associated clearly with
spin waves.

Contour plots of the transverse susceptibility are shown
in Figs. 4 and 5 for p along the [100] and [111] axis.
These are necessarily fairly rough because only a small
number of values of p are available to us. However, the
main features of this function appear, which includes gra-
dual smearing of the spin-wave ridge. In comparison with
the contours for momenta along the [100] axis, those for
the [111] axis are broader, and have a lower maximum
(less scattering intensity). This result appears to be in
qualitative agreement with the experimental data, but
comparison with the contours of scattering intensity at
room temperature (Figs. 1 and 2 of Ref. 33) shows differ-
ences in detail: absence of optical modes, and a more gra-
dual decrease in intensity (in the calculation) along the
spin-wave ridge, particularly for p along [111]. It
remains uncertain whether these differences result from
temperature effects or indicate inadequacies in our
parametrized calculation.

VII. CONCLUSIONS
We have adapted the formal expression for magnetic

susceptibilities previously derived from local spin-

density-functional theory to enable use in connection with
practical band calculations. This was done by transform-
ing key parts of the calculation from a formulation based
on an expansion in the reciprocal lattice to one involving
an orbital basis.

Numerical evaluations have been made for the trans-
verse spin susceptibility of nickel, based on a semiempiri-
cal band structure which is consistent with the experimen-
tal bands. Agreement with the general features (energies,
widths, directional anisotropy) of the low-energy spin-
wave spectrum is obtained by the choice of a single adjust-
able parameter. However, these are discrepancies in a de-
tailed comparison with (mostly) room-temperature neu-
tron scattering measurements, particularly in regard to op-
tical modes, whose significance requires further investiga-
tion.
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