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Renoi-ssialization-group analysis on fractals: Ising spin-glass and the Schrodinger equation
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A renormalization-group analysis of random frustrated Ising models on a d =2 Sierpinski gasket
is carried out. A numerical study of the recursion relations shows that in the spin-glass phase, the
width of the probability distribution of the renormalized exchange couplings and the characteristic
energy sensitivity to the boundary conditions decay algebraically with the size of the system. In the
paramagnetic phase the two quantities decay exponentially. An exact renormalization-group
analysis of the tight-binding Hamiltonian on a d-dimensional Sierpinski gasket is carried out. In
any d, for almost all energies, the hopping matrix element renormalizes to zero faster than exponen-
tially, showing that the corresponding eigenstates, if any, are localized.

I. INTRODUCTION

In this paper we study two unrelated problems on a
fractal lattice. The lattice is a finitely ramified Sierpinksi
gasket and thus enables us to construct exact
renormalization-group recursion relations. Section II
treats the problem of frustration on the gasket and studies
the equihbrium characteristics of different kinds of order-
ing possible on the gasket. Section III describes the
derivation of the exact recursion for the problem of an
electron, described by the tight-binding Hamiltonian, on a
d-dimensional gasket.

II. FRUSTRATION ON FRACTALS

Understanding the nature of ordering in spin-glasses
has remained an intriguing and almost insoluble problem.
The novel properties of spin-glasses arise from the pres-
ence of randomness and frustration. A model incorporat-
ing both features has been proposed by Edwards and An-
derson. ' However, this model is not amenable to an exact
analysis and its physics is not yet fully understood. At-
tempts have been made to characterize spin-glass behavior
by considering models which have frustration but no ran-
domness or have randomness but no frustration. '

In this section we carry out a renormalization-group
analysis of the Edwards-Anderson model with Ising spins
on the Sierpinski gasket. The analysis is made feasible be-
cause the gasket is finitely ramified. However, the gasket
is not quasi-one-dimensional and allows for frustration.
Owing to its finite order of ramification, only zero-
temperature phase transitions can occur in spin systems
on the gasket. A real spin-glass is also expected to under-

go a zero-temperature equilibrium phase transition in
three dimensions, since the lower critical dimensionality
(I.CD) for the spin-glass order is bigger than three.

Recently fractal lattices have been the subject of many
studies ' ' and it has been suggested that they may
represent the geometrical features of the backbone of a
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Fragment of the Sierpinski gasket in d=2.

percolating cluster. To construct the two-dimensional
gasket, we begin with a triangle. The three midpoints of
its edges are connected, creating four smaller triangles.
The central triangle is then removed and the same pro-
cedure is continued for each of the new triangles down to
the microscopic lattice constant. The fractal dimensional-
ity of such a gasket is equal to ln3/ln2.

Consider an Ising model on the d=2 Sierpinski gasket.
The Hamiltonian is given by

~=—~Z SS .
gJ 1 J
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The spins S; take on the values + 1 or —1 and the ex-
change constants Jj couple nearest-neighbor spins. Figure
1 shows a fragment of the system. The geometry of the
gasket is such that S2, S4, and S6 are connected by the ex-
change interactions only to each other and to S~, S3, and
Ss. This simplifying feature is due to the finite order of
ramification of the gasket.

28 3813



3814 JAYANTH R. BANAVAR AND MAREK CIEPLAK 28

It is straightforward to carry out an exact decimation
procedure in which the midpoint spins S2, S4, and S6 are
eliminated and effective interactions J», J35 and J» be-
tween the corner spins are found. In each such decima-
tion step, nine exchange interactions are replaced by three
effective exchange interactions and a constant term which
is of interest only when calculating the free energy. The
self-similarity of the gasket enables one to iterate this pro-
cess recursively and to obtain renormalization values of
the exchange couplings at each length scale. The calcula-
tion may be performed either at finite temperatures or at
zero temperature. In the former case a partial trace over
the eight states of the midpoint spins is carried out,
whereas in the latter only the lowest-energy state contri-
butes.

Let the exchange couplings JJ in Eq. (1) be independent
random variables governed by the probability distribution
Po(J). Upon carrying out the decimation transformation
the renormalized interactions are not all independent ran-
dom variables. As mentioned previously, each unit of
three of the renormalized couplings is obtained from a
given set of nine exchange interactions. This results in ex-

change interactions within a unit being correlated but
there is no correlation between exchange couplings in dif-
ferent units. Therefore, when one considers many units, it
is meaningful to ascribe a new probability distribution for
the renormalized exchange interactions at a given length
scale. This probability distribution can be characterized
by a mean value J,„and its dispersion cr The f. ixed prob-
ability distributions (FPD) P" would determine the critical
behavior of random models.

Another physical quantity of interest is the sensitivity
of the free energy to changes in the boundary conditions,
hE, . Recently, it has been suggested that the size depen-
dence of bE, allows one to identify the equilibrium LCD
of an ordered phase. ' In the paramagnetic phase bE, de-

cays exponentially with the size of the system. On the
other hand, in an ordered phase such as an equilibrium
spin-glass phase, if indeed such a phase exists, hE, would
be expected to depend algebraically on the size of the sys-
tem. At zero temperature let the algebraic form be given

by

the Hamiltonian for the gasket is equivalent to that for a
triangle with renormalized exchange couplings. Since
there are only eight energy states for the Ising spins on the
triangle, h&, may be defined as the energy difference be-
tween the highest and the lowest of these eight states.
While this definition of bE, is not unique, adopting other
reasonable measures of AE, leads to virtually the same ex-
ponent X.

We have carried out a numerical analysis of the recur-
sion relations for systems of N =3 triangles of side equal
to the lattice parameter, with m =0, 1,2, . . . , 9. Note
N, = l.5(N + 1). The procedure was repeated several
times to ensure sufficient statistics. The largest system
studied had 29 526 spins. We consider the following
cases.

(1) Po(J) =5(J). This is an FPD describing a decoupled
paramagnetic system.

(2) Po(J) =5(J—Jp), Jp )0. At zero temperature this is
also an FPD corresponding to a uniform ferromagnet. On
successive iterations the probability distribution is un-
changed, hE, is scale invariant, and x=0. At any finite
temperature this FPD is unstable and the paramagnetic
FPD is approached exponentially fast for large systems.
The system undergoes a zero-temperature phase transi-
tion.

(3) Po(J) =5(J—Jp), Jp (0. The system is fully frus-
trated and, even at T=O, upon one decimation all of the
renormalized exchange constants are zero. The system,
therefore, is paramagnetic at all temperature.

(4) Random ferromagnet, T=O. The exchange cou-
plings were chosen to be absolute values of Gaussian num-
bers, characterized by zero mean and unit variance. A nu-
merical analysis of the recursion relations shows that the
decays of cr, J,„,and AE, are all algebraic and have virtu-
ally the same exponent x= —0.04. The system is at or
slightly below its LCD.

(5) Random antiferromagnet, T=O (Fig. 2). The distri-
bution of the couplings was as described in case (4) except
that they were all chosen to be negative. The probability

gE Nz (2)
0

I.O

where N, denotes the number of spins. A positive ex-

ponent x would lead to EE,~Do as N, ~~, which is
characteristic of a system above its LCD, i.e., long-range
order would persist even at finite temperatures. On the
other hand, a negative x would result in AE, ~O meaning
that the system was below its LCD. It is important to
note, however, that the negative-x system is not a
paramagnet at zero temperature (otherwise b,E, would de-

cay exponentially) and becomes paramagnetic at infini-
tesimal temperatures. Finally, a zero value of x would
correspond to a system at its LCD and it may or may not
undergo a finite-temperature phase transition. A numeri-
cal analysis of the d =3 Heisenberg spin-glass with
Gaussian couplings shows that for sufficiently short time
scales x=0, whereas in equilibrium x is negative.

In order to define a characteristic bE, for Ising spins
on the gasket, we note, that for any particular length scale
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FIG. 2. Plots of 1nhE, and 1no vs 1nN for the random anti-

ferromagnetic and the Gaussian spin-glass at T=O.



RENORMALIZATION-GROUP ANALYSES QN FRACTALS:

distribution seems to approach the paramagnetic FPD but
only in an algebraic fashion. The system is frustrated and
J,„ is found to renormalize to zero after one iteration.
The exponent x = —0.5. The system is below its LCD and
it undergoes a T=0 phase transition.

(6) Gaussian spin-glass, T=O (Fig. 2). This is also a
frustrated system and its behavior is very similar to that
of the random antiferromagnet. Note that the algebraic
decays of o and &R, are characterized by the same ex-
ponent x = —0.5.

(7} Gaussian "spin-glass, " T= 1, in units in which the
probability distribution has unit variance (Fig. 3). As ex-
pected, the system is paramagnetic. The quantities o and
&&, decay according to the exp( N/g)—/N'/ law. This
ls collslstellt wltll f~ oo as T~O.

(8) Po(J)= —,'[5(J—Jo)+5(J+Jo)], T=O (Fig. 3). On
an average half of the triangles are fully frustrated. One
would therefore expect that even at zero temperature, fol-
lowing one iteration, a finite fraction of the renormalized
bonds would become zero, decoupling the system into sub-
systems of finite size. In fact, &&, and o' decay exponen-
tially and reach the paramagnetic FPD after only five
iterations.

While all of the calculations presented above have been
carried out for the artificial fractal lattice they neverthe-
less reproduce many of the properties of frustrated sys-
tems on regular lattices. For example, in 0=2, the Gauss-
ian Ising system is believed to undergo a zero-temperature
phase transition whereas the +J Ising system is paramag-
netic even at T =0.' ' If real spin-glasses are below their
LCD in d=3 it is tempting to speculate that their equili-
brium behavior is similar to that described in cases (6}and
(7)-

The energy spectrum of an electron in a periodic poten-
tial consists of bands of extended eigenstates. On the oth-
er hand, the electronic states in a random potential may,
in general, be either extended or localized. " A scaling
analysis' of the localization problem has shown that all

eigenstates in d=1 and 2 are localized, whereas the ex-
istence of a mobility edge, separating extended and local-

ized states, is predicted in higher dimensionalities. Physi-

cally, one may understand the absence of extended states
as arising from destructive quantum interference caused

by the random potential. It is an intriguing possibility
that a similar destructive interference may appear in sys-

tems without any randomness. %e show, in this section,
that this indeed is the case for an electron described by the
tight-binding Hamiltonian on a d-dimensional Sierpinski
gasket. For example, in 0=2 the gasket can be visualized
as being made up of a triangular lattice with a fraction of
the bonds removed in a nonrandom self simil-ar manner.
It is important to note that the removal is done in such a
way that the gasket is finitely ramified but is not quasi-
one-dimensional.

We carry out an exact decimation procedure for the
tight-binding Hamiltonian on the d-dimensional gasket.
For any d the recursion relations may be cast in the form
of a logistic map'

with A, =1+3. An analysis of the recursion relations
shows that, in any d, there are no brands of extended
eigenstates.

To construct a d-dimensional gasket ' we begin with a
d-dimensional hypertetrahedron. The d (d +1)/2 mid-
points of its edges are connected, creating (d +1) smaller
hypertetrahedra and a hypervolume in the center. The
central hypervolume is removed and the same procedure is
continued for each of the new hypertetrahedra down to
the microscopic lattice constant. We note that the fractal
dimensionality of the gasket is equal to ln(d +1)/ln2.

For concreteness, let us consider the d=2 gasket, a
fragment of which is shown in Fig. 4. The Schrodinger
equation for the wave function at site 1 is

xai ——(a2+as)+(at +as ) .

Here x is the energy of the electron measured in units of
the hopping matrix element. Similar equations may be
written down for the wave functions at other sites. The
geometry of the gasket is such that at, a4, and a& are con-
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F1G. 3. Plots of ln(EE, ~N ) and ln(oV N ) vs N for the
Gaussian "spin-glass" at T=1 and plots of 1nhE, and lno vs X
for the system with the +J couplings at T=O. FIG. 4. Fragment of the Sierpinski gasket in d =2.
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x'=x(x —3) . (6)

The self-similarity of the gasket enables one to iterate this
process recursively and to obtain renormalized values of x
at each length scale. An analogous decimation procedure
has been carried out by 3ose' in a d=l tight-binding
model for both periodic and random cases. For the
periodic system the recursion relation is

x =x —2.
It is straightforward to perform the decimation pro-

cedure for the d =3 gasket, yielding
x'=x —6x +6 . (8)

We now generalize our results to arbitrary dimensionali-

ty d. In any decimation step, we eliminate d(d+1)/2
midpoints from each hypertetrahedron. The Schrodinger
equations for these sites may be written in matrix form as

AP=Q, where

a)+a3
a)+a5

nected in the three corresponding Schrodinger equations
only to each other and to a&, a3, and a5. This simplifying
feature is due to the finite order of ramification of the
gasket. The three linear equations may be solved yielding
equations of the form o;=a;(a„ai,a5;x), i=2,4,6. A
siInilar analysis may be carried out in the lower triangle.
Substituting the expressions for az, a6, a2, and a6 into
Eq. (4) leads to the equation

x'a
&

——a3+a5+a3 +a5,
where

one eleInent equal to —1; we need not concern ourselves
with the remaining elements of this row. The last row of
the matrix A has 0 as its first element; the next (d —1) ele-
ments are all zeros except for two which are equal to —1.
The same holds for the next (d —1) elements, and as be-
fore we are not interested in the remaining elements.

Since A 'A =I we may solve for a, P, and y as func-
tions of x and d. We have therefore succeeded in invert-
ing the matrix A. It should be noted that this inversion is
not possible for a finite, discrete set of values of x (hen-
ceforth referred to as x). For these values, the deter-
minant of the matrix vanishes and the recursion relation
derived below [Eq. (11)]does not hold.

Following the procedure in d =2 we express the sum of
the midpoint wave functions in the Schrodinger equation
for corner 1 as a linear combination of the corner wave
functions. By taking into account that the corner 1 be-
longs to two hypertetrahedra we get a new Schrodinger
equation on a different length scale. The recursion rela-
tion is

x —2d [a+(d —1)P]
a+3(d —1)P+(d —1)(d —2)y

' (10)

which upon substituting the expressions for a, P, and y
becomes

x'=x +3(1—d)x+2d(d —2),
where we have assumed that the denominator of Eq. (10)
is nonzero. For special values of x where the denominator
is zero, x'= Qo, and the hopping matrix element becomes
zero upon one iteration. Equation (11) reduces to Eqs. (6),
(7), and (8) for d =2, 1, and 3, respectively.

Upon making the transformation,

a4 a3+a5

Here P is a vector constructed of the wave functions at the

midpoints which are to be decimated. The vector Q is
made up of pairs of wave functions at the corners of the
hypertetrahedron added together. For convenience the

elements of P are arranged in such a way that all the d
nearest-neighbor midpoints of corner 1 are written first.
The remaining (d —1) nearest-neighbor midpoints of
corner 3 are written next, and so on.

The matrix elements of A take on only three possible
values: x, —1, and 0. Similarly, on very general symme-
try grounds, the matrix A ' is obtainable from A by mak-
ing the replacements x~a, —I~P, and O~y. This is
related to the fact that all of the midpoints are either
nearest neighbors or next-nearest neighbors to any given

corner site. By the choice of the vectors P and Q the first
row of the matrix A is x, —1,—1,—1,—1, . . . ,
—1,0,0, . . . , 0,0, where there are 2(d —1) elements equal
to —1 and (d —1)(d —2)/2 elements equal to zero. The
general structure of the second row of the matrix A is as
follows: The first element is —1, the second (diagonal)
element is x, and the next (d —2) elements are —1; the
next (d —1) elements are made up of (d —2) zeros and

Eq. (11) can be cast in the quadratic form [Eq. (3)] with
A, =d+3. Since the exact recursion relation is known, it
is straightforward to iterate the decimation procedure to
obtain the effective Hamiltonian for large length scales.
The iterative properties of the one-dimensional map given

by Eq. (1) have been studied extensively. ' ' For d& 1, A,

is larger than 4 and the logistic map does not have any
stable fixed points or cycles. The two fixed points of the
transformation [t=O and {A,—I)/A, ] are unstable and any
initial value of t leads to a faster than exponentially grow-

ing sequence of t's. This is equivalent to a decreasing
value for the effective hopping matrix element on succes-
sively larger length scales and shows that the electronic
eigenstates, if any, are localized stronger than exponential-
ly. We note, however, that there is a set of initial values
of t for which thc tI'ansicllts go to thc unstable fixed
points but this set is of measure zero.

Two points deserve further clarification. First, we have
not treated the set of points x for which Eq. (11) does not
hold. It is indeed possible that the set of x 's and of those
values of x which renormalize to x may have degenerate
eigenstates. However, we stress again that this set is
discrete. Second, for values of x, for which the recursion
relation [Eq. (11)]does hold, x' eventually renormalizes to
+ 00. This does not necessarily distinguish between local-
ized eigenstates and the absence of any states (band gapa).
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It is a possibility that the gap states are in fact of measure
l in this problem.

This behavior is in sharp contrast to that of the d= 1

periodic tight-binding model [Eq. (7)]. In this case A, =4
and there is a basin of attraction between t=0 and 1. One
may identify this basin with a band of extended states and
the frequency with which a given energy occurs on succes-
sively iterating the recursion relation, starting from any
point within the basin, is proportional to the density of
states within the band.

The method and results of this note are applicable to a
system of point masses m placed on the sites of the gasket
and connected by springs of spring constants k, provided
we make the simplifying (albeit artificial) assumption that
the masses are allowed to move only in a direction orthog-
onal to the d-dimensional space of the gasket. The param-
eter t ill this case is glveil by ( —trito Ikl, ). Tile do~0
limit corresponds to the t~O —limit. %e may then make
the linear approximation for the recursion relation yield-

ing t =A,t. Upon making the decimation, ~ renormalizes
to A,

' to while a fraction (d + 1) ' of the sites are left in-

tact. It follows from a straightforward scaling argument
that in the limit of co~0 the number of modes with fre-
quency less than co is proportional to tor with

y =ln(d + I)/1n[(d +3)' ]. Thus the low-temperature
specific heat of the system obeys the T" law with y~2 as
d~oo. Following Dhar, who studied the truncated

tetrahedron lattice, we note that the fractal dimensionality

is not equal to the exponent y.
Note added. After the work presented in this section

was completed we learned of similar work by Domany
et al ' . They study the solution of the Schrodinger equa-
tion on a variety of fractal lattices and in particular on the
Sierpinski gasket in d=2 and 3. Their analysis of the re-

cursion relations goes much beyond our own. For the
d=2 gasket, they show the existence of localized etgen-

states and explicitly construct them, they show that the

gaps are of measure one, and they explicitly construct the
density of states function. We were informed by Kadan-
off that Eq. (4) has apparently existed in unpublished
form and was first derived by Alexander. ' (We are grate-
ful to Stephen for bringing to our attention the work of
Domany et al 'an.d to Kadanoff for useful correspon-
dence. )
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