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%e report here a Monte Carlo study of the percolation threshold in two-dimensional systems of
conducting sticks. This is an extension of the work of Pike and Seager, who have considered only

the isotropic sample of randomly-oriented —,equal-length —sticks system. Our study is concerned

with the dependence of the percolation threshold on the macroscopic anisotropy of systems in which

there is a preferred orientation of the sticks ensemble, as well as on the distribution of the sticks'

lengths. In particular, we studied systems in which the orientation is determined by random ahgn-

ments within a given interval or in which the alignments are normally distributed around a given

direction. Similarly„ for the sticks lengths we have studied systems of equal lengths, of normally

distributed lengths, and of log-normally distributed lengths. The results have shown that the per-

colation threshold always increases with the macroscopic anisotropy. Extrapolation of the results„

from those of the finite sticks ensembles used to the infinite ensemble case, has indicated that in the

infinite ensemble the percolation threshold is isotropic. It is found that the broader the stick-length

distribution, the lower the mean of the distribution needed for the onset of percolation. Application

of the present results for the evaluation of the conductivity indicates that the anisotropy dependence

of the conductivity in systems of conducting fibers is determined by both the anisotropy dependence

of the percolation threshold and the anisotropy dependence of the critical exponent. If (as found ex-

perimentally} a practically infinite two-dimensional system has a conductivity anisotropy, it must be

attributed to the anisotropy in the latter parameter.

I. INTRODUCTION

While composites in which conducting fibers are em-
bedded in an insulating matrix are widely used by the elec-
trical industry, ' the understanding of their electrical prop-
erties has only recently emerged. ' This understanding
is based on the realization that the electrical conduction in
such systems is a percolative process. The experimental
evidence for this consists of the existence of a sharp onset
of high conductivity' at a certain concentration t0, of the
conducting member of the composite, c0, as well as of the
power-law dependence of the conductivity on to —c0, .
The percolation approach has been applied thus far to the
experimental studies of aluminum fibers, ' carbon fiber, l

and carbon black aggregates, all embedded in insulating
polymers. The experimental results have sho~n that in
comparison with systems of spherelike conducting parti-
cles, the onset of percolation in the fiber or "sticklike"
systems takes place at a lower co of the conducting filler.
In the systems of conducting fibers it was found that the
co for the onset of percolation decreases with increasing
aspect ratio (I./D) of the fibers.

In all the experimental works quoted above the compos-
ites used were deliberately made to be macroscopically iso
tropic, i.e., the fibers microscopic orientations were com-
pletely random. However, since all the composites men-
tioned above are prepared by mixing the conducting parti-
cles and the polymer in a molten state, it is clear that if
the melt is cooled down during its flow there will be an in-

creasing degree of fiber orientation with increasing flow

distance. ' It is expected that similar to the dependence
of thc IIlcchanical propcrtlcs oil thc fllbcr-orientation dis-

tribution (FOD) there will be a strong dependence of the
electrical properties on the POD. The simplest argument

to appreciate this is to compare a system of randomly

oriented sticks with a system of all parallel sticks. It is

apparent that the paralld-sticks system vill be anisotro-

pic; the to, required for the onset of percolation and the
resistivity of the system for a given to will be larger than

those corresponding to the randomly oriented (isotropic)
sticks system. The above expectations were verified late-

ly by shooting that the resistivity as we11 as the anisotropy
of the resistivity of samples having a given conducting-

particle concentration increase with the flow distance of
the composite melt during the sample preparation.

The simplest simulation of the above composites is a
two-dimensional sample of conducting sticks (or straight
fibers) embedded randomly in an insulating matrix. The
first, and as far as we know the only, analysis of such a
system is the study of Pike and Seagers who carried out a
Monte Carlo study of the two-dimensional stick percola-
tion problem. How&ever, their work was concerned only
with the percolation threshold of the macroscopically iso-

tropic case of randomly distributed sticks with a random
FOD. The sticks were assumed to be all of the same fixed

length L and a zero width D (i.e., L /D ~ 00 ).
In view of the interest in the above composites and the

recent general interest in the percolation in other two-
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dimensional anisotropic systems, ' we are presenting
here an extension of the study of Pike and Seager to an-
isotropic stick systems. This extension consists of the
computation of the percolation threshold of stick systems
in which there is a preferred orientation of the stick en-

semble and in which the sticks lengths have various dis-
tributions. The latter consideration was prompted by the
fact that in some cases ' the conducting fibers given are
not of the same length. In a following paper we plan to
present a Monte Carlo calculation of the electrical con-
ductivity of the systems considered here. Such a calcula-
tion has not been carried out before for systems of con-
ducting sticks. We are not concerned here with the effect
of the aspect ratio on the percolation threshold, although
in three-dimensional composites the threshold is strongly
dependent on this parameter. ' In two-dimensional sys-
tems the nature of the problem does not change with the
change in aspect ratio, and from the work of Pike and
Seager it is apparent that the dependence on L/D is very
weak. (They found that the critical size of the square in
the "square percolation problem, " i.e., L/D =1, is only
about half the critical stick length in the stick percolation
problem where L/D +m. ) W—e shall see here that the ef-
fects of the FOD and of the fiber-length distribution
(FLD) on the percolation threshold are by far stronger and
therefore more interesting.

In the present work we adopt the procedure used by
Pike and Seager as a starting point. The method is modi-
fied, however, to enable the inclusion of various FOD and
FLD for the study of their effect on the percolation
threshold. In a study such as ours computer time costs
are an important factor. Correspondingly, we have used
the smallest stick ensembles necessary to deduce the
behavior of an effectively infinite system, as well as to es-
timate the deviation of the computed results from those of
the infinite system.

Section II of this paper gives a simple analytic predic-
tion for the expected dependence of the percolation
threshold on the macroscopic anisotropy of the stick en-
semble. In Sec. III we present the method used for the
graphics and the computations. The results of the compu-
tation which are concerned with the effect of various
FOD's and FI.D's on the percolation threshold of the
stick system are given in Sec. IV. In Sec. V we discuss the
results and their implication for the prediction of the
dependence of the critical conductivity of the system on
the FOD and FLD.

initial number called seed to) the computer is shown in

Fig. 1. The next stage is to attach a stick of length L to
each site as shown in Fig. 2. Since there is no width to the
sticks, there can be no intersection of two sticks. Hence,
if the stick length is less than the sample size (unity), there
can be no continuous path from one boundary of the sam-
ple to the opposite boundary. In other words there is no
percolation. If, however, we allow the sticks to have a
nonzero angle with each other, we may obtain percolation
as is shown in Fig. 3. In this figure we present an aniso-
tropic sample in which the orientations of the sticks are
either 8 (10 in this case) or —8 (—10') with respect to a
chosen longitudinal (y) direction. As is immediately seen,
for the stick length used there is percolation along the
longitudinal direction but (in this finite system; see below)
there is no percolation in the transverse (x) direction.

It is already apparent from the above description that L
must be of the order of the intersite distance. Hence, the
choice of L depends on the number of sticks, X, in the
sample. We follow Pike and Seager in choosing an effec-
tive intersite distance 2r, by attaching to each site a circle
with an area n.r, where

Correspondingly, the stick lengths in this study will be ex-
pressed in terms of r, and we may define a stick density

by W.
Examining Fig. 3, one notes that the anisotropy of the

system is manifested by the fact that a stick has a com-
ponent I.cos8 in the longitudinal direction and a com-
ponent L sin8 in the transverse direction. Considering the
macroscopic anisotropy of the system, we find that the

II. THE ANISOTROPIC SYSTEM
AND ITS EXPECTED THRESHOLD

In this section we describe the systems to be considered
in this work, we define the macroscopic anisotropy, and
we use this defiiution to consider the anisotropic case as a
simple transformation of the isotropic case. The con-
clusions of the analysis are found to be quite general and,
as will be shown in Sec. IV, in agreement with the compu-
tational results.

Let us consider a sample which is a unit-size square. In
this square we "plant" N randomly distributed sites. A
sample of such sites which is generated by (introducing an

FIG, 1. Sample used for the two-dimensional sticks system.
There are 100 sites (stick centers) randomly distributed. Ensem-
ble of stick centers shown here was generated by using seed 7.
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L'= L/W2 [1+1/(P~~/Pi) ]'

From the percolation point of view no changes occurred
upon the contraction transformation since the connected-
ness remained that of the isotropic sample. Hence if L in
the isotropic sample was sufficiently long to yield percola-
tion, in both directions, then L' is also sufficiently long to
yield percolation in both directions. In particular, if L,
was the critical stick length for the isotropic system, then

L,' =(L, /V 2)[1+1/(P(~/P ) ]'~ (10)

will be the critical stick length in the anisotropic contract-
ed sample. As for the isotropic sample [Eq. (3)] we can
present L,' in terms of the stick density, i.e., as

L,' =f'/[mN(Pii /Pi)]'i

where f' depends on P~~~/Pi. Since this is the dependence
we are looking for, we combine Eqs. (3), (10), and (11) to
find that

f'=fo[[(P~~/Pi)+(P~~/Pi} 'l/2i' (12)

Equation (12} predicts that for the infinite ensemble of
sticks, in which the orientations are distributed according
to Eq. (4), the percolation threshold will increase with in-
creasing anisotropy from its isotropic value fo. We may
further conclude that the difference between the longitudi-
nal threshold and the transverse threshold shown in Fig. 4
is due to the finite number of sticks in the corresponding
ensemble. In Sec. IV we show that the computational re-
sults confirm these conclusions.

The above simple argument can be readily generalized

direction to be representative of the system. For this rep-
resentation to be valid the anisotropy associated with the
components of this stick,

L cos(8&/2)

L sin(8„/2)

must be consistent with that of the whole system [Eq. (7)].
Indeed, the expressions given in Eqs. (7) and (8) are the
same and thus we may follow the changes in the anisotro-

py of the system by considering the corresponding
changes in the representative stick. In particular the
representative stick of the isotropic system (8„=90')
makes an angle of 45' with the longitudinal and transverse
directions. Its longitudinal component is L /V2 and its
transverse component is also L /V 2.

For the evaluation of the effect of anisotropy on the
percolation threshold let us now introduce the macroscop-
ic anisotropy P

~

/Pi by carrying out a contraction
transformation o the system. The transformation is car-
ried out, by "squeezing" the transverse direction by a fac-
tor of P~~~/Pi. All the sticks in the system will now have
their transverse components L sin8; transformed to
(Lsin8;)/(P~~/Pi), while their longitudinal component
L cos8; has been kept the same. The density of the sticks
has correspondingly increased from N to N(P~~/Pi). The
transformed representative stick has a longitudinal com-
ponent L /V 2 and a transverse component
L [/ v (2P~~ /Pi )]. Correspondingly its transformed length

(c)

FIG. 4. Two-dimensional sample of 100 sticks of equal
length (J =4.2r, ) with a sample orientation determined by the
cutoff 8„of the random angles 8;. (a) 8„=5', (b) 8„=10', (c)
8„=30', (d) 8„=50,(e) 8~——70', and (f) 8q ——90'.

to all cases where P~~/Pi can be determined by computa-
tion (for finite systems, as in Sec. III} or by analysis (for
an infinite system, as above). This is because for a suffi-
ciently large (N~ ao) system every angle distribution can
be mapped into the random case. The corresponding 8„
can be found from the common P~~/Pi. In Sec. IV we

demonstrate that this is true for the normal distribution of
angles. Another case of interest is that in which the sticks
are of different lengths and their lengths follow a given
distribution. In this case the anisotropy of the system is
defined by

N

~
L;cos8;

~

i=1

g ~

L;sin8;
~

(13)

III. COMPUTATIONAI. PROCEDURES

The samples used for the study were made of a unit-size

square. In this square sites were "planted" by generating
random coordinates (x;,y;), i =1,2, . . . , ¹ This was
done by using a pseudorandom number generator (UN-

IFRM) available for the IBM 3670 computer used
throughout this work. UNIFRM produces a sequence of

If the lengths L; and orientations 8; are not correlated and
if the ensemble is sufficiently large, the dependence on an-

isotropy will be the same as in Eq. (12}except that fo will

be determined by the distribution of L;. In Sec. IV we de-

fine fo, for all cases where the stick lengths are not equal,
as the mean of the stick-length distribution. It will be
shown there that the expectation for the above [Eq. (12})
dependence of f' on P~~ /Pi is confirmed by the computa-
tion for both normal and log-normal stick-length distribu-
tions.
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psuedorandom numbers uniformly distributed on the in-

terval [0,1]. The starting point, or seed, for UNIFRM is
chosen arbitrarily, but once selected we kept it to be the
same for all our illustrations and computations. To check
the importance of the seed's choice we have varied the
seeds when such a check was caBed for. For the site selec-
tion we have obtained all N of the x; coordinates and then
all N of the y; coordinates. An example of a resulting ran-
dom array of sites, for N = 100, was shown in Fig. 1.

We attach a stick to the site (x;,y;) by choosing a length
I; and orientation 8; (with respect to the y axis). For these
values of I; and 8; a stick is plotted by drawing a line seg-
ment between (x; + (I; /2)sin8;, y;+ (I; /2)cos8; ) and

(x;—(I;/2)sin8;, y; —(I;/2)cos8;). The values of I; and 8;
are chosen according to the desired distribution as will be
explained below. The simplest case of I;=L and 8;=0'
for i = 1,2, . . . , 100 was shown in Fig. 2.

In the computation one would like to find whether per-
colation by the conducting sticks occurs in a given sample;
i.e., whether there is a continuous conducting path along
the y axis, and whether there is such a path along the x
axis. We have called the corresponding paths the longitu-
dinal (y) and the transverse (x) paths. Similarly, we call
the conductivity along the y axis the longitudinal conduc-
tivity and the conductivity along the x axis the transverse
conductivity. The principle of the computation is as fol-
lows. Every stick is being checked against another to find
whether they intersect. If their point of intersection is
within our unit-square sample they are assigned a com-
mon cluster number. All sticks within the same cluster
have the same cluster number. If in the cluster there is a
stick which intersects one boundary and another stick
which intersects the opposite boundary we call the cluster
a percolating cluster and we say that percolation along the
corresponding axis prevails. A simple case was illustrated
in Fig. 3 where we have chosen 8;=10 for i =1,3, . . . , 99
and 8; =—10 for i =2,4, . . . , 100, and L =5.1r, . There
is clearly a percolating cluster along the y axis and no per-
colating cluster along the x axis. Hence in this finite sam-

ple we have longitudinal percolation but no transverse per-
colation. Although the present procedure is similar to
that used by Pike and Seager, we describe here the execu-
tion of the above principle in some detail. This is done
since in our samples I; and 8; are of a given distribution
and this requires some modification of their procedure.

The intersection of the sticks is done by first checking
whether the distance between sites i and j,

d;i [(x;—xi) +(y; ———y~) ]'i

is larger than I;/2+ IJ /2. If this is not the case we have to
consider the geometrical construction shown in Fig. 5.
Similar to Ref. 8 we define the following distances:

A; =d;J
~
cos(8J+y}/sin(8& —8;)

~

AJ =d J ~

cos(8;+y)/sin(8J —8;) ~,
where y=arctan[(y; —yj)/(x; —xj)]. A»s clearly ap-
parent from Fig. 5, the two sticks intersect if both condi-
tions 3; & I;/2 and AJ & lj /2 are fulfilled. If, however, the

FIG. 5. Diagram of the two-stick intersection system.
Geometrical quantities defined in this figure are used in check-
ing whether two sticks intersect.

point of intersection is outside the (unit-square) sample,
the two sticks are not considered intersecting. A pair of
intersecting sticks receives the same cluster number. The
cluster number is being updated as each pair of sticks is
being checked so that if a new stick is found to intersect
two sticks, which previously belonged to different clusters,
the two clusters will be assigned the same (one of the pre-
vious} cluster number. To check for percolation we find
all the sticks which intersect the "longitudinal" boun-
daries, i.e., y =0 and 1, and all the sticks which intersect
the "transverse" boundaries, i.e., x =0 and 1, and record
their cluster numbers. If any cluster number appears for
two opposite boundaries we say that the corresponding
cluster is a percolating cluster. The program also records
the number of percolating clusters and the number of
sticks intersecting with each boundary which belongs to a
given percolating cluster.

Now that the criterion for percolation was established
we can proceed with the dependence of the percolation
threshold on the system's parameters. As in Ref. 8 we
predetermine the concentration of sticks in the sample and
check the minimum stick length required for percolation.
It is obvious from Eq. (1) that the argument can be re-
versed, and by predetermining the stick length we can find
the critical concentration of sticks.

We start from the simple case where all the sticks have
the same stick length L. The first trivial case is that of
8; =8 for all the sticks. This means that all the sticks are
parallel and of course percolation is achieved only when
L cos8=1 for longitudinal percolation and L sin8=1 for
transverse percolation. This trivial example is mentioned
in order to illustrate the uninteresting problem (from the
percolation point of view) of very long sticks in a sample
of a finite size. When one uses finite samples in the calcu-
lation one has to ensure that this case is not approached
(see below).
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The second trivial example, however, carries the nature
of the percolation problem; i.e., the conducting particle
size is much smaller than the macroscopic size of the sam-
ple. In this case the sticks are assigned the orientations
8;=+8 or 8; = —8, where the signs of 8; are chosen ran-
domly. This situation was shown in Fig. 3 and as will be
discussed in Sec. III it demonstrates already the essential
properties of the percolation problem in a system of
oriented sticks. The completely random orientation case
is the case discussed by Pike and Seager. For this case we
have used again the UNIFRM generator to generate N ran-
dom values for the N random alignments of the sticks.
The values 8;, with respect to the y direction, are chosen
randomly within the interval —90'(8; (90'. This is an
isotropic case and thus the critical stick length in the y
direction is expected to coincide with the critical stick
length in the x direction. Both values are expected to be
equal to L„the value obtained by Pike and Seager for the
coQ1pletely random-oAentatlon case. As w111 be shown
below this expectation is fulfilled. This fulfillment is im-
portant from the computational point of view since it in-
dicates that the results obtained in the present work are
not sensitive to the differences between the procedure used
here and the procedure used in Ref. 8 and that an ensem-
ble of 1000 sticks is statistically sufficient for the isotropic
case. In Fig. 6 we show a computer-generated sample of
N =1000 sticks of equal size which are randomly orient-
ed. Examining this sample makes one appreciate the com-
putational effort (i.e., cost) needed for the search of per-
colation in such a sample. Hence we did not carry out
computations for larger samples.

The simplest FOD was described already in Sec. II as a
generalization of the completely random case. Another
possible choice of FOD is that of normally distributed
alignments. We have chosen for this case an angle distri-
bution with a mean of 8=0 and a standard deviation of
2o =8 . As for the case characterized by Eq. (4},we have
studied thc dependence of L~[( Rild L~i oil 8~. Agalll, thc
smaller the 8 the more anisotropic is the FOD. To gen-

crate the corresponding 8; we have used a subroutine

(NQRMAL) wllicll is also available 111 our co111plltcf hbrary.
NORMAL computes a pseudorandom sequence of numbers

normally distributed with zero mean and unit variance.
Each of the above (8„or 8,) FOD's is associated with a

different degree of sample anisotropy. We have thus de-

fined a common criterion to correlate the values of L,
)~

and L,i found and the degree of anisotropy (or orienta-
tion) of the sample. The common criterion by which we

have chosen to characterize the degree of anisotropy is the
1'Rtlo g1vcn in Eq. (2}.

It is worth noting that Eq. (2) can also be a good cri-
terion for the statistical reliability of the sample. If for a
given FOD two different seeds yield samples which differ
substantially from one another in the numbers derived

with the use of Eq. (2), the number of sticks is clearly not
statistically sufficient. For the normal FOD's generated
here with 1000-stick systems of fixed L, the deviations of
the P~~~/I'i values from one seed to another were of the
same order of those obtained for the random case, i.e., less
than 5%. In the latter case we have also compared the
computed P~/I'1 values with the prediction given in Eqs.
(7) and (g). As can be seen in Fig. 7, the deviations of the
computed values (points} from the predicted values (curve)

IO-

FIG. 6. Two-dimensional sample of 1000 sticks of equal

length. Stick alignments are random and the sample is isotropic.

E

l l l l l I l l

0 IO 20 30 40 50 60 70 80 90
8pddag)

FIG. 7. Degree of macroscopic anisotropy as a function of
the cutoff angle H„of the random angle distribution. Curve is
derived from Eq. (7) aud the points are computed for the, 100, 8&

values of seed 7 with the use of Eq. (2).
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derived from these equations were also of the same order
as the deviations between various saxis.

Completing the study of the orientation effects on sam-
ples of sticks with the same length, we turned to the case
where the stick lengths I; are normally distributed around
a mean L~. For this purpose we have used the normal-
distribution procedure which has been described above for
the distribution of the angles. However, in this case
L&0 and we have chosen the standard deviation
20 =2r, . The L,

~~
and L,j determined in this case corre-

spond to the minimum values of LM which yield percola-
tion in the respective direction. Another FLD which is of
interest in view of its existence in some composites ' is
the log-normal distribution of sticks with a mean LM and
a standard deviation 20 = 1 (i.e., 95% of the sticks are be-
tween 0.1L~ and 10L~). The corresponding lengths were
obtained again using the subroutine NQRMAL, but the
lengths II were chosen so that logl; is normally distributed.
The effect of these two FLD's were studied for the various
FOD's which were described above for the case of the
same fixed L

The corresponding macroscopic anisotropy of this sys-
tem is determined with the use of definition (13). If the
choices of I; and 8; are not independent, Eq. (13) should
yield the overall "macroscopic anisotropy" of the system
which will be different from the "directional anisotropy"
given by Eq. (2}. In the cases studied here I; and 8; are
chosen independently and the anisotropies derived from
the two definitions should be equal. A comparison be-
tween the results obtained by the use of Eq. (2) and Eq.
(13) indicates here the statistical sufficiency of the samples
used. In the cases where the stick lengths were distributed
we found that the deviations between the results based on
Eq. (2) and those based on Eq. (13) were again less than
about 5% for N = 1000. An example of a sainple having
a random-isotropic orientation distribution of the sticks,
and a log-normal distribution of their length is shown in
Fig. 8. It is quite apparent that the long sticks in the sys-

FIG. 8. Two-dimensional sample of randomly aligned sticks
having a log-normal distribution of lengths. Mean stick length

is 1.2r, and the standard deviation is z .

tern will determine the onset of percolation as well as the
conductance of the sample.

Finally, in the case of a sample with a given fixed stick
length L we can use the relations (5) and (6) to deduce the
critical stick concentrations required for the onset of per-
colation. This is done by combining these relations and
Eq. (1}. The critical stick concentration required for long-
itudinal percolation N,

~~
will then be given by

N, ii=fii/(nL ) . (14}

Similarly, the critical stick concentration for transverse
percolation N, z will be given by

N, i fi/(——mL ) . (15}

One should note that while we present our results below
in terms of Eqs. (5) and (6), in studied composites' i it is
usually the value of L or its FLD which is predetermined
while the experimental variable is usually N.

IV. RESULTS OF COMPUTATIONS

As was pointed out above, the simplest random aniso-
tropic system of fixed-length sticks is that of sticks of ran-
dom sites but with an alignment 8 (with respect to a given
axis y in our case), where only the sign of 8 is chosen
randomly. Taking samples of this kind (Fig. 3), we have
considered the cases 8=+5', +10;.. . , +85' and found
the corresponding values for L,

~~
and L,i. These values

were deterinined for this sample as well as for all subse-
quent samples studied here to within +0.1r,. With the
use of our definition of the macroscopic anisotropy [Eq.
(2)] we were able to deduce the dependences given by Eqs.
(5) and (6). The results are shown in Fig. 9. Two features
are conspicuous: (a) The critical stick length increases
with increasing anisotropy, and (b) the ratio L,i/L,

~~

in-
creases with increasing anisotropy. As will be seen below,
these features are reproducible for all the FOD's and
FLD's considered in this study, indicating that these
features are general and that the qualitative character of
the dependences is already apparent in this simple
quasirandom case. Note that the case 0=+45'
(P~/Pi =1}is an isotropic case and that P~~ /Pi & 1 simply
ineans the change of the longitudinal and transverse direc-
tions, hence the increase of L,

~~
and L,i when P~~ /Pi 0.

We may further note that the values obtained in the
present isotropic case (L,

~~
=L,&-5.5r, ) are not too far off

from the completely random, and therefore isotropic,
FOD (L, =4.2r, ) obtained by Pike and Seager and in the
present work (see below). While, as will be shown below,
such a small sample (N =100) yields already the gross
features of the functions f

~~
and fi, the details disclose the

limitations imposed on the computations by the use of
small-size samples (small N}. For example, we see in Fig.
9 that the minimum of f~) occurs around P~~~/Pi ——2, in
contrast with the expectations that it will coincide with
the miniinum of fi and that it will be found for

P~~ /P& ——1. Let us turn now to the more physical cases of
oriented stick ensembles in which the stick alignments are
distributed randomly around a given direction.

The most thoroughly FOD investigated here is that of
an ensemble of equal-length sticks with fixed length L
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FIG. 9. Results of the percolation threshold computations for
a sample of 100 sticks with fixed alignments and random sites.
Threshold is determined by the minimum stick length L,

I~
which

yields percolation along the y axis and the minimum stick length
I.,& which yields percolation along the x axis. (Typical sample
used for this case was shown in Fig. 3 for Pt, I

/P& ——5.67.)

PII
/P

FIG. 10. Results of the percolation threshold computations
for a sample of 100 randomly oriented sticks. Alignments are
limited by the cutoff angle 8„. The computation was done for
three different samples (seeds) in order to appreciate the effect
of stick site-selection on the critical values I.,~I

and L,~.

having random alignments 8; within an interval
—8„&8;&8„. The value of 8„determines the degree of
orientation of the macroscopic sample. Hence, the first
stage is the computation of the corresponding anisotropy,

P~ [
/Pi as a function of the cutoff angle 8„. This is done

by using Eq. (2). The relatively high accuracy of the
determination of P~~/P& (see above) indicates that the er-
ror intervals and the faults in the results, which are associ-
ated with the ensembles being too small, will be manifest-
ed mainly in the computed values of L,

~~
and L,~. Having

the calibration of Fig. 7 we turned to compute L,
~~

and
L,i for various samples of 100 sticks. First, we have car-
ried out detailed computations for the seed shown in Fig.
1 (seed 7) and have summarized them by the correspond-
ing curves of Fig. 10. The effect of varying the seeds is
shown clearly by the results obtained using two other
seeds. As expected from the increase of L,

~~
and L,i with

increasing anisotropy, this effect is stronger with increas-
ing anisotropy. Less intersections are needed then, for
percolation, and thus the dependence on the particular
seed becomes stronger. This means that for high P~~/Pi
values the sample is statistically insufficient and that the
values of L,

~~
and L,i are not quantitatively reliable. On

the other hand, the qualitative features (a) and (b) men-
tioned above are clearly reproduced and the values of
P~~~/Pi 1 all lie between 4r, and——5r„ in good agreement

with Ref. g (L, =4.2r, }.
Following the results shown in Fig. 10 we expect that a

larger ensemble will be a better approximation for the
more interesting infinite ensemble. The dependence of the
results on the ensemble size is hoped to indicate how to
extrapolate the results of the infinite ensemble from the
results obtained for the finite ensembles. In addition, one

expects that in the larger system the "fine structures" as-
sociated with the particular seed used, will be smoothed
out. Indeed, these expectations are fulfilled as we found

by using five samples of 1000 sticks. This can be seen by
comparing the results of Fig. 10 with the results obtained
for any of the N =1000 stick samples shown in Fig. 11.
Rrst, we note that the I., I I

curve is higher in Fig. 11 than
in Fig. 10 and that the L,j curve is lower in Fig. 11 than
in Fig. 10. Hence, there is a closing up of the "gap" be-
tween the I., I I

and the I,j curves. %e have determined an

L,
~~

and an L,i uncertainty regions by using the data of
the five seeds. These are shown by the dashed lines in Fig.
11. For Pll P, &4 we may say th«L
computed point falls in the uncertainty region of both L,

~~

and L,i. Second, we see that the effect of the seed varia-
tion for the P~~/Pj values investigated is much smaller
here than in Fig. 10. The third observation is that for the
isotropic case we find that L,

~~
=L,i (4.2+0.3)r,. Since——

this value was statistically established in Ref. (8} [to be
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solid curve and the computed results for the five seeds.
With the use of the one point adjustment, fo 4——.2, the an-
alyt1c result dcrivcd 18 clearly scen to bc within thc two
uncertainty regions and thus the simple prediction of Eq.
(12) is confirmed. On the other hand, the fact that the an-
alytic result hes intermediately between the I., II and the
L,z values of each seed indicates that a 1000-stick sample
sets reliable limits on the expected common percolation
threshold. %e shall use this conclusion below in assuming
that the results of the computations are reliable limits to
the threshold dependence for all the fiber-orientation and
fiber-length distributions which are considered in the
present work.

In the FOD discussed above the same weights were
given to the various alignments within a given interval.
We have chosen to represent the FOD's where different
weights are assigned to different alignments by using a
normal distribution of the angles 8;. One notes that such
distributions are more pertinent to plastic composites in
which anisotropy is introduced by melt flow or shear ac-
tion. In variance with the previous FOD's this distri-
bution is always anisotropic (i.e., the case P~t/I'i ——1 can-
not be obtained). The degrees of anisotropy associated
with this FQD were determined, as above, by using Eq.
(2). The computations yielded the results shown in Fig.
12. It is seen that the two main features of the functions
f

~~
and fz are found again for this normal FOD and that

2G

l

O 2 4 6 8
Ps/ Pi

FIG. 11. Results of the percolation threshold computations
for five samples of 1000 equal-length sticks randomly aligned
within a given interval of alignments. Solid curve is the expect-
~ ~~~pa, dependence ofbot 1.,~~

and L,„asX- . E.pected
dependence is given in Eq. (12).

(4.2+0.1)r,] the result indicates a fast convergence of the
L, values when N increases from 100 to 1000. An ex-
planation for this convergence is apparent when one con-
siders a sample of intermediate anisotropy and a unit
length, in which the fixed stick length is
L =10r,=10/V'n. E. For N =100, L & —, so that an in-

tersection of two sticks may yield a longitudinal percola-
tion. For N =1000, L &0.2, and thus at least five inter-
sections are needed for percolation. Hence, in the
N =1000 case, for a given degree of anisotropy, a higher
connectivity is required for percolation. In the smaller en-
sembles the role of the stick-length component (e.g.,

i ~cos8;
~

in the longitudinal direction) dominates

the role of the connectivity while in the infinite ensemble
it is only the connectivity which determines the onset of
pcrcolat1on.

The most important observation in Fig. 11 is the agree-
ment between the analytic result [Eq. (12)] shown by the

P„/P
FIG. 12. Results of the percolation threshold computations

for a sample of 1000 equal-length sticks with alignments which
are normally distributed around 8=0 with a variable standard
deviation 2o =8 . Dashed curve was derived from Eq. (12).
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FIG. 13. Results of the percolation threshold computations
for a sample of 1000 sticks, the lengths of which are normally

distributed and the alignments of which are randomly distribut-

ed within given intervals. Standard deviation of the stick
lengths was 2o =2r, . Here I.,II

and I.,& represent the means of
the stick-length distribution. Dashed curve was derived from
Eq. (12) with the use of the fo value computed for P~~/P, 1. =

a good agreement is obtained between the results and the
analytic expression Eq. (12). Again, the only adjustment
is made by setting fo =4.2.

Let us turn now to the computation of the effect of
various FLD's on f

~~
and ft. We consider first the case of

normally distributed stick lengths I; and randomly distri-
buted angles 8;.

P~
/Pt is determined by Eq. (13). The re-

sults of these computations, with 1.,
~~

and L,j being now
the means of the normal distribution, are shown in Fig.
13. The results are similar to those obtained for the same
seed with equal-length sticks (Fig. 11). Within the accura-
cy of the computations it is impossible to tdl whether the
slightly lower I.,~~

and I.,t values obtained (in comparison
with those of Fig. 11) are a "real" effect. We shall see
below that this may be a "real" effect, since the longer
sticks dominate the percolation process. We shall further
see that this lowering effect becomes more apparent the
broader the stick-length distribution. Taking a normal
distribution of the angles as well as a normal distribution
of the stick lengths yields the results shown in Fig. 14.
The findings show that this combination does not cause
any significant changes in f)) and fz in comparison with
the results of Fig. 13. Also apparent, as in the previous
cases, is the agreement with the analytic result given by

0

Pll I P

FIG. 14. Results of the percolation threshold computations
for a sample of 1|XI sticks, the lengths of which are normally
distributed (2o =2~, j and the alignments of which are also nor-

mally distributed (2o=I9 ). Dashed curve is the predicted
dependence [Eq. (12)].

Eq. (12).
The effect of a much broader FLD becomes apparent

when one uses the log-normal FLD instead of the normal
FLD. As can be expected from the stick clusters of a
sample with a log-normal FLD (Fig. 8), the few very long

sticks determine the percolation threshold. Indeed, a sig-
nificant reduction in the thresholds of the mean values of
the distribution, I.,~~

and I.,z, takes place when compar-
ison is made with the fixed length or the normal FLD
cases. The corresponding results [for which the degree of
anisotropy was determined by using Eq. (13)]are shown in

Fig. 15. Again the two features (a) and (b) are reproduced.
As in the previous cases we also plot the analytic result
(12) by adjusting it at the isotropic case. In the present
case, we take fo from the data shown using the mean of
the isotropic sample which is 0.8. It is clearly seen that
the agreement between the analytic result and the comput-
ed results is as good as in the previous case. One may
note that we show here a shorter range of P~~/Pt than in

the previous cases. The reason is that since in the present
system the longer sticks are the ones participating in the
percolation, there are effectively less sticks in the sample
and for the higher anisotropies the transverse percolation
may be determined by very few (sometimes one) sticks.
Nonetheless, in all cases the analytic result lies between
the I.,

~ I
and I.,z values obtained in the computations. The
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FIG. 15. Results of the percolation threshold computations
for a sample of 1000 sticks, the lengths of which are log-

normally distributed, with a standard deviation of 2cr=1, and

the alignments of' which are random within given intervals.
Dashed curve is a dependence expected [with the use of Eq. (12)
and fo 0 8]——for .both L,ii

and L„as N ~ oo.
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agreement between the analytic results and the computed
results further show that, as expected, the FOD and the
FLD affect the functions f~~ and fz independently when

the 8 s and the I s are determined independently.
So far we have presented the results of the percolation

thresholds in terms of the critical stick length required for
the onset of percolation in the two-dimensional anisotro-

pic samples. We have pointed out in Sec. III that for
studied composites it is the fiber lengths' or their distri-
bution ' which are usually given, while the experimental-

ly variable parameter is the critical fiber concentration N,
or its equivalents (e.g., vol% or wt. %). All our results
can be expressed in terms of N and N, (P~~/Pi) by using
relations (14) and (15) and the above-computed f~~(P~~/Pz)
and fz(P ~/Pz) values. In the cases where the sticks are
not all of the same length, X,

~~
and X,z are the critical

stick concentrations associated with the mean length L of
the FLD. Hence we can present all the results shown
above by the dependence of N,

~~
and N, i on P~~/Pi Fol

an illustration of such a presentation of the data we use
the results shown (by the solid curve) in Fig. 10 for the
longitudinal percolation in a sample of X =100 randomly
oriented sticks. The results are reproduced (with an ex-
tended P~~ /Pi scale} by the solid curve in Fig. 16. For the
N,

~~
representation we have chosen the fixed stick length I.

to be L, =4.5r, (which is the value borne out by the iso-
tropic case when N =100) and have computed N,

~~
by us-

ing the corresponding f~~ results and Eq. (14). The results
obtained are shown by the dashed curve in Fig. 16. This
curve indicates by how much one must increase the stick

FIG. 16. Results of Fig. 10 for L„},
~

vs P~} /P&, obtained for a
sample of 100 sticks (solid curve). Same results are presented as
an N, ~~-vs-P}}/P& dependence for a stick ensemble in which all
the sticks have the same fixed length, L, =4.5r, (dashed curve).

concentration (in comparison with the isotropic N =100
case} in order to obtain percolation under a given degree
of anisotropy. As is expected from the percolation criteria
[Eqs. (14) and (15}],the dependence of N,

~~

on the aniso-

tropy is stronger than that of L, t}. The local decrease of
both L,

~~
and N,

~ ~

around P~
~

/Pz ——2 as well as other "wig-
gles" in the curves are due, as explained above, to the
dependence of the results on the particular seed used in
this rather small sample.

V. DISCUSSION

In the present study we have found the dependence of
the percolation threshold on the anisotropy of a two-
dimensional random system. A quantitative relation has
been derived for this dependence [Eq. (12)] and computer
simulations have indicated that it is applicable to all kinds
of FOD's and FLD's as long as the two distributions are
not correlated. We note that although intuitively expect-
ed, previous experimental studies" ' (on other two-
dimensional random anisotropic systems) could not even
establish qualitatively a dependence of the threshold on
the macroscopic anisotropy. These expectations, which
are confirmed in the present study, are that the percola-
tion threshold (L,

~~
and L,i or X,

~~

and X,~) increases with
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increasing macroscopic anisotropy, P~~/P&, and that the
threshold is isotropic in the infinite ensemble. As was
shown in Sce. II for the random stick system and as will
be shown for lattices in the Appendix, these two observa-
tions are quite general.

The present results have shown that the details of the
FOD are unimportant and that the threshold is deter-
mined by the macroscopic (or overall) anisotropy. The
agreement of this finding with the expectation from
universality (that the onset of percolation is determined
only by the overall connectivity of the sample) indicates
that the larger (N =1000) samples used in this study are
statistically reliable and that the definition used for the
macroscopic anisotropy [Eqs. (2) and (13)] is a good one.
The effects of the FOD and the FLD on the percolation
threshold were found to be independent.

The above conclusion regarding an isotropic percolation
threshold was based on our finding that increasing the
stick ensembles from N =100 to 1000 has yielded a de-
crease in the difference between the longitudinal and the
transverse percolation thresholds. In fact, for our larger
samples we have shown that for P~~/Pi &4 (which is al-

ready a considerable anisotropy) the thresholds are practi-
cally the same. Since rescaling the length of the samples
does not change the connectivity (though it changes the
conductance), we expect such an isotropic behavior for the
infinite ensemble. %'e can also turn the argument and say
that as long as L,~~-L,&, the results correspond to those
of an effectively infinite sample. A deviation from this
behavior indicates that the sample is too small for the
deduction of exact asymptotic values. On the other hand,
even in the smaller samples we can estimate the threshold
since the computed L,

~~
and L,z values can serve as

bounds for the exact values. Our conclusion is in accord
with the expected behavior of the coherence length (.
This length (in intersite unit length 2/Vn. N) must be
smaller than the sample size in order for the latter to be
effectively infinite. ' In fact, one approaches the effec-
tively i~finite samp1e as X'n" This is borne out by the
argument' that the above threshold region for which the
infinite-ensemble results are not represented by the results
of the finite ensemble shrinks as N '~ ", where v is the
correlation-length exponent. The fact that by just increas-

ing P~~/Pi we decrease the density of the sticks (Sec. II),
as well as the deviation from the L,

~~

——L,j condition, is
added support for the suggestion" (and the corresponding
calculations' ) that the extent of the asymptotic region is
reduced with increasing anisotropy.

The principal result of the present work, i.e., the in-

crease of the percolation threshold with the increase of the
macroscopic orientation (and hence the anisotropy) of the
stick ensemble, may have been expected by viewing the in-
crease of the threshold with P~~/Pi as an increase which is
due to a continuous lowering of the dimensionality of the
system [the all-parallel stick sample (Fig. 2) is essentially a
one-dimensional system]. Using this approach, we can use
the present results to predict the percolation criterion for
two- and three-dimensional stick systems.

We have seen above [Eqs. (14) and (15)] that the per-
colation criterion of the effectively infinite two-
dimensional sticks system can be written as

NL =f, (16)

where f is a function of the anisotropy. As pointed out in

Sec. I, if the sticks in the two-dimensional system have a
width D, the nature of the problem does not change and f
is a weak function of D. This conclusion breaks down

when we approach the one-dimensional-like case of paral-
lel sticks. In this system for a finite L and D =0, there is

no percolation. On the other hand, we do know that in

two-dimensional systems " there is a critical area above
which the system percolates. Hence for a finite D the cri-
terion for the all-parallel stick system will be

N, LD=f . (17)

Following this argument and knowing that a three-

dimensional stick system can percolate only for sticks
with a finite diameter, we conclude that for an all-parallel
stick system percolation will be obtained for a critical
volume fraction of conducting material. Hence the corre-

sponding percolation criterion will be

N, LD =f . (18)

From Eqs. (9)—(ll) one expects then that in the general
(nonparallel) three-dimensional system of sticks the per-
colation criterion will be

N, L D=f,
where again f is a function of the macroscopic anisotropy.
This result can be derived more rigorously using Onsager's
method of excluded volumes. ' '

The percolation criteria given by Eqs. (16) and (19) indi-

cate how to prepare a system with a low percolation
threshold from a given amount of "stick material. " For
example, in two dimensions one can cut a fiber LÃ long
into 2N sticks each having a length of L/2 or into N/2
sticks each having a length of 2L. There may be an N and
L such that the second system will be above percolation
threshold while the first system will be below the thresh-
old. This argument, however, cannot be carried too far
since the sample loses its effectively infinite nature at a
rate of N ' " (see above). The criterion given by Eq. (16)
explains also the dominant role of the very long sticks in a
given FLD for the percolation onset.

We have seen above that the percolation threshold de-

pends on the anisotropy of the conducting stick system.
Let us examine now the effect of this dependence on the
conductivity of the system. This examination is done in
order to evaluate the importance of this dependence in
comparison with other factors"' which determine the
conductance dependence on anisotropy, G(P~~/Pi). The
conclusions of this evaluation can explain the qualitative
features of 6 (P~~ /Pi) which were found experimentally in
a three-dimensional composite. '

We start by assuming a critical behavior of the follow-
ing type well known to exist in lattices:

(20)

Here p is the probability for finding a bond or a site, p, is
the critical value of p, and t is the conductivity critical ex-
ponent. Let us assume that t is a constant independent of
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anisotropy (which is expected' to be the case when p is

very close to p, ). The result (20) can be generalized to lat-
tices composed of conducting spheres since the volume of
the percolating component is known' to be proportional
to p. Hence
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G ~(V—V, )', (21)
APPENDIX

where V is the three-dimensional (or two-dimensional)

conducting volume (area) fraction and V, is its critical
value. Equation (21) can also be expressed by the weight

fraction of the conducting material, t0, i.e.,

G ~(t0 —t0, )'. (22)

Indeed, such a dependence, with the expected universal t,
has been found experimentally for a three-dimensional
system of conducting fibers (see below}. Considering the
predicted universal values for isotropic systems (t =1.3
for two dimensions and 1.7 for three dimensions) and the
L, dependence on P~~/Pi (for example, by use of the
dashed curves of Figs. 11 and 15), one concludes that both
the longitudinal resistivity p~ ~

and the transverse resistivity

pi increase with anisotropy. The prediction for an isotro-
pic L, in the two-dimensional infinite sample means that
if t is independent of P~~/Pi and if one retains depen-
dences of the form of Eqs. (20) and (21},the macroscopic
anisotropy will not yield an anisotropic resistivity, i.e.,
p=p~~=pi. Hence, the observation of anisotropy in the
resistivity of some systems, as well as the fact that the
conductivity at the threshold is expected to be isotro-
pic' ' (see the Appendix), indicates that t becomes aniso-
tropic upon deviation from the threshold Th.ese con-
clusions are consistent with the results obtained' for an
anisotropic two-dimensional lattice.

The above conclusions may also explain experimental
results ' that were obtained on a three-dimensional com-
posite for which an anisotropic resistivity has been ob-
tained. These results have shown that while there is a
strong dependence of the resistivity on the anisotropy of
the system, the resistivity anisotropy (p~~/pi) is relatively
small and its dependence on the system's anisotropy is rel-

atively weak. It seems then, in view of the above discus-
sion, that the strong dependence of the resistivity on the
anisotropy is due primarily to the effect of macroscopic
anisotropy on the percolation threshold. The anisotropy
of the latter quantity as well as that of the critical ex-
ponent appear to depend rather weakly on the macroscop-
ic anisotropy in this composite.

In conclusion, we have shown analytically and con-
firmed "experimentally" that the percolation threshold of
a two-dimensional conducting stick system increases with
the macroscopic anisotropy of the system and that the
threshold of such a system is expected to be isotropic.
The dependence of the resistivity of a two-dimensional
percolating system on its anisotropy is expected to be asso-
ciated with both the dependence of the threshold on the
anisotropy and the dependence of the critical exponent on
the anisotropy. Only the latter dependence is expected to
yield an anisotropy in the resistivity.

In Sec. IV we argued that for an anisotropic two-

dimensional system one should expect an isotropic per-
colation threshold but an anisotropic conductance, which

disappears as the threshold is approached. Here we show

that in the case of a two-dimensional square lattice such a
behavior can be obtained by applying simple
renormalization-group arguments. From universahty and
the assumption that the random system can be divided
into square blocks, one may expect such a behavior for
random systems in general, and for the present stick sys-
tem in particular.

Let us consider an anisotropic square lattice in which

the nearest neighbors to a site may be connected to the site

by resistors. The anisotropy of the system can be intro-

duced by either assuming two different resistors in the two

principal directions 1/g, and 1/g~, or by assuming the

same resistors but two different probabilities for the pres-

ence of the resistors p„and p~. The more general aniso-

tropy can be obtained by the combination of the two an-

isotropies.
The first case has been considered previously. ' ' If the

probability for the resistors presence is the same in the
two perpendicular directions, there will be the same proba-
bility of having a percolation path in the two directions
and thus the same percolation threshold. The conductivi-

ty, on the other hand, will be anisotropic as can be appre-
ciated by noticing that the fully occupied square lattice
will have a conductance anisotropy which is exactly

g„/g, . As one approaches the percolation threshold from
above, the percolation path becomes tortuous and the con-
ductance becomes isotropic.

The other case mentioned above is that in which all the
resistors have the same resistance 1/g but the probabilities
of occupation are different in the two directions. ' ' The
rescaling transformation of the occupation probabilitiesi'
are the same for the two directions (since they are ob-

tained by a rotation of 90'} and thus the rescaled probabil-
ities are

p' =~(p. p, » p,'=~(p, p. ). (Al)

The percolation threshold [the unstable fixed point

(p,',p„')] is obtained by simultaneously solving Eqs. (Al)
for p,

'
p, and p~ =p„. This yields symmetric equations

and p~ . Hence, p„=p~ and the percolation thres

old is isotropic.
Turning to the conductance of the system, let us exam-

ine the conductance distribution function P„(o). This
function gives the probability of finding a conductance o
between two nearest-neighbor sites in the lattice (which is
obtained after the nth rescaling transformation). This
function has the form '

P„(tr)= g f;(p„p„)5(o—o;),



3812 I. BALBERG AND N. BINENBAUM 28

where o;=cr;(g) are the conductances obtained for the
various paths between the two sites after the n —l
transformation. The function f;(p„,p») is the probability
of finding the conductance o; in the latter lattice. Since
the conductance of the entire lattice is given by

'

(o)„=f P, (o)odo, (A3)

it is clear that if P„(o) is anisotropic then (o )„will be
anisotropic. Now, because of the possible 90' rotation and
the single value of the resistors, the values of o; are the
same in both the x and y directions. Ifp, &p», the distri-
bution functions for the two directions P„„(o) and P„„(o)

wiii be different. Hence the conductances (o )„and

(o»)„will be different. However, at the percolation
threshold we have already seen that p„=pz and thus
P (o}=P»(o) at this threshold. This means that the con-
ductance is isotropic.

The most general case (disregarding the essentially one-
dimensional problems of p„or g =0) can be deduced
from the above results. Since the result p'=p» is in-
dependent of the initial resistor values, it appears that
close to the percolation threshold the general case can be
reduced to the anisotropic resistors (g~ and g»} case.
Hence, in the most general case, one may expect an isotro-
pic threshold and an anisotropic conductance which
disappears at the threshold.
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