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%c dcrivc thc hydrodynamic equations for Hc-8 1n high Iliagnctic fields. Thc ordci parameter 1s

a nonunitary spin-orbit matrix and the orbit space is uniaxial. The influence of a strong magnetic
field shows up in various features. There exists a third velocity which tfansforms only partially like
a velocity under Galilean transformation. Many coupling terms between spin space and orbit space
are found in the static as well as in the reversible and dissipative dynamical equations. The resulting
main features are the mixing of first and second (and fourth) sound with longitudinal spin waves and
the anisotropy of the material parameters. The value of the rotation angle 80, which minimizes the
magnetic dipole energy, is lowered, the longitudinal NMR frequency is raised, and the transverse
NMR frequency is shifted in He-8 in high magnetic fields.

I. INTRODUCTION

In recent years hydrodynamic theories of the various su-
perfluid phases of He were given, '2 both for the
linear " and for the nonlinear domain. ' ' The
method of deriving hydrodynamic theories is well known
and has been applied to various systems, ranging from
fluids, ' He II, ' ' and magnets, * to crystals and liquid
crystals. "-"

The hydrodynamics of the 8 phase has been considered
up to now for the case of low magnetic fields only.
Thereby, the magnetic field H was treated perturbatively,
i.e., symmetries and the equilibriu~ order parameter were
left unchanged and only linear contributions of 0 were
consldcrcd, i.c., only thc fice cnclgy acquilcd Qn additional
contribution due to the magnetic field (Zeeman term). In
the present work we lift these restrictions. (A similar
treatment of the A phase in high magnetic fields was re-
cently given by the authors ' and others. ' ) Thereby,
the equilibrium order parameter turns out to be complex
and nonunitary and the system becomes uniaxial in spin
and orbit space due to the (strong) magnetic field (Sec. II).
The implications of these new features on the hydro-
dynamic variables are discussed (Sec. II).

The static and dynamical linear equations for the true
hydrodynamic variables are given in Secs. III and IV. The
magnetic dipole interaction is taken into account in Sec.
V. Thereby, we derive expressions for the field-dependent
longitudinal NMR frequency and transverse NMR shift,
which occur in the 8 phase in high magnetic fields. A
normal mode analysis is performed (Sec. VI). We discuss
some experiments by which the new features can be mea-
sured {Sec. VII). In Appendix A we make contact with
microscopic descriptions by relating the phenomenological
parameters with correlation functions, response functions,
etc. The Galilean transformation behavior of the variables
connected with broken symmetries is derived in Appendix
B. For the nonlinear theory we refer to Ref. 40 and Ap-
pcndlx C,

II. EQUILIBRIUM ORDER PARAMETER
AND BROKEN SYMMETRIES

The 8 phase of He is characterized as a superfluid with
spontaneously broken relative rotational symmetry of spin

space against orbit space. ' The Cooper pairs are in a spin
and orbit triplet state (S= 1, L= 1). Thereby, the equili-
brium order parameter has the structure A ~; -e'~n~; with

n; = , d, (e+if—)(e if); + ,
' d—,(e —if){e—+if);

+&&(exf).(exf);, {2.1)

where h„h„and A!3 refer to pairs with spin projection
both up (t&) both down (lt), and symmetrically mixed
{tt+tt), respectivdy, and where e and f are orthogonal
unit vectors in orbit or spin space.

%ithout a magnetic field

100
n~;= 0 10

001
(2.2)

where Greek and Roman indices refer to spin space and
orbit space, respectively. Thereby, spin and orbit space are
independent (neglecting dipole interaction) and the frames
of the two spaces are connected by an arbitrary rotation
matrix R;J (which contains three arbitrary parameters).
One can choose for R,J the representation

I) I2 I3

R~~ = PPI ) Nl2 PPl 3 =R~p,
nt Pl2 N3

with the constraints (which are not independent from one
another

gl;m;=pl;n; =gn;m;=0,

i.e., the gap is isotropic. The equilibrium order parameter
is then (apart from a global phase factor) a real spin-orbit
rotation matrix. ' ' If special frames of reference are
chosen in spin and orbit space, it reads
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I, I, +m»m, +n»n, =I»I, +m»m3+n]n3

=I,I, +m, m, +n, n, =0.
The equilibrium order parameter now takes the form
n;=no~RJ;-=R; or n;=np; R &

——R;. Both forms of
n; are equivalent, since rotations of spin space against or-
bit space arc cquivalcnt to rotations of orbit space against.
spirl space.

A magnetic field along the quantization axis d (hats
denote unit vectors in the following} influences the three
Cooper-pair species in a different manner. As is well
known from the A phase the up pairs are enhanced and
the down pairs suppressed (or vice versa) so that h, @h,.
This effect shows up most clearly in the existence of the
A» phase. The difference 6,—5, will become manifest'
either in very high magnetic fields (H pp10 kG) at low
temperatures or very close to T&2. Therefore, in the 8
phase, effects which are based on h, &h, are likely not
measurable, since for H g 10 kG, the 8 phase does not ex-
ist. However, for completeness, we will take into ac-
count A, &h, but we will state, for experimentally accessi-
ble results, what is obtained in the limit 6,=5,.

In addition, h3, the gap of the pairs with symmetrically
opposite spin, is lowered in a strong magnetic field. This
effect takes place at lower-field strengths and gives rise to
measurable effects for H & 1 kG. The difference 6o—h3
is related to the Zeeman energy yfiH (y is the gyromag-
llctlc ratio), l.c.,

roughly.
For A,@A, and 53+Do the equilibrium order parame-

ter (2.1) can be written in the form

+ih2 0

n; — —ih2 6» 0

0 0

with h~ = —,
' (6,+6,) and 51= —,

' (6,—5, ), if special
frames are used. Again, the different frames of spin space
and orbit space are oriented arbitrarily with respect to
each other. If we choose the 3 axis in spin space to be set
by the external magnetic field, the most general form of
the equilibriu order parameter is

A; =[2(++hi)+El] 'n;e'

with n;:nJRJ, [cf.—(2.2) an.d (2.3)] or explicitly

6»I» —ih2m» 6»I2 —ib 2m2 I»I3 —i 62m3

n; = ih2l»+ A»m» 6»m2+ih212 I»m3+i hpl3

(2.5)

Note that A~; is Qo longer a rotation matrix as is the case
for small or vanishing magnetic fields. The order parame-
ter A~; minimizes the Ginzburg-l. andau free-energy func-
tional, which was already shown explicitly (for the special
case h2 ——0) by Fetter. Since the external field defines a
fixed direction in spin space, transverse rotations of spin
space arc not cqlllvalcllt to 1'otatlolls ill orbit space slid all
equihbrium order parameter A; defined by A; -n~;Rap

is not equivalent to A; defined above, and does not mini-
mize the free energy.

The degeneracy still contained in (2.5) is lifted by the

magnetic dipole interaction which fixes the rotation ma-
trix R,J. Minimizing the dipole interaction energy

FD ———„ga(A;;AJJ-+A,JAJ, ——,A,)A,J )

one obtains I» ——m2 ——cos8O, I2 ———m» ——sin8o, n3 ——1, and
m 3 =l3 =Pf »

=Pl p =0, wit, h

coseP ————,Elhi(4) —61)1 2 2

Again, this result reduces for h2 ——0 to the expression
given by Fetter. For H~0, the "magic" angle

eo——cos '( ——,') is regained, while for bi~0 one has
8o~90'.

For these special values of Ii mi» and n;» the 3 axes of
spin and orbit space coincide (and are given by the direc-
tion of the external field) and both spaces are twisted
against each other about the 3 axis at the angle 80. The
structure of the equilibrium order parameter then reads

5»cos80+~ 62sin80 6»sin80 —s 62cos8o 0

n;= —4»sin8o+ih»cos80 6»cos80+ih2sin8o 0

0 1

(2.6)

It should be noticed that the order parameter is now corn-
plex and nonunitary. The gap is no longer isotropic, but

)
b,(k)

(
=b lk, +(b, )+61)(k„+ky) .

Of course, for H~O, i.e., 6»~50, 52~0, and 53~60,
Eq. (2.2) is reobtained and the gap becomes isotropic.
Thus the presence of a strong magnetic field changes the
structure of the equilibrium order parameters and, as a
consequence, the hydrodynamic equations.

In deriving the equilibrium order parameter the magnet-
ic dipole energy was treated only perturbatively. In the
same spirit we will proceed in hydrodynamics, ' e.g., we
disregard the magnetic dipole energy while looking for the
spontaneously broken symmetries and the appropriate hy-
drodynamic variables. The influence of the magnetic di-
pole interaction on the dynamics of these variables is then
obtained adding the dipole energy to the free energy.
This will be done in Sec. V. Up to that point we neglect
the dipole interaction in the hydrodynamic equations.

In He-8 without magnetic fields there are four spon-
taneously bi'okcn continuous symmetries, gauge symmetry
(1}, and rotational invariance of spin space against orbit
space (3). The hydrodynamic variables connected with
these broken symmetries are the phase change fNp (1}and
three independent elements of Sn; (cf. Refs. 6 and 7).
The latter can be described as two fluctuations 5d; of the

A A A
quantization axis d (d.Sd =0}and one fluctuating rotation
angle M about the axis d. In the presence of a magnetic
field H (~~d) the number of spontaneous broken sym-
metries (and appropriate hydrodynamic variables} is un-
changed, since the equilibrium order parameter, again,
contains an arbitrary phase and an arbitrary matrix [cf.
(2.5)] with three independent elements. However, the
physical interpretation of the appropriate hydrodynamic
variables Sp, Se, and Sd; is different and more complicat-
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ed as in the case of small or zero magnetic field. Let us
first consider the "longitudinal" variables 5y and 58,
which reduce in the case of small magnetic field to the or-
dinary phase variable and to the variable describing rota-
tion about the magnetic field, respectively. In strong mag-
netic fields their behavior is more complicated, as can be
seen by the appropriate commutation relations with the
generators of continuous symmetries. (For a proper
operator definition of 5y and 58, cf. Appendix A.)

In spin space, 58 and 5y break rotational invariance,
since

([58,m, H~]) = 2i—y,

([5y, rn H ])=2iyP, ,
(2.7)

3~iI ~2I 4 I
~i —~i I

623+2(~21+~22) ~23+ ~2t+~2

In addition, 58 and 5y break gauge invariance

([58,X])=2iP, ,

([5q,N] ) = 2i, —

with

It is possible to use linear combinations of M and 5q,

Sp= 5y+ 58,
I —PiPi l —PiPi

58= ' 58+ ' 5~,
I p&pi l—pjpi—

which have the properties of being gauge invariant (58), or
a scalar quantity in spin space (5g). For microscopic cal-
culations this may be an advantage. For the derivation of
the hydrodynamic equations, however, we will use M and

5(p as variables, since these variables are defined as in the
8 phase without magnetic fields. By the smallness of P,
and Pi, the discrimination of 5(p, 58 and 5$,58 is, in any
case, rather academic. Of course, experimentally accessi-
ble results do not depend on which linear combination is
chosen.

By the presence of an external magnetic field H, He-8
is no longer "isotropic, " but there is a preferred direction

in the spin space defined by the unit vector H . Because
of the intricate connection of spin space and orbit space in
He-8 there is also a preferred direction in orbit space de-

fined by the unit vector d; =H n; h3 '. Thus He-8 be-
comes anisoiropic in spin space and even in orbit space
due to an external magnetic field. This is in contrast to
He-A, where an external magnetic field leads to a biaxiali-

ty in spin space, but does not change the uniaxiality of or-

bit space, which is already set by the I vector. As already
stated above, d is parallel to H due to the dipole interac-
tion.

The variables 58 and 5y also break rotational invariance
in orbit space. We find

([58,L d ])=2in3,

( [5y,L d ] ) = —2iP, n 3,

o 2

( [5d;,LJ ejkdk ]) =i I+
~i+~z

but not gauge symmetry, since

&[5d, ,z])=O.

(2.12)

Of course, 5d; break rotational symmetry in spin space
too. However, that symmetry is already broken externally.
Having specified the spontaneously broken symmetries
and the associated hydrodynamic variables we proceed in
deriving the linear hydrodynamic equations (Secs. III and
IV). For the nonlinear theory we refer to Ref. 40, which is
supplemented in Appendix C. For simplicity, we also re-
frain from giving higher-order gradients (cf. Refs. 4S—47).
The dipole interaction will be neglected in Secs. III and IV
but will be introduced perturbatively in Sec. V.

III. STATIC EQUATIONS

In addition to the hydrodynamic variables 58, 5d;, and
5y, which are connected with broken symmetries and

where n3 is the cosine of the angle between H and L. This
angle l( is just the angle between the 3 axis in spin space
and the 3 axis in orbit space, if the representation (2.S) is
used. Of course, in the true equilibrium state there is
n 3 ——1 due to the dipole interaction and

([58,L d ])=2i,
(2.11)

&[5t "'" ]&= 2ip-l

Since 58 (and 5y) breaks more than one symmetry, we can
construct linear combinations of symmetries, which are
spontaneously broken, too. This is not the case for the

rO
symmetry with the generator S.H+L-d, which is broken
only externall.

Instead of

58- ,'H, e iver(—5Aii;A „+c.c. )

[Appendix, A, (A3)] we could have defined a variable

56'- —,'d;e, jk(5A'J-A k+c.c.),
which is connected to the same broken symmetries as 58.
Again all linear combinations of 58 and 58' are equally
well suitable as hydrodynamic variables (except for
58+58'). The difference between 58 and M' is that the
for mer describes longitudinal rotations, i.e., rotations
about H, of spin space against orbit space, and the latter
describes longitudinal rotations, i.e., rotations about d, of
orbit space against spin space.

Of the transverse rotations (i.e., rotations of H or of d )

only those which are in orbit space (i.e., described by 5d;
with 5d-d=0) are hydrodynamic, since rotations in spin
space (rotations of H) are connected with a finite energy
even in the homogeneous limit. The hydrodynamic vari-
ables 5d; (for a proper operator definition cf. Appendix A)
break rotational symmetry spontaneously in orbit space,
since
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which wc have discussed in the preceding section, the con-
served quantities are hydrodynamic variables too. The
latter are mass density p, energy density e, momentum
density g, and the (longitudinal) magnetization density
In H—=M

The angular momentum conservation is treated by sym-
metrization of the stress tensor. ' ' The transverse
magnetization is not conserved because of the external
magnetic field and leads to modes ca(k) with a gap for
k ~0 (Larmor frequency).

Assuming local thermodynamic equilibrium the change
of entropy density o. is given by the Gibbs relation

,d g (Q +)d~ g (&),d Q@

«dV;—8 P,jdV—,d; .

The thermodynamic conjugates (generalized forces) T tem-

perature, p chemical potential, v " normal velocity, and h

longitudinal molecular magnetic field, and j(. "', pv, and
«are thereby defined as partial derivatives of e (or cr)

They are connected with the variables by equations of
state, which govern the statics of the system.

Taking into account the symmetry of the variables we

find two separate sets of variables and conjugates, which
are decoupled from each other. For the quantities, even
under time reversal, we have

5j4 =(45p+ gi5M +(35', (3.2)

5h =XII '5M+gt5P+g(5lr,

where C„',g, q i 4 and +II
' are susceptibilities which have

to satisfy the relations C„&0, III & 0, g4& 0, $4TOC„' & g&,

& g2, and TOC„'XII
'

& g(. For the remaining quan-
tities which are odd under time reversal the most genera

ansatz reads [58 and 5d; are odd because of the H or d
factor in the definitions (A2) and (A3)]

( I ) (s) (2)Z; =lrij Aj +(X,j fj . (3.5)

Comparing (3.5) with the exact commutator relations (2.8)
we can conclude aI&

' ——5j and aIj~' =P(5j, and finally g
reads

~(n)
g =poV + ~ "'+P(k . (3.6)

Equation (3.6) is compatible with Eqs. (3.3) if and only if
Pf S

5lj PO P'lj +—Plj +P»lj
d d

fij +Piqij =Pij

fv+PA'=p'j
(3) —1 (2) (1)

C;, =Pi (C;, —Ci, ).

(3.7)

The equations of state for the variables that are odd under
time reversal then take the final form

g;=p,jVj"+p jVj(p+p;~Vj8+C, 'j"(curld)j,

j(
' —p*"(V (p V")+(p" Piq )(V 8 P(V (p)

+Cij '(curld)j,

« =p j(Vjq' Vj")+qv—'Vj8 P(Vj+)—

+Pi '(Cj ' —Cj")(curld)j,
(1) n (2)

(t' j=lt'jl 'Vmdi+&lji[Cim Vm+Cl

+P—(C( ) C(1))V 8]

(3.8)

where the susceptibilities have to satisfy (in order to
guarantee thermodynamic stability)

Pll j-+0 s

PII, i & Pl(PII, i PlqII, i)

gll ] +0,

gg =pgg +j +pIJ VJg+p;J. VJ.O+CIJ. (Curld )J

P; =q;, V, 8+f;,Vjqj p;, Vj"~ C,"(c—urld), ,

0ij =&ljim Vmdi+eVk(Ckm Vm+Cim'Vm(p+Ckm V 8) .

All material tensors are of the axial form

PgJ Pl le HJ +PJ (5gJ Hf HJ )

and clearly show the anisotropy of the 8 phase in high
magnetic fields. Here we are able to reduce the number of
unknown parameters from 21 to 13 by the observation
that g is not only a variable but also the current of the
mass density p. Under a Galilean transformation with

velocity U the current g has to change into g+poU.
Therefore, g must have the form

g =poV +Z,

where Z is Galilean invariant and does not contain V .
Thc most gcncfal possibility left for Z is

etc. They are connected with the total density po by (3.7),

«=PI I+PI I+P(PI I
=pi+ pi+P»i

leaving 13 susceptibilities.
The Galilean invariance of Z (3.5) can now be used to

derive the behavior of V;8 under Galilean transformation.
Under the assumptions (which are proven in Appendix B)
that V';q is a true Galilean velocity (V;y V;q —U;) and
that curld is Galilean invariant we find from (3.5) and
(3.8)

V;8~V;8+Pi U;,

under a Galilean transformation with velocity U. This
behavior is proven directly in Appendix B. For H~O,
V;8, is of course, Galilean invariant. [In the ji phase in
high magnetic fields (but not in the A i phase) there exists
a variable with similar properties. ]

For H~0, Eqs. (3.8) have to reduce to the well-known
formulas for the 8 phase in zero or vanishing magnetic
field (cf., e.g., Ref. 6). Thus we have to conclude that in
the limit H~o



3786 H. PLEINER AND H. BRAND 2S

n n S S
pi p. p[( pn p(r ps pl ps

which suggests

n, s n, s

P ,'ll(H)=P, +H P, ll

In addition, p,J, CJ", and C,J
' have to vanish, which is

achieved by

p+V;g; =0,
g;+V' 0; =0 with V'jcT'j=Vjo'j;

'+q Jo'
I I

M+Vij; =0, (4.1)

2-(112) g 2 d

Since Pi -H ' for H ~0 we can conclude that
P, '(Cij"—Ci ') vanishes also in that limit. In small but
nonzero field, the H contributions are highly nonlinear
and are usually omitted; their existence is based on H&0.
The quantities P; and P,j (or 50 and 5d;) cannot be defined
separately in zero field; therefore,

~(jki q(Vkrt j)(Vq~, )

enters the free energy, where 5R,J are the fluctuations of
the real rotation matrix R,i (or n;oj) and the tensor M
contains two independent susceptibilities M& and M2.
Since 58 and 5d; are related to 5R,J by 5d; -HJ5R;J and
58-H;e,Jkn~J. 5RIk the independent elements contained in

qj and Kiji~ (q1, ql l, Ki, Kz, Ki) reduce in the limit H ~0
to linear combinations of M& and M2 (containing also the
Leggett angle Ho}.

jr+I~ =0,
8+ 7=0,

g =PoV"+~'"+PiA

I~ =P Piyh+—Ad; eikV, Vl", ,

RY =pijJ+rh+p2T 5i&,kd—VjVk

j '"=&oV"+p1it'

j' ™oV' +3'l(' YPi~

&ij p5ij 51eijkdkVm4m
A

~dp(~pik5jl +~pjk5il )Vk~l

(4.2)

d;+X;=0.
Hereby the currents are defined. For the reversible parts
of the currents we obtain

IV. DYNAMICAL EQUATIONS

According to the Gibbs relation (3.1) the equations of
motion are with

n+q;kji Vj Vi + , alii V—
& =»~ jkdj Vlf'ki ajk V& V—i

~0 ~0
q &Jkl q i (dp ~pjl 5ik +dp &pil 5jk +dp epj k 511+dp E&ik 5il )

~0~0~0 0 0 0 0 0 0
+q'&(d dkdi ~w 1+4' dkdp'&pi+d dl dp&pjk+dj d d, ~„k),

++25 kdJ

and y the gyromagnetic ratiO, p the isotropic pressure, m0
the longitudinal equilibrium magnetization m0 ——m H, and

Pi, Pi defined by (2.7) and (2.8).
The expression for g;" was alread derived in the

preceding section. The first terms of j; ",j; ", and o,~ are
the usual convective ones.

The phenomenological terms proportional to P2, 51, and

y~, y2 contain four reversible transport parameters (cf. Ap-
pendix A). All other terms folio~ from Eqs. (2.7)—(2.12).
Espec1ally we f111d A, = 1 pi + jl, , 5i —1 +5i, aild

+2
3+
1

where X and 51 are contributions due to collisions [cf.
(A7)]. For H~0 Eq. (4.2) reduces to the well-known re-
sults for the 8 phase without magnetic fields. ' [The ad-

ditional term contained in Ref. 17, g; —(curl v );, is
represented in Eq. (4.2) by the terms proportional to 5&

and to a2 —ai.)
For the irreversible parts of the currents we obtain

= —v"V' T —a' V hJ$ $J J IJ J

Ji I ij~j~ ij j
Y = vVig~ 1)1Vj—A,~"' rj;~V—j V;", —

I,'= q,VkA PV, X',"—C,jV, V,"—
, —

&i = vjki(Vk Vi +V—(Vi ) kiVi j1—D n n (s)

qij Vkfk CijkVldkl i

rjVkit k 4@V—k Vj"—

{4.3)

where the material parameters are of the axial form with
mU

the preferred axis given by d, e.g.,

di dj +&1(5,J —d; d

Positivity of entropy production requires the constraints
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Pll g+0, v)0,
(~0, v2+vq&0,

2V]+2V5+V2 —V4 Q 0 s

I 2 2

('gi) g 2v(v2+ v4)

(7jJJ) (2v(2vi+2v5+v2 —v4)
8

The terms -~,'z, -g7, and -g,~
owe their existence to the

magnetic field and vanish with H~O. In addition, the
isotropy of He-8 is regained in the limit H~O, e.g.,
Ky~Kll, etc.

V. MAGNETIC DIPOLE INTERACTION

In Secs. III and IV we have neglected the interaction of
the magnetic moments of the He nuclei. This magnetic
dipole interaction leads to a spin-orbit coupling, which
fixes the position of orbit space against spin space in
equilibrium (cf. Sec. II). Thus fluctuations of orbit against
spin space now relax in a finite time even in the homo-
geneous limit k~O, since there is an elastic energy con-
nected with these fluctuations. Varying the magnetic di-

pole energy

3
~D ]o gD(~ii~jj +~ij~ji

we find (62——0 in this section)

5 I'D IPga 2~2 ~2 w +~h 2+ (Qg)2

(5.1)

where 8 is the rotation angle about H (which is 8~ in

equilibrium) and where f is the angle between H and d
(which is zero in equilibrium}. 49 Thereby, P and 58 are re-
lated to the hydrodynamic variables by

Q =[2j)ii(g+g}] (5d )

and 8—8o——58, respectively. The elastic energy (5.1) gives
rise to new contributions in the Gibbs relation (3.1),

Tdo =de f;dV;8 itp;jdV—jd; B,58—d8 B25d—;d(sd;), —

(5.2)

with

85)——,
'

h3
&i= gaga

1+ 3

4hi(h[ —53)» = gaga
(2b f+h3)(g+h3)

Therefore, the magnetic dipole interaction is taken into ac-
count in all the formulas of the previous sections, if f;
and P,& are replaced by f; and P,j, respectively,

V;P; =V;f; B)58, — —
(5 3)

Vjp;j =Vjg;j Bg5d; . — —

This is always possible, since in the equations of motion
(but not in the currents) V;f; and Vjg;j (and not f; and

p;j alone) occurred in Secs. III and IV.
The physical content of (5.1) or (5.3) is easily seen by

so»ing the hydrodynamic equations (4.1)—(4.3), (3.2), and
(3.8) in the homogeneous limit k~0. For the longitudinal
variables 5p, 5M, 5o, or 58 one obtains equations describ-
ing (weakly) damped oscillations, e.g.,

58+0'M+ v8&58=0, (5.4)

II'=B&(Y XJJ '+2(,B2Y+2P,P2(3+2PiY$2

+Pi(4+PzT'oc.

=~&~ ~ll

because of the smallness of Pi and P2. Probing these oscil-
lations by longitudinal NMR experiments one obtains a
resonance peak at

~I=@=+(a,y'Xll ')'"
with halfwidth 6~~~2 ——v8~. Thus the longitudinal NMR
resonance frequency depends on the magnetic field
strength. For H~O (h3~h]),

~i(H=0)= ,g, Y XJJ-2 3 2 —1

is regained. ' For H&0

~j(H) 1 16+—a', xJJ(0)

~I(0) 5 2a', +a,' &JJ(H)
'

where the first ratio increases with increasing magnetic
field to its maxirnurn value, '

—,
'

in the case h3 ——0, awhile

the second ratio probably decreases with increasing mag-
netic field. In contrast to the 8 phase in vanishing mag-
netic field, there is also a transverse NMR shift in the 8
phase in high magnetic fields. Fluctuations of the direc-

tion of H cost magnetic dipole energy and the resonance
frequency in transverse NMR experiments is shifted away
from the Larmor frequency. This {positive) frequency
shift j),roL is given by [cf. (5.1)]

2 2 2
, ~ FD

(~~i) = Y&i-
Bg 5 2b i+63

(5.5)

Of course, for H~O, (hcoL, ) =0, and for h3 ——0 (planar
case},

(~roL. ) =Y &i gD io
2 2

is regained. ' The ratio of the transverse NMR shift to
longitudinal NMR resonance

(hror ) XJJ (5.6)
&x 86)——,'L3

increases from zero (for H=0, i.e., ~& ——a3) to —,(gll /g])
for the planar case (d3 ——0).

After submitting this paper for publication, we became
aware of a paper by Schopohl dealing with magnetic
field dependence of 8~ and m~ in He-8. His findings are
very similar to ours (he puts j),2

——0, our 63 is called i5,2 by
him); since he gives a microscopic calculation of
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61(H) /AI(H) (for which we have only a rough estimate),
his paper is complementary to ours with respect to these
topics.

VI. NORMAL MODES

We now turn to a discussion of the hydrodynamic exci-
tations which occur in He-8 in high magnetic fields. For
v "=0 we find an equation of the seventh order for r0(k)
reflecting the seven degrees of freedom described by p, o,
M, Q, M;, and 58. In linear order [c0(k)-k] three of the
normal mode frequencies are zero. The xemaining biqua-
dratic equation for e(k) reflects a complicated mixture of
fourth sound and (longitudinal) spin waves. This mixing
of an excitation in spin space with one in orbit-space in
the lowest order of k is due to the presence of the strong
magnetic field and vanishes with H~0. For the velocities
c,f defined by

a), /(k) =+c,f( k/
I

k 1)k

we obtain (dl ——0 in order to simplify the expressions)

cf+c,'=k '[(4(pok' —P'„)+X~~ 'y'q'],

co(k)=ik E( k /k)

and one pair of oxbit "waves"

(6.2)

F00 (k) =—ri( E I +K I—8 I
)

+ I [45' 1(E I 8)—

where

(6.3)

The damping of these propagating modes is manifest
only in the next order of k [lmco(k) —k ]. For H ~0 spin
waves and fourth sound decouple and the velocities cf and

c, take the values already given in Refs. 6 and 7. For
k 0 the spin-wave frequency has a gap mf ——

XI~
'y 81

(longitudinal spin resonance) while the second-sound fre-
quency tends to zero.

For the remaining modes with co(k)-k we obtain one
diffuse mode

with

~2 n, afk2 + n, dk2p n~ =pI~'
~~ pi

=&Ilk Il +&~k j +~»
kt~=Z', k, k, =a„'Xk.

(6.1)

ks +4&

A = gls
' + Toc„'s.

and where

C~ICI I Pd CI C 1 PI P ( C1 C2) C l(Pd Pl't

P,' P,' P,C', P d(P d Af')—

C I
——kiikI(CII' —CI ),

C', =k~}k,(C1~~
' —C',"),

K 1
——K1kq+K3k

~)
+82,

K 2
——K2kg+K k

() +8

2
=Q~Ik t~ +g j k j +81

g 2(1) (1)k2 (1)k 2
=K~~

~~
++~

The diffusive mode involves mainly 50 and 5M, while or-
bit "waves" are built up by 5d;, Sp, and 58. For k ~0 the
orbit waves have a gap and are damped due to the magnet-
ic dipole energy

r008I(iri+5I) .

I

normal modes. For the same reason, the direction

d =H is held fixate, and only the dynamics of 5d; is
considered. This is plausible since the Zeeman energy is
much greater than the magnetic dipole energy. Note that
in the A phase a similar adiabatic elimination procedure
leads to the conclusion that the orbit waves acquire no gap
in contrast to what is found here.

In the most general case v "&0 there are at fixst three
pairs of propagating modes built up by div g, p, a, T, Sp,
and M with soundlike frequency spectra

a)=+c( k/k)k+iD( k/k)k

These modes are a mixing of first-sound, second-sound,
and longitudinal spin waves. In the linear ordex' of k
neglecting the static coupling between 5T and 5p (i.e.,
(1=0, Cp =Cy) alld bctwccll 5ll alld 5p (1 c , (I—0 ol'. 1.10
magnetostriction) we find for the velocities

Since we have not taken into account the transverse mag- , e,M

netization H Xm as variables, " the (shifted) I.armor pre-
cession discussed in Sec. V does not occur in our list of
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'2

[k (c 2+c g)=p t I +2$ogt +soToc„
po po

, mo
+P22r —& —so0t +p3}'

po

k c,c2——{PzPz—P tP3}(gt —Toc„'X )y so

where

A2p2=

A2p3=

(Pl))'
Pll+

d+ PIIPII
Pll+ n

Pll

(pt)'
py+ ~ kg,

pj.
s

ppipg+, kj,
pr

(pt)'
'Fl kg +~i

where A( k/k} contains the reversible transport parame-
ters St 2 and 8{k/k), C( k/k), the irreversible ones (e.g.,
v, gt, r)t). These modes are either propagating (A p8 )

and damped in the same order of k or they are over-

damped (8 pA ), i.e., diffusive. The structure of this
spectrum reminds us of the transverse momentum order-
parameter spectrum in nematic liquid crystals. It should
be stressed that for 0~0 these modes are in any case dif-
fusive, since A-p&~0 in that limit. In addition, the
parameters 5~ 2 do not enter the normal mode spectra for
H ~0.

VII. EXPERIMENTS

As has been discussed in the previous sections, there are
numerous new couplings between spin-space variables and
orbit-space variables in He-8 if a strong magnetic field is
applied. In this section we will discuss how these new ef-
fects are accessible to experiments. In principle, the nor-
mal mode spectra given in Sec. VI contain all the neces-

sary information. However, by the very complicated
structure of those spectra it is very unlikely that it will be
possible to verify all their details soon, and to measure,
thereby, all phenomenological parameters. On the other
hand, it should be experimentally possible to verify the ex-
istence of the density p" (and, thus, of the velocity V;8) be-
cause of the mixing of fourth (second) sound with spin
waves induced by p . It should especially be possible to
excite fourth (second) sound by changes of the magnetiza-
tion or spin waves by changes of the temperature. This

The remaining four modes, involving kg g, but also
5q, 5d;, and 58, have a spectrum of the form

a)(k)=+(A —8 )'» k +iCk

FIG. 2. Perturbations to measure pll, v "~
~

8, cf. Eq. (A13).

would prove the existence of p &0.
The coupling between spin space and real space in the

reversible currents of He-8 in high magnetic fields [Eq.
(4.2)] can—at least in principle —be measured by quasi-
static experiments (magnetic fountain effect, magneto-
thermal effect, thermal fountain effect}, which are quite
similar to those described for the A phase in high magnet-
ic fields. The most easily accessible results we have
given are related to NMR experiments. In longitudinal
NMR experiments the resonance frequency increases with
increasing magnetic field, while for transverse NMR ex-
periments a shift from the I.armor frequency occurs in
high magnetic fields. Both effects are based on the aniso-

tropy of the gap due to b ~&53. For 63——0.96&(O.M t)
(Ref. 52} the longitudinal NMR resonance will be
enhanced at 2% (11%)and the transverse NMR shift will

be 1% (3%) of the longitudinal resonance frequency.
As is discussed in Appendix A the static susceptibilities,

involving the linear momentum density and the hydro-
dynamic variables characterizing the broken symmetries,
become quite complicated. However, it is possible to pro-
pose experiments which can measure the normal density
parallel and orthogonal to the applied magnetic field as
well as the total density. Thereby, the uniaxiality of orbit
space in He-8 in high magnetic fields can be established
experimentally. We have sketched the different configura-
tions in Figs. (1)—(3).
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APPENDIX A MICROSCOPIC DESCRIPTION

In this Appendix we will make contact with microscop-
ic theory and thereby express the phenomenological pa-

H

FIG. 1. Perturbations to measure p"„v "j.A, cf. Eq. (A10). FIG. 3. Perturbations to measure p, cf. Eqs. (A14) and (A15).
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rameters by correlation functions and response functions,
which can be calculated (at least approximately) by vari-
ous many-body techniques. For a detailed exposition of
the method see Refs. 11 and 28.

For the operator of the order parameter we have"

A,JP( x )= drr g(r) dQ, QN x ——(cr;oq) p0 4m. ' 2

)P
X Qp x+

(A 1)

where f are bare fermion annihilation operators and g(r)
assures normalization of A;1 ( x ). The equilibrium expec-
tation value of A;J ( x ) is related to the order parameter

n,j [defined by (2.6)] by

A~~j n~e——''P[g+2(hi+ hi)]

The variables characterizing broken symmetries have
the operator representation

58'P( x }= H;eg i—, [A i AI i ( x )+Aq(Aii' ( x )],4 f lJ

(A2)

where kll and k& are given by kll k.d and

[k —(k d')d"'] -„ (A6)
ik —(kd )d

and g', g, and g are defined as in Eq. (5.7) of Ref. 11
where I has to be replaced by d, reflecting again the fact
that the preferred direction in real space (d ) for He-8 in
high magnetic fields is different from the preferred direc-
tion ( I } in real space in the A phase without external
magnetic field '" or in the presence of an external mag-
netic field.

The noninstantaneous, collision-dominated response is
contained in the memory matrix 0,J. '" Its reversible
part yields the following contributions to hydrodynamics
(up to now only hydrodynamic systems with broken rota-
tional symmetries in real space have obtained reversible
contributions from o,j ):

0' »—2$1kx+%2kll,II

»=+2k~k
ll

II

g g (A7)
=A,kj,II

cT
Pgg

—51kJ ~
II

2l
(A3) For the irreversible contributions of the memory matrix

we have to order k:
5d'P( )=—d [A 'P( )A —A 'P( x )A .

with

+AOP( x )A".,'—A.OP„( x )A'.,'],

@=[++2(hii+6',}](hi+d,', )
' .

For the conserved variables the operator representation
can be found, e.g., in Ref. 11.

The instantaneous collisionless response of the hydro-
dynamic variables to external perturbations is contained in
the frequency matrix co;~(k}, which can be evaluated exact-
ly because it contains equal-time commutators. We obtain
for the elements involving 58 and 5'

~Map i1 P12

co i&—— 2iPiki-,

QP~ =2l

copse= —l Pi2,

Qp p
= —»kg

g 58

~MSe=»3' ~

1 2 2
eMM ——@Ilk II+Pzk

1 1 2 1 2
Kllk

I
I+K~k j

2 2
0gg —KIIk II +KJky

1 2 2.. .=(,+,)k, +,k~~,

1 2 2O'
P P=Y2ky+v3kllg g

iT i i =vicki+(2vi+2v5+vp —v4)k
~~

1 2 2

o'
i i ——(v3+ v5)k () k, ,

1o~, ——g,k, ,

1

~s„=Aikido
1

~apsp=g ~

1
0SeSe=&

1
+585p t7 ~

1 Sy
Op@1—QJ/c g

1 8
~s ' ~llkll .

(AS)

For those not involving 5y and M we find for the ele-
ments of the frequency matrix contributing to hydro-
dynamics to order k2

co 1
——moke,Mg

QP 1 =Pkg

co 3=PklI,Pl

As is well known the nonvanishing irreversible elements of
the memory matrix 0' can be related to the corresponding
absorptive response functions by Kubo relations. These
have the same structure as in the A phase, reflecting once
more the fact that the 8 phase in high magnetic fields is
uniaxial, contrary to the 8 phase without external field
which is isotropic in real space. For the reversible trans-
port parameters analogous relations can be derived in the
same way as in the A phase.

Finally, we consider briefly the matrix of static suscep-
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tibilities. For the longitudinal magnetization density, the
density, and the entropy density, the same discussion as in
the A i phase and the A phase applies and we have

X '=g, X '=g, p, X '=2'C„'p,
{A9)

X@M Pip s Xsr/g —Xii, Xsrt=$2 .

The other variables come in two different groups. Because
of its behavior under parity and time reversal g is com-
pletely decoupled from g ', g, Q, and 58 and we have

APPENDIX 8: GALILEAN PROPERTIES
OF Vq, 08, AND(curld )

Infinitesimal Galilean transformations with velocity 5U
are generated by the operator (ll/2m =1),

g = —5U J d x f ( x )f~( x ) x .
2

The order-parameter operator AP (A 1) transforms under g
like"

[g,A,JP( x )]=A J~( x )e (82}

which leads to Pz li——ms sX 2,( k ).
g g

The second group leads to static correlation functions
which become complicated for k~O because two hydro-
dynamic variables characterizing broken symmetries are in
this group. First we consider v "=0. The static suscepti-
bilities of 5n and 58 should diverge as k 2 for k~0.
That they diverge at least as k can be shown by an ap-
plication of the Bogohubov inequality. Therefore, we dis-
cuss the inverse susceptibilities first.

Axial symmetry requires the structure

Xsqts [pli P&(pii PHII )]k li

+ [pi Pi(pi P—W j. )]ki-,
~5858=9()t [j~+QXtZ s (Al 1)

Xsss =(pii —p(qii)kii+(pf p)q2)k2 . —

We have chosen the notation to comply with Eqs. (3.8).
For the corresponding susceptibilities, which have to be
identical for v"=0 and v "&0, we have [b,= det(X;l ),
j,g =+,58]

X~=—{qiik ii+qqkq),=1 2 2

Xpsse= g[(pii —PlqII )k ii—+(pl Blql }ki—]

Xssse= ~ [[pii —Pi(pii —
PWII }]k

ii

+[pi Pi( pi PW—i)lki j-
If we allow for v "/0 the corresponding static correlation
functions involving g' and g become rather complicated.
Nevertheless, we can deduce some simple relations for

xg'8':

This immediately yields the Galilean properties of 58, 5q,
and 5d;, (A3),

&[g, V q]& =-5U,

&[g, V8]&=P,50, (B3}

&[g,V;d, ]&=0.

Thus V y is a true Galilean velocity as in all other phases
of He. On the contrary, V 8 is only partially a Galilean

velocity since 0 &P, & 1, while (curl d ); is Galilean invari-

ant. For H~0, T 8 becomes Galilean invariant too. For
the linear combinations 5qp and 58 introduced by Eq. (2.9)
the Galilean properties are simply

APPENDIX C: NONLINEAR THEORY

Recently, the present authors have given a nonlinear
hydrodynamic theory for the superfluid phases of He in-
cluding the 8 phase in high magnetic field. Variables
which describe rotations in spin or orbit space do not com-
mute in a nonlinear theory giving rise to the so-called
"Mermin-Ho" relation. In Ref. 40 these relations are
given somewhat implicitly and we will state them here ex-
plicitly:

51(52'') 52(5tq } Pl+ [(5td )X(52d }]~

B)(528)—52(B)8)=d.[(B)1 )X (52d )],
5)(521 ) —52(5) d )=d x [(5)d )(528)—(521 )(5(8)],

pii= hm hmd, d,X, gk),
k~~0

klan
0 8 8

p=pii+pii+pgii= hm hm d;d X; g k ),

g g g It) kjp=pi+pi+Pg, = hm hm
k, -Ok~~-O g2 (A15)

where P& is given in Eq. (2.7}.
For the nonlinear terms in the equations of state and in

the reversible and irreversible currents there is a great
structural similarity between He-A and -8 (both) in high
magnetic fields. By the simple replacement 5n —+58,
51&~5d;, l; ~d; in the nonhnear terms of Eqs.
(3.18}—(3.24) of Ref. 40, one obtains the corresponding
nonlinear terms for 3He-8 in high magnetic fields, which
we, therefore, must not write down explicitly here. In Sec.
IV C of Ref. 40 the variables 5d; were omitted.
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