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Microscopic calculations for normal and polarized liquid He
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Accurate variational calculations are carried out for the ground-state quantities of the normal and

fully spin-polarized phases of liquid He. The variational wave functions include semioptimized

two-body, three-body, and backflow correlations. Expectation values are calculated using Fermi-

hypernetted-chain summation techniques. The elementary diagrams are summed with the scaling

approximation developed earlier for Bose liquids. Results of calculations using the interatomic po-
tential of Aziz et a/. from equilibrium to melting density are reported. The calculated equation of
state, sound velocity, and liquid structure function for the normal phase are in close agreement with

the experimental data. The three-body and backAow correlations are found to be important in

achieving this agreement with experiment. The energy of the spin-polarized phase is found to be
above that of the normal phase over the entire liquid density range, and it is found that the backflow
correlations are necessary to achieve this result.

I. INTRODUCTION

The ground state of liquid He has been extensively
studied in the past decade. Starting from a microscopic
interaction between helium atoms one attempts to explain
the known zero-temperature equation of state and liquid
structure function. In addition, the microscopic theory
should show that the energy of the spin-polarized liquid is
above that of the normal liquid in the density region over
which the liquid exists. The methods developed in this
paper and the calculations presented achieve these goals.

Basically two approaches have been adopted to calculate
the ground-state properties of liquid He. These are the
variational and the Green's-function Monte Carlo
(GFMC) approaches. The variational calculations use ei-
ther MC (Refs. 1—3) or the integral equa-tion methods to
calculate binding energies. Recent variational calcula-
tions ' have shown that the Jastrow-Slater wave function,
containing only pair correlations depending upon distances
rt is not adequate. The two-body backflow and three-
body correlation have a large effect on the binding energy.

The ground state of Bose liquid He can be calculated
almost exactly with the GFMC method. ' The results ob-
tained with the HFDHE2 interatomic potential of Aziz
et al. are in very close agreement with the experimental
energies of the liquid and solid He over the density range
p=(0.36—0.6)o, where IT=2.556 A is the Lennard-
Jones unit of length in helium liquids. The density of
liquid He has the range p=(0.277—0.4)o I, and we ex-

pect the Aziz potential to provide a good microscopic
Hamiltonian. In all the calculations reported in this work
this potential has been used.

There are practical problems associated with the appli-
cation of GFMC technique to the ground state of Fermi
liquids. Owing to these the only available result is an
upper bound of approximately —2.2 K to the binding en-

ergy at equihbrium density against an experimental value
of —2.47 K. The best variational MC energy' obtained
thus far with wave functions containing three-body and

backflow correlations is -1.9 K; moreover, variational
wave functions that do not include the two-body backflow
correlation give a lower energy for the spin-polarized
liquid than for the normal liquid. Attempts have been
made to improve upon the variational results by using
correlated basis perturbation theory and it has been sug-

gested to that a spin ( o; o I ) correlation may be responsible
for bringing the energy of the normal state below that of
the spin-polarized state.

In two preceding papers"' on Bose liquid He we
developed an accurate integral-equation method based on
the hypernetted-chain technique and the scaling approxi-
mation for elementary diagrams (HNC/S), and used
scI111optlII11zcd pa11' correlation fI(rtt ) RIld a IIlorc gc11cl'al

three-body correlation than that used in Mc calcula-
tions. " The results obtained in these calculations are
within 3% of experiment and the GFMC results. The
same correlation functions were used more recently to
study the energies of droplets of liquid He containing up
to 728 atoms by the variational MC method. ' The results
of thee MC calculations are within -4% of the presum-
ably exact GFMC energies, and they confirm the HNC/S
results.

In the present work we develop the FHNC/S method,
which generalizes HNC/S to Fermi liquids, and use it to
study the ground-state properties of liquid He. Semiop-
tlIn1zcd fI(rtj ) ls llscd, alld thc box terms 1I1 thc MQIltc
Carlo" three-body f1( r;1, r k ) and backflow fk(r z )

corrdations are removed. The variational energies de-
crease to approximately —2.35 K at equilibrium density,
and the calculated equation of state E(p) and structure
function S(k) are in close agreement with experiment.
The energy of the spin-polarized liquid is above that of the
normal over the liquid density range, and it is found that
the backflow correlations are important to achieve this re-
sult.

Section II deals with the Jastrow-Slater calculations
with the FHNC/S method, the three-body and backflow
correlations are treated in Secs. III and IV. These sections
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also give results obtained with wave functions for which
MC results are available, to test the accuracy of the
FHNC/S method.

g„(»»)=gdd(r J)

II. FHNC/S METHOD

The Jastrow-Sister variational wave function of a Fermi
liquid is defined as

+[Nd, (»J )+Ed, (»~J )]

1.(r J. ) = 1(kr—r J ) +v[N„(r J ) +E„(rJ )] .

(2.3c)

(2.4)

(2.1)

g (r;~ ) =gdd(r J ) +2gd, (r J. )+g„(rJ ) . (2.2)

The g„~(rjJ) give contributions to g, and xy =dd, de, and
ee denote terms in which neither i nor j is exchanged, j is
exchanged, and both i and j are exchanged, respectively,
The g~y are given by

gdd(~;, )=fi(r;, )exp[Ndd(»;, )+Edd(~;, )], (2.3a)

gd, (»&) =gdd(r;J. )[Nd, (r;, )+Ed, (»;, )], (2.3b)

where jIj is the Fermi-gas wave function and fi(r J. ) is a
two-body correlation function. The two-body distribution
function g (r;J ) is obtained from the FHNC equations' as

Here v is the spin degeneracy, kF is the Fermi momentum,
and 1(kFr) is the familiar Slater function

1(x)=3jj (x)/x . (2.5)

N,» denote sums of nodal diagrams, E~ denote sums of
elementary diagrams, and the composite diagrams are gen-
erated by Eqs. (2.3). The functions N«and E«denote
sums of diagrams in which i and j are exchanged in an in-

complete exchange loop. It is convenient to define a dis-
tribution function g„(r;J),

g„(»;,) =gdd(r;; )I- (»;; )/v, (2.6)

whose contribution is contained in the first term of
g„(»;,).

The sums of nodal diagrams are obtained from the fol-
lowing integral equations:

Ndd(»J)=f((gdd+gde —Ndd —Nd —1)k {gdd 1}kJ)+—I ((gdd Ndd —1)k—(gd )kJ)

Nd (»iJ)=I ((gdd+gd Ndd Nd ——14k —(gd )kJ)+I {(gdd Ndd 14k —(g )k—J)

N.,(»J)=I «g~+ge, Nd, —N-)k—(gd. )kJ)+f'«gd Nd) k {g—-)kJ»

N„(r; ) =I'{(g„N„+1/v)k—,(g„) ),

(2.7c)

(2.7d)

where I is the convolution integral defined as

I (xa ykJ)=J Jd'»kx(»k}y(»k, ) (2.8)
E«4(») =

0

T» r
I

j
j

j 0 ~

o '6
(i.z)

and p is the density of atoms.
There is no analytic method available to evaluate the

sum E~ of the elementary diagrams. In the FHNC ap-
proximation E~ are set to zero, while in the FHNC/4 ap-
proximation' they are evaluated from four-point dia-
grams with generalized bonds. Some of these are shown

in Fig. 1. The dashed lines in these diagrams represent a
gdd —1 bond, while a half-dashed, half-solid line represents
a g~ bond and a solid line denotes g„. Thus the direct
and exchange ends of bonds are, respectively, denoted by
dashed and solid lines. %e cannot have diagrams in
which the exchange ends of two bonds touch at a point.
The g„bonds are denoted by lines with arrows depicting
the direction of exchange loops. The g«bonds must form
closed loops, or contribute to E„. The solid points
represent the coordinates of internal points, and we have
to integrate over them. Open circles represent r; and rJ,
or external points in general. The contribution of diagram
{1.4) of Fig. 1 to Ed, z is, for example,

Ede4(&) = +...

Eee,4(r) =

E„4(~) = +

FIG. 1. Some E4, elementary diagrams. Slack dots and open
circles represent internal and external points. Various bonds are
explained in the text.
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Ed, 4(1 4.)=p' f (gdd —1)(k(gdd —1}(((gdd —1)ki

X(gdd —1)jk(g.d )jid'rkd'rl (2.9)
0

The three-particle distribution function can be expressed

g3(rij ~rjk~rki }=+gxy( ij }gy'z(rjk)gz x ('"k'i }
exch

X [1+A„y-, (rj, r(k, rk; )], (2.10)

where A -y-,- is the sum of Abe contributions' with ex-

change patterns denoted by x",y", and z" at the vertices i,
j, and k. The sum over exchanges in (2.10) is over all al-

lowed combinations of x,y, z,x', . . . , z" which form
correct exchange patterns. In the FHNC approximation
the %be contribution is neglected; the g3 is then a sum of
31 terms. In the FHNC/4 approximation' A is approxi-
mated with Ax~4 the contribution of four-point Abe dia-
grams. Some of these are shown in Fig. 2, and for exam-

ple, the contribution of diagram (2.2) is

Addd 4(2 2) =.p f (gdd 1) ((gdd ——1 }j((g,d )k(d r( .

where TF is the Fermi-gas kinetic energy (i.e., V' 4 term}

3 A'

TF — ——k„,
5 2m

(2.13)

W and U contain contributions from the interaction and
the V operating on the f2 's

FIG. 2. Some Aq diagrams in the Abe expansion of the
three-body distribution function.

(2.11)

The energy of the liquid can be calculated in different
ways by integrating the kinetic-energy terms by parts. '

The three commonly used forms' are EJF (Jackson-
Feenberg), Ecw (Clark-Westhaus), and Ep(3
(Pandharipande-Bethe). The Ep(3 is obtained from
V'(g f2)+, and is given by

a2 V'f2
W= +f13rg(r) u(r) ——

2 m f2

2 3 3U= — p d r(2d rl3g3 12, 23, 31)
2m

V (f2(ri2)' V (f2(r(3)
X

f2(r12 }f2(r13 )

(2.14}

(2.15)

Epg ——Tp+ W+ U+ Wp+ UF, (2.12) and WF and UF give contributions from Vf2 V4 terms,

WF ——— p (l rg«(r) f21',
2m 2

2
2UF= — p d r~2d r„ f2(r12)l13r12 r13

2m f2(r12}

(2.16)

X Ig (r13 )gdy(r12 )[gdy'(r32) +gdy'(r32 }Addd ]+gdd(r13 }g ( 23 )g (r31)( +Addd ) j (2.17)

where the f2 and l' denote (3f2/(}r and i}l/Br. 4 sum of y andy' is implied, and, for sake of brevity, only Addd terms are
included in Eq. (2.17).

Tile Ec 1s obtained from [V(+f2)4],
Eew =Tz+ Wcw —U

rP (f'»'
Wow ———,'p d r g(r) u(r)+-

m f22

all'd the EJp is obtained from a combination of V ( +f2 )C ', [V(f/2 )4], and the V ( +f2 )4. It is given by

EJF——TF+ Wg+ 8'p+ Up .

The form of W'(( is identical to the energy of the Bose liquid

r' V'f2 —(f2)'
Wg=2p cf rg r U r-

2m

(2.18)

(2.19)

(2.20)

(2.21)

fi
Wp

——— f (l r ((gdd —1)[[l v(N«+E„)]V l+(1') I vg—ddE„V l), — (2.22)
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(2.23)

1.0—

I r

I
I
I
I

1

I
I

I
I EJF

here the ellipsis includes the Abe contriontribution. Thew ere t e e
three-body term U in the Epa and Ec~ gislar e( —1Kat

in E is very smallequilibrium po), while the Up in, p
(-0.004 K at po). Thus Epii and Ecw are sensitive to t e

V J d J makes Epg less sensitive to errorsbetween — y2 an UJ 2 m
in g(r).

I we sum over all elementary diagrams these three ex"
ressions will give the same exp~tation value. However,

FHNC/4 1 I of m i ti that the FHNC or
as illustrated in Fig. 3 and Ref. 16.give different energies as i us

The distribution functions (calculated with t e
uations are s own inh n in Fig. 4. We note that g~, Rnd g«

and so the elementary and Abe diagrams
should be dominated by the g~ —1 bond. e iag
foriiied with g~ — s oii—1 h ld approximately satisfy the scal-
in roperties discussed in Ref. 9.

k calculate the elementary dia-In the present wor we cacu

rams (1.1) of Fig. an1 d (2.1) of Fig. 2 with the bond
wa all four-point diagrams linear m gg,g(r) —l. In t is way a

and g are counted correctly. Let E4 an 4
tributions of these diagrams. The scaling approximation
is then taken to be

E~(r) =(1+s)E4,

E~(r)=0 for xy+dd

A~(r i, r k, re ) =(1+s/2)Aq(r J.,rjk, rk,

A =0 for x,y,z&d, d, d .XPÃ

(2.24a)

(2.24b)

(2.25a)

(2.25b)

E E, and Ecw are calculated as a func-The energies Epa, ip, aii
tion of the scaling variable s, whic is etermin ro
the condition

Epa(s) =Eip(s) =—E(FHNC/S) . (2.26)

The Ep~ increases, while E,F and Ecw decrease as s in-
I normal hquid He the Ecw(s) is very close to

the E(FHNC/S), but in the spin-polarized liquid
1 bove the E(FHNC/S) as illustrated in Fig. 5.

Results of calculations with the pair corre a ion

fz(r)=exp[ ——,'(b/r) ]

hown in Tables I and II and Figs. 3 and 5. TheRie s own 1n

ment with the avail-FHNC/S energies are in close agreement
MC results. The success of this FHNC/S methodable M resu s.

tend to can-may pbe artly due to the fact that g~ and g«
can-cel each other 1g. , RnF' 2) d hence there are substantial ca-

cellations tween ebet een elementary and Abe diagrams wit g~
1R rams hRV-and, bonds. Thus our approximation of diagramsRnd g«n s.

bonds may not be too relevant. Ining two or more g~,g«bonds may n
2.25) willaddition, ethe scaling equations (2.24) and 2. wi

and Abe di-correct for the neglect of exchange elementary an
agrams.

The problem of calculatmg the optimum (r) for the

0

-2.0
0.24

/r
E

00------

and C& energies in theFIG. 3. Comparison of JF, PB, and C g'

ott - its of FHNC/S calcula-Dotted-dashed curve represents the results o
tions with "optimized" fs.

I

5.00.4 1

I.0 2.0
l(~)

functions at p=0, 277' 3
&nFIG. 4. Typical g~, g~, and g funct'

the Jastrow approximation.
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6.0—

5.0—

TABLE II. Results of FHNC/S calculations in Jastrow ap-
proximation for polarized 3He using McMillan's f2 with

b =1.120.

4.0—

5.0—

2.0—

w 10

0—

/
/

//
/

/
/

//
/ EJF

p(~ ')

0.237
0.277
0.300
0.330
0.360

Scaling factor
s

3.80
3.90
3.96
4.02
4.10

—1.88
—1.85
—1.66
—1.21
—0.49

—1.72
—1.68
—1.47
—1.00
—0.25

E (FHNC/S)
Eps =E Ecw

-1.0—

EJF(s) =Epe(s)

-3.0-
EpB

1

0.24
1

0.50
o(o- ~)

I

0.56

FIG. 5. Results of Jastrow calculations for fully polarized
'He. Top and lower dashed curves represent the Ec~ energies in
FHNC/0 and FHNC/S approximations, respectively. Upper
and lower solid curves represent the EJF and Epq energies in
FHNC/0 approximation. Middle solid curve represents the
FHNC/S energies obtained by equalizing EJF(s) and Epq(s). All
calculations are carried out by using McMillau's f.

Jastrow-Slater wave function has been resolved. ' Howev-
er, we have used here a simpler method. The f2(r) in a
Bose liquid is characterized by its asymptotic behavior

f2(r ao)=1 a/r— (2.28)

TABLE I. Results of FHNC/S calculations for normal 'He
in Jastrow approximation. The correlation function (2.17) was
used with b =1.15'. MC values E(MC) are from Ref. 1.

The method of obtaining fz(r) with this asymptotic
behavior, by minimizing the energy is given in Ref. 11.
We obtain with it a family of f2(r, a) by minimizing the
mass-3 Bose liquid energy, and treat a as a variational pa-
rameter for the Jastrow-Slater calculation of Fermi liquid
He. The energies obtained with the f2(r, a) for the nor-

mal liquid are shown in Fig. 3 by the dashed-dotted curve.
They are a little below those obtained with the McMillan
f2(r) of Eq. (2.27). However, in the case of spin-polarized
liquid the McMillan f2(r) with b =1.12o gives energies a
little lower than the f2(r, a}. We note that in Jastrow
theory the normal liquid He is very underbound and the
spin-polarized liquid is energetically favored.

III. THREE-BODY CORRELATION

In this section we use the FHNClS method to calculate
the binding energies with the wave function

'p=pf (,j) g f (,J J, ;)@.
E,J,k

i&j&k

(3.1)

Previous studies' ' have shown that the dominant
three-body correlations in liquid He are of the form

I
f3(riJ rjk, rk;)=exp[ ——,q( JrirJk rkj)]

q(rij rjk rkr}—gg(rj )g(rik )(P(j r;k )

Cgc

(3.2a)

(3.2b)

where g,„,represents a sum over the three terms obtained

by replacing ijk with jki and kij, and r;J and r;k are unit
vectors.

The FHNC equations for the distribution functions
with this wave function are given in Ref. 4. They are ob-
tained by replacing N~y+E~ in Eqs. (2.3) and (2.4) by
N~+E~+C~, where C„» are given by

c (r;, ) =I ((g +2gd, );k, (gdd)kj), (3.3a)

d ( j) ((g +g'd )' (gdd }kj)+ ((gd )ik (gd }kj)

(3.3b)

Cee("ij } (( gee+gde)ik~(gde }kj}~ (3.3c)

„(;,) = I ((g„)k, (g„)k,},
(I(&) (k&) )kj=p fd'rk [f 3(rJr,k k; ) 1]'

Xx(rk) &(rk, ) .

(3.3d)

(3.3e)

The C's are new diagrammatic elements dressed with
chains due to f3. The form of Eqs. (2.7) for N„» is not af-
fected by the presence of f3.

The three-particle distribution function is now given by

2
g3(r;, , rjk rk; ) =f3(riJ rJk rki )

p(~ ')
Scaling factor

s
E (FHNC/S)

EpB =EJF Ecw E (MC)
X g gxy ( rij )gy 'z (rjk )gz'x ' ( rki )

exch

0.237
0.277
0.300
0.330

2.86
3.20
3.34
3.60

—1.37
—1.08
—0.76
—0.16

—1.34
—1.07
—0.74
—0.14

—1.40%0.01
—1.08+0.03
—0.7020.05
—0.10+0.05

X[1+A~-y», (rij, rjk, rk;)] . (3.4)

Following the method outlined in Ref. 12, we write the
sum of elementary and Abe diagrams as
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TABLE IV. Calculated energies of normal 'He in K; ( T ) and ( V) denote the expectation values of
kinetic and potential energies. The symbols J, J+T, and J+T+B represent the results of calculation
with wave functions (2.1), (3.3), and (4.2), respectively. All the calculations have been performed with
the "optimized" correlation function fs.
p(o ')

0.237 J
J+T

J+T+B

10.71
10.40
9.89

(v)
—12.17
—12.19
—12.11

E (var)

—1.46
—1.79
—2,22

J
J+T

J+T+B

13.48
12.97
12.28

—14.76
—14.80
—14.64

—1.28
—1.83
—2.36

0.300 J
J+T

J+T+B

15.22
14.55
13.77

—16.28
—16.33
—16.12

—1.06
—1.78
—2.35

0.330 J
J+T

J+T+B

17.69
16.76
15.86

—18.29
—18.31
—18.03

—0.60
—1.55
—2.17

0.360 J
J+T

J+T+B

20.41
19.21
18.16

—20.28
—20.25
—19.86

0.126
—1.04
—1.70

0.384 J
J+T

J+T+B

22.69
21.21
20.09

—21.99
—21.91
—21.43

+0.70
—0.70
—1.34

The dependence of these variational parameters on the
density is found to be negligible within the accuracy of the
present work. The energies obtained with this g(r) are
much lower than those with the g(r) of Ref. 1. The two
g(r) are plotted in Fig. 7; the g(r) of Ref. 1 appears to be
too large at small r. The present f3(rj, rjl„rk;) is much
weaker and hence the approximations of A' and E' should

be less critical for the present calculations than for calcu-
lations with g(r) of Ref. 1.

The results of calculations using the semioptimized
f2(rz) are given in Table IV. The optimum values of A,„
u„and r, do not change significantly when the McMillan
f2(rj) is replaced by the semioptimized f2(rj). [The re-
sults obtained for the spin-polarized liquid with the

TABLE V. Calculated energies for polarized 'He in K. All the symbols have same meaning as in
TaMe IV. McMillan form (2.17) was employed for the Jastrow correlation function with b = 1.12o.

p(o ')

0.237 J
J+T

J+T+B

10.06
10.01
9.86

—11.94
—12.02
-11.91

—1.88
—2.01
—2.05

J
J+T

J+T+B

12.40
12.43
12.24

—14.25
—14.49
—14.33

—1.85
—2.06
—2.09

0.300

0.330

J
J+T

J+T+B
J

J+T
J+T+B

14.06
13.91
13,69
16.15
15.91
15.62

—15.72
—15.85
—15.65
—17.36
—17.51
—17.26

—1.66
—1.94
—1.96
—1.21
—1.60
—1.64

J
J+T

J+T+B
4.10

18.39
17.96
17.62

—18.88
—19.03
—18.73

—0.486
—1.07
—1.11
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McMillan f2(r) are given in Table V and displayed in Fig.
11.] The optimum values of the triplet parameters were
found to be

The variational wave function is

+= gfi(r, J) g fi(r,J rJ» r»;) gf»(V) q'

l &J i&j&k l&J
A,, = —0.6,
u, =0.45o. ,

r, =0.85m .

(3.12a)

(3.12b)
(4.3)

and the antisymmetrized Fermi gas 4 contains a sum of
3.12c

terms

The three-body correlations have a larger effect on the en-

ergy of the normal liquid, but in a Jastrow-plus-triplet
theory the spin-polarized liquid has lower energy as was
noted earlier.

IV. BACKFLO% CORRELATIONS

Momentum-dependent two-body correlations, called
backflow correlations, were introduced in the variational
wave function of liquid iHe in Ref. 4 to generate the
Feynman-Cohen backflow. Following Ref. 1 we take it
of the form

@=g ( —1) exp igk„~;~ r;
PCml l

(4.4)

4n ——exp igk; r; (4.5)

The "operators" E(i) operate on the qi as

where k„[;] is the momentum state occupied by particle i
and I' is the number of pair exchanges required to reach
the state characterized by n (i), from the simple product
state 4n having n (i ) =i,

f»(i j)=exp[iiI(rJ )r J [K(i)—K(j)]I,
which is identical to that in Ref. 4,

(4.1)
T

K(i)exp igk„~;~ r;) =k„~;~exp igk„~;~ r;
l l

f»(i,j)=1+ii)(re )rJ [K(i)—K(j)], (4.2) (4.6)

when rI(r) &&1. K(i) are operators that operate on the 4 The K(i) in qI' must operate on the O'. Thus the varia-
in the manner prescribed below. tional wave function of Eq. (4.3) is interpreted as

gf(r; )
l,J

l &J

3 ~iJ'~I'J'k ~I'kl

i,j,k
i &j&k

gexp[ii)(rJ)rz (k„~;~—k„~J~] ( —1) exp igk„~;~ r;
PCrm l,J

l &J

(4.7)

Expectation values with this wave function can be more conveniently calculated by antisymmetrizing only the left-
hand side,

(I [0[q)
&q [q)

k 3 2 0 2 3 k +IId+

L 2 2
(4.g)

where f» operates to the left and f» to the right. Di-
agrammatic cluster expansions are obtained by expanding
the many-body integrals in terms of the quantities

fz(rJ ) —1,fi(rJ, rz», r»; ) 1, and f»(i,j)——1, and canceling
the disconnected and reducible pieces of the numerator
against the denominator. The cancellation of the reduci-
ble diagrams may not be exact for wave functions contain-
ing backflow correlations, as discussed in Ref. 4.

It is difficult to sum chains of backflow correlations. In
Ref. 4 the effect of backflow correlations on only dressed
two- and three-body clusters was considered. Compar-
isons with MC calculations suggest that it is not a bad ap-
proximation, and hence we continue to use it in the
present work. The formulation of Ref. 4 needs to be
modified to use f» of the form (4.1). This form of f» has
great advantages in MC calculations.

We first consider the effect of f» on the distribution

functions. The large direct diagrams, which come from
the term in 4* and have n (i)=i, are not affected by f».
In these diagrams

I I

I I

I I

jc ol

{8.3) {8.4)
FIG. 8. As explaiaed ia the text.
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f» (1j )=exp[ ir—l(rz)r z (k; —kz)]=1/f» (ij ),
(4.9)

the other n (k) =k. We now want to add the contribution
of the diagram (8.2), in which the wavy line represents
(f» f» 1—), to (8.1). When i and j are exchanged we have

and thus

gf' (,j) fff"(',j) =1
f» (ij )f» (ij ) =exp[2t'rl(ri)r;~"(k; —ki)] .

(4.10) Thus the sum of (8.1) and (8.2} is obtained as

(4.13)

in direct diagrams. This fact, together with small magni-
tude and range of rl(r) probably make the present treat-
ment of the effect of f» on the distribution functions and

energy adequate.
In Jastrow theory the two-body exchange diagram (8.1)

of Fig. 8 gives the following contribution to g

~~(ri)exp(ik; Ft)exp(i ki r~;).,
k, cr

(4.11)

which upon summing over spins and momentum states,

g e'"''=l(kyar),
&k~k,

(4.12)

becomes g~(r)1 (kF—r )/v. This exchange contribution
comes from the term in 4' in which n (j ) =i, n (1 )=j, and

I

~~(rz)expIi k; rz[. 1+2'(rii)]+i kz. ri, [1+2rl(r&)]I

gg(r—it }1 (kFt(rii ))/v,

t(r}=r[1+2rl(r)] .

The 1{kFr;~) in the FHNC/S equation (2.4) is replaced by
l(kFt(rJ)}. In this way the contribution of many dia-
grams having f» correlations, of the type illustrated in
Fig. 8, are correctly summed.

Some of the diagrams in which three particles are in-
volved in exchange with f» correlations are shown in Fig.
9. These diagrams have rather sma11 contributions which
are calculated approximately with expansion (4.2}. The

f» f» 1 in di—agram (9.1} is i'(r;»)ri» (k; —k&), up to
order rl(r). Thus the contribution of (9.1) is given by

2pg~(r&)l(k—Fr/i)1'(kFrii) fcos8;r~rl(ri»)g~(ri»){g~(r&») —1)f3d r» = g~(r&) —1(kFr&—) Zo(rij),
Bp

ZO(ril ) pfcos8i ri»vI(ri» )gdd(ri» )[gdd(fj» ) 1]f3d r»
2 3

(4.15)

(4.16)

Diagrams with f» correlations between jk double this con-
tribution. We can include it in the contribution of dia-
gram (8.1) by replacing l(k~r) with 1(kFr)(1+2Zo(r)}.
We also include the contributions of diagrams (8.2) and
(9.2} and many others by replacing 1(kt ri ) by l(kit i) in

Eq. (2.4) with

t =r[1 +g2(r) +2Z(r)],

Z(r}=pfcos8;r»rl(r» }

X [g~(ri» )[gu(ri» )+gae(rt» }]

+ga (r »)gu(ri») If3.d r» .

(4.17)

(4.18)

The terms involving the product g~g~, in the above equa-
tion can be understood following the discussion of dia-
grams (9.5) and (9.6) given later on.

Contributions of diagrams (9.3}—(9.9) cannot be
summed by modifying the Slater function l(x}. They give
new FHNC elements denoted by D„~, which must be add-
ed to the three-body elements C„». Diagrams (9.3) and
(9A) contribute to D,q as follows:

l

(~.6) (9.7)

D,g (ij ) =2pr;i rl( r;i )

X fd'r»l»(r» )g„(r» )cos8;g~(~»)f3

+2p fd'r»1, {r»}g„(r»)

Xcos8»rf»rt«I»)gu«&» )f3 (4.19)

(9.8) (9.9}
FIG. 9. As explained in the text.

Bl(kit(r))
lp(r) =

Bt(r)

Two types of diagrams contribute to D„(ij},

D„(ij ) =D„(ij)& +D(ij) 2.

(4.20)

(4.21}
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The D„(ij)~ is twice the contribution obtained by replac-
ing g~(rjk) by gd, (rkj} in D~(ij ). It sums diagrams of
type (9.5) and (9.6). The (fk fk —1) in diagram (9.6) is
given by

i'(r~k)rjk [(kk —k;)—(k~ —ki)]+ . (4.22)

where the ellipsis represents terms in g and higher, and
the r&k (kk —k;) part of it contributes to the D„. The
rjk. (k1 —ki) part has cos of the angle j of triangle kjl,
and its contribution is contained in the chain formed by
the D~, (k,j) cluster, containing jkl and the ee link ki T.he
D«(i,j )2 is given by

The wavy line in these diagrams is

ir}(r,J )r;k (2k; —kk —k;), (4.24)

the r;k k; part is summed by the substitution

1(kyar)~1(kFt), the r~k kj part gives the contribution

(4.23), and the r;k kk term is included in D„. The factor
4 in (4.23} comes from summing over the diagrams having
ik and jk wavy lines, and exchanges in both directions.

The three-body elements (9.8) and 9.9) contribute to D„.
The correlation in (9.8) is given by (4.24} and the relevant

term is r k kj, while that in (9.9) is given by

D„(ij)2 4plz(——rj }Jd rkcos8;r;kr1(r;k) ir1(r,))rr) (k; —kj —ki+kp), (4.25)

Xg„(r;k)g„(rk, )f3 . where we assume that particle i goes in state 1. The D„
includes contributions from the r;J (kJ+kq) term. We

(4.23) obtain
I

3D-(1 j)= p «kg (~k)rkn(rk)cosek1, (rk, )[g~(ra;) If—
+ p fd'rk[g~(ra ) Il~~, (r—k)cose;r;;n(r;, }g„(rik)f3, (4.26)

after subtracting the contribution of separable diagrams.
These D,„sum all dressed three-body elements linear in g.
Contributions of order r1 (or higher) to three-body ele-

ments are not summed exactly in the present work. The
contributions to clusters having four or more particles

connected by exchanges for fk correlations are also not ex-

actly treated.
The JF energy is given by

EJF T~+ W~+——Wp+ Up+ Ur + Tg+ Tk, (4.27)

-04—
-0.4—

-0.6-
-0.8-

-l.2— -I.O—

-I.2—

-l.6—

-I 8—

-2.0-
(Normal)—

EJ+T+8

I

0.24
I I i I I I I

0.28 0.32 0.36

p(c ~)

FIG. 10. Comparison of the calculated energies for normal
'He with experiment {Refs. 21 and 22), Green's-function MC
{Ref.5), and variational MC {Ref. 1) {unlabeled points with error
bars) calculations. Symbols J, J+T, and J+T+8 are explained
in Fig. 6.

I

0.28 0.40
I I ) I

0.24 0.32 0.36

P (0-&)

FIG. 11. Calculated polarized 'He energies. Dashed curve

representing the normal 3He energies is drawn for comparison

purposes.
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t.2

I.O

T = — j(e'{7',F )B lt/I&+(I lB(V',F)C»
81tl

—2(C'(V IF')B lB(V IF)C &]r{e ) q & .

0.5

0.8
[

3.2

FIG. 12, Calculated liquid structure function S(k) (solid

curve) compared with experiment. Triangles represent the data
from Ref. 23 at T=0.41 K and circles represent the data from
Ref. 24 at T=0.76 K.

and thc terms TF to Uy arc d1scusscd earllcr. 8 y 1s glvcn

by

x fd r Ig~ [1 v(N«+ E—«jC«+D«)

xV,'l(kFr)+I~]+vN„V'I j .

(4.28)

There are minor modifications in U~ of Eq. {2.23): (i) we
replace l by /r, and (ii) insert f3 in the integral. The ex-
pressions for TF [Eq. (2.13)], Ws [Eq. (2.21)], and Ur [Eq.
(3.8)] are unchanged; these quantitim change only via the
changes in the distribution functions.

The Ts represents the JF kinetic energy of the backflow
correlation. Let B denote the product of pair and triplet
correlations in the qI [Eq. (4.3)], let F denote the product
of fk, and let Ft denote the product of fk . We then have

rI(r) =A„exp, (4.33)

The optimum values obtained at p=0.277cr 3 for the nor-
mal (polarized) He liquid are the following:

A,v
——0.2(0.05),

r„=0.8(0.8),
a)s ——0.375(0.375) .

(4.34)

These values are used at all densities, and the calculated
energies are shown in Tables IV and V and Figs. 10 and

(4.29)

The Tx term comes from F &F,

y &q'IB(~IF) VI& &-&{~P')F'BlB{~IF)e&'"
2m

(4.30)

In Ref. 4 the dressed-cluster expansion is used to calculate
terms analogous to T~ and TI, in the PB energy expres-
sion. It was found that reasonable results are obtained by
retaining only the two-body terms. Hence eve calculate Tk
in that approximation as follows:

kTs- p fd r(r) r +2rig'r+3ri )[g~(r)+g~, (r)]
5Ptl

p fd r(r)"r+4r)')g«(r)I&(r), (4.31)

R2kF
p fd"{n'r+3n)[g~{r)+g~.{r)]

5Ptl

The g(r) is parametrized as in Ref. 1, except for the box
term (necessary in MC calculations) which is removed,

2
r —r

I [ I I I I
l

I I I I
l

I I I I
)

I I I I [ I

400-

g 300—

E
200—

]00—

0.5—

0.3—

0.2-

I I t I I

0.28 0.32 0.36

p(~-3)

FIG. 13. Sound velocities C(p) in m/sec for normal He
(solid curve) and polarized 'He (dashed curve). Dots represent
the experimental data from Ref. 21.

G. l -™

l

2.5 3.0l.o l.5 2.0

«(~)

FIG. 14. Distribution function of normal 3He for parallel

spins g» and antiparallel g„at p=0.277g
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I I I l i I I
f

i I 1

2.0
&(c )

FIG. 15. Comparison of the two-body distribution functions
for the normal (solid curve) and polarized (dashed curve) 'He at
p=0.277o

imental results cannot be meaningfully analyzed. A MC
calculation with the present wave function would be in-

structive. The liquid structure factor (Fig. 12), and the
sound velocity (Fig. 13) are in good agreement with exper-
imental data. Best of all, the normal liquid has lower en-

ergy than the spin-polarized liquid. The backflow correla-
tion has very httle effect on the E(p) of the polarized
liquid and thus makes the normal phase stable. This
correlation is meant to represent the k (relative momen-
tum) and l (angular momentum) dependence of the pair
correlation. The f2(k, l) was studied in a crude approxi-
mation by Pandharipande and Bethe, who find that the
k and l dependence is strongest for 1=0. The 1=0 corre-
lations are much different from the average correlation in
l&0 states, and also have significant k dependence. The
polarized liquid has no 1=0 pairs due to antisymmetry,
and thus it is not surprising that the backflow correlations
have little effect on this phase. The calculated pair-
distribution functions are given in Figs. 14 and 15; the
difference between g«and g» in normal liquid is substan-
tial, but that behveen the total g in normal and polarized
liquids is relatively smaller.

11. The calculated E(p) of the normal liquid is in fair
agreement with the experiment, and a little below the
GFMC upperbound. The uncertainties in the present cal-
culation are of the order of 0.1 K, and so the differences
between the present results and either the GFMC or exper-
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