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Accurate variational calculations are carried out for the ground-state quantities of the normal and
fully spin-polarized phases of liquid *He. The variational wave functions include semioptimized
two-body, three-body, and backflow correlations. Expectation values are calculated using Fermi-
hypernetted-chain summation techniques. The elementary diagrams are summed with the scaling
approximation developed earlier for Bose liquids. Results of calculations using the interatomic po-
tential of Aziz et al. from equilibrium to melting density are reported. The calculated equation of
state, sound velocity, and liquid structure function for the normal phase are in close agreement with
the experimental data. The three-body and backflow correlations are found to be important in
achieving this agreement with experiment. The energy of the spin-polarized phase is found to be
above that of the normal phase over the entire liquid density range, and it is found that the backflow

correlations are necessary to achieve this result.

I. INTRODUCTION

The ground state of liquid *He has been extensively
studied in the past decade. Starting from a microscopic
interaction between helium atoms one attempts to explain
the known zero-temperature equation of state and liquid
structure function. In addition, the microscopic theory
should show that the energy of the spin-polarized liquid is
above that of the normal liquid in the density region over
which the liquid exists. The methods developed in this
paper and the calculations presented achieve these goals.

Basically two approaches have been adopted to calculate
the ground-state properties of liquid *He. These are the
variational and the Green’s-function Monte Carlo
(GFMC) approaches. The variational calculations use ei-
ther MC (Refs. 1—3) or the integral-equation methods* to
calculate binding energies. Recent variational calcula-
tions*! have shown that the Jastrow-Slater wave function,
containing only pair correlations depending upon distances
r; is not adequate. The two-body backflow and three-
body correlation have a large effect on the binding energy.

The ground state of Bose liquid “He can be calculated
almost exactly with the GFMC method.%” The results ob-
tained with the HFDHE?2 interatomic potential of Aziz
et al.® are in very close agreement with the experimental
energies of the liquid and solid “He over the density range
p=(0. 36—0.6)0‘3, where 0=2.556 A is the Lennard-
Jones unit of length in helium liquids. The density of
liquid 3He has the range p=(0.277—0.4)0 >, and we ex-
pect the Aziz potential to provide a good microscopic
Hamiltonian. In all the calculations reported in this work
this potential has been used.

There are practical problems associated with the appli-
cation of GFMC technique to the ground state of Fermi
liquids.* Owing to these the only available result is an
upper bound of approximately —2.2 K to the binding en-
ergy at equilibrium density against an experimental value
of —2.47 K. The best variational MC energy' obtained
thus far with wave functions containing three-body and
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backflow correlations is ~1.9 K; moreover, variational
wave functions that do not include the two-body backflow
correlation give a lower energy for the spin-polarized
liquid than for the normal liquid.> Attempts have been
made to improve upon the variational results by using
correlated basis perturbation theory® and it has been sug-
gested'® that a spin (55 ;) correlation may be responsible
for bringing the energy of the normal state below that of
the spin-polarized state.

In two preceding papers on Bose liquid ‘He we
developed an accurate integral-equation method based on
the hypernetted-chain technique and the scaling approxi-
mation for elementary diagrams (HNC/S), and used
semioptimized pair correlation f,(r;;) and a more general
three-body correlation than that used in MC calcula-
tions.’!> The results obtained in these calculations are
within 3% of experiment and the GFMC results. The
same correlation functions were used more recently to
study the energies of droplets of liquid “He containing up
to 728 atoms by the variational MC method.!* The results
of these MC calculations are within ~49% of the presum-
ably exact GFMC energies, and they confirm the HNC/S
results.

In the present work we develop the FHNC/S method,
which generalizes HNC/S to Fermi liquids, and use it to
study the ground-state properties of liquid *He. Semiop-
timized f,(r;;) is used, and the “box terms” in the Monte
Carlo"!® three-body f 3(Ty,Ta) and backflow fi(r;;)
correlations are removed. The variational energies de-
crease to approximately —2.35 K at equilibrium density,
and the calculated equation of state E(p) and structure
function S(k) are in close agreement with experiment.
The energy of the spin-polarized liquid is above that of the
normal over the liquid density range, and it is found that
the backflow correlations are important to achieve this re-
sult.

Section II deals with the Jastrow-Slater calculations
with the FHNC/S method, the three-body and backflow
correlations are treated in Secs. III and IV. These sections
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also give results obtained with wave functions for which
MC results are available, to test the accuracy of the
FHNC/S method.

II. FHNC/S METHOD

The Jastrow-Slater variational wave function of a Fermi
liquid is defined as

W:Hfz(ru)q) ,
ij

-,.
i<j

2.1

where @ is the Fermi-gas wave function and f,(r;;) is a
two-body correlation function. The two-body distribution

function g (r;;) is obtained from the FHNC equations'” as
g(r,-j)=gdd(r,-j)+2gde(r,-j)+gee(r,-j) . (2.2)

The g,,(r;;) give contributions to g, and xy =dd, de, and
ee denote terms in which neither i/ nor j is exchanged, j is
exchanged, and both i and j are exchanged, respectively.
The g,, are given by

gdd(rij)‘_‘f%(rij )exp[ Nga(rij)+Eaq(rij)] , (2.3a)

(2.3b)

8ade (7ij)=8aa (rij [ Nae (rij) + Ege (ryj)] ,

Nua(rij) =T ((8aq +8de —Naa —Nae — Dix (8aa — Dij) +T((8aa —Nag — i ,(8ae )ij)
Nae(rij)=T((843 +8de —Naa —Nae — Vi +(8ae Jkj)+T((8aa —Naa — Vi »(8ee )ij) »

Nee(rij)zr((gde +8ee —Nae — Nee )ik ’(gde)kj)+r((ged‘“Ned)ik r(gee)kj) ’

Ncc(rij)=r((gcc“Ncc +1/V)ik +(8ee )kj) ’

where T is the convolution integral defined as

Doy ) =p [ drx(rg p(ry;) (2.8)
and p is the density of atoms.

There is no analytic method available to evaluate the
sum E,, of the elementary diagrams. In the FHNC ap-
proximation E,, are set to zero, while in the FHNC/4 ap-
proximation'® they are evaluated from four-point dia-
grams with generalized bonds. Some of these are shown
in Fig. 1. The dashed lines in these diagrams represent a
844 — 1 bond, while a half-dashed, half-solid line represents
a g4 bond and a solid line denotes g,.. Thus the direct
and exchange ends of bonds are, respectively, denoted by
dashed and solid lines. We cannot have diagrams in
which the exchange ends of two bonds touch at a point.
The g.. bonds are denoted by lines with arrows depicting
the direction of exchange loops. The g.. bonds must form
closed loops, or contribute to E,. The solid points
represent the coordinates of internal points, and we have
to integrate over them. Open circles represent T; and T,
or external points in general. The contribution of diagram
(1.4) of Fig. 1 to Eg, 4 is, for example,
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gee(rij)'—_gdd(rij)
X —%Lz(r,-j)+Nee(r,-,)+Eee(r,-j)
+[Nde(rij)+Ede(rij)]2 , (2.3¢)
L(rj)=—1(kprj)+V[Nec(rij) +Ece(r;j)] . 2.4

Here v is the spin degeneracy, k is the Fermi momentum,
and I (kpr) is the familiar Slater function

H(x)=3j,(x)/x . (2.5)

N,, denote sums of nodal diagrams, E,, denote sums of
elementary diagrams, and the composite diagrams are gen-
erated by Egs. (2.3). The functions N, and E_. denote
sums of diagrams in which i and j are exchanged in an in-
complete exchange loop. It is convenient to define a dis-
tribution function g (7;;),

(2.6)

whose contribution is contained in the first term of
gee(r ij ). . .

The sums of nodal diagrams are obtained from the fol-
lowing integral equations:

8cc(rij)=8aa(rij)L (ri) /v,

(2.7a)
(2.7b)
(2.7¢c)

(2.7d)

A IR S
Eggqr) = | 0+ 0 >0+ i
o o o R o o
(1.1) (1.2) (1.3)
9o se R ]
Epqlr) = | s \{\1 + +...
(1.4) (1.5) ° (1.6) ;
Egealr)= | X | + + 1 o e
(1.7) (1.8) (19)
E 4r) = < + e

’(uo) / (1.11) \

FIG. 1. Some E, elementary diagrams. Black dots and open
circles represent internal and external points. Various bonds are
explained in the text.
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Ege o l.4)=p2f(gdd — Dix(8aa — 1)it(8aa — D
X(8aq — l)jk(ged )ﬂd3rkd3r1 . (2.9)

The three-particle distribution function can be expressed
as

g3(rij»"jk’rki)= zgxy(rij )gy'z(rjk )82 x(rxi)
exch
X[l+Ax"y“z"(r,'j,rjk,rki)] , (2.10)
where A, is the sum of Abe contributions'” with ex-

change patterns denoted by x", y"', and z"' at the vertices i,
Jj, and k. The sum over exchanges in (2.10) is over all al-
lowed combinations of x,y,z,x’,...,z" which form
correct exchange patterns. In the FHNC approximation
the Abe contribution is neglected; the g5 is then a sum of
31 terms.* In the FHNC/4 approximation'® 4 is approxi-
mated with A4, , the contribution of four-point Abe dia-
grams. Some of these are shown in Fig. 2, and for exam-
ple, the contribution of diagram (2.2) is

Adaa42.2)=p [ (s —Dit(8aa — 1)(ea ad’r; .
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.
AN
e—m--0

° (2.4)

Mo o o ‘o
(2.5) (2.6) (27) (2.8)
FIG. 2. Some A, diagrams in the Abe expansion of the

three-body distribution function.

where T is the Fermi-gas kinetic energy (i.e., V2® term)

3 #

TF=————~k (2.13)

W and U contain contributions from the interaction and
the V2 operating on the f,’s

2 2
2.11) w="2 [a'rgn) oin—2- ff" l (2.14)
The energy of the liquid can be calculated in different moJ2
ways by integrating the kinetic-energy terms by parts.'® I YT
The three commonly used forms'® are E;z (Jackson- Ue=— mP fd r12d°r1383(r12,723,731)
Feenberg), @ Ecw  (Clark-Westhaus), and  Epg = .
(Pandharipande-Bethe). The Epg is obtained from Vifo(rin) Vifa(rs) 2.15)
VAJ1f2)®, and is given by falrin)falris) ’
Epg=Tp+W+U+Wr+Up, (2.12)  and W and U give contributions from V£,V terms,
]
7 3 1.,
We=——p[d rg“mf—le : (2.16)
UFI—_—P fd3’12d r”f( f (ri)lsF 12 Fis
X {8ee(r13)8ay (712)[8ay(r32) — 1 +8ay (732 )Agaa 1+ 8aa(713)8cc (723 )8cc (31 M1 +Agaq)} .17

where the /5 and !’ denote df,/dr and d//dr. A sum of y and y’ is implied, and, for sake of brevity, only 444, terms are

included in Eq. (2.17). ~
The Ey is obtained from [ V(][ f2)®1%
Ecw=Tr+Wcw—U,

2 (f3)°

Wew=
f3

b

3 £
pfd rg(r) v(r)+ -

(2.18)

(2.19)

and the E)g. is obtained from a combination of VX[ f,)®*, [V(]f2)®]* and the VX[ f.)®. Itis given by

Ep=Tr+Wp+Ws+U, .
The form of Wj is identical to the energy of the Bose liquid
# V-

1 3 _
Wy=1p [d’rg(r) |v(r) > 7,

Wy=—

7 ,
mfvifd3r((g,,d—1){[1—vuvc,_,+Ecc)]\721+(1 2} —vgagE V) ,

(2.20)

(2.21)

(2.22)



ﬁz ’ A A
Up=——L [dripd’ri3[(gaa— D)2l (8aa — DI')1s@ee(ras)Pra Fis+ -+

4m 2

where the ellipsis includes the Abe contribution. The
three-body term U in the Epg and Ecy is large (~1 K at
equilibrium pg), while the Uy in Ejr is very small
(~0.004 K at py). Thus Epg and Ecy are sensitive to the
g3(rij,rjk,ri;) while Ejg is not. However, Ejr and Ecw are
very sensitive to the two-body g(r), while a cancellation
between — V2f, and vf, makes Epg less sensitive to errors
in g(r).

If we sum over all elementary diagrams these three ex-
pressions will give the same expectation value. However,
at the FHNC or FHNC/4 level of approximation they
give different energies as illustrated in Fig. 3 and Ref. 16.
The distribution functions (calculated with the FHNC/S
equations are shown in Fig. 4. We note that g, and g,
are quite small, and so the elementary and Abe diagrams
should be dominated by the g4y —1 bond. The diagrams
formed with g4y — 1 should approximately satisfy the scal-
ing properties discussed in Ref. 9.

In the present work we calculate the elementary dia-

E(K)

plo=3)

FIG. 3. Comparison of JF, PB, and CW energies in the
FHNC/0 (dashed curve) and FHNC/S (solid curve) approxima-
tions with MC results using the McMillan f for normal *He.
Dotted-dashed curve represents the results of FHNC/S calcula-
tions with “optimized” f5.
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(2.23)

f

grams (1.1) of Fig. 1 and (2.1) of Fig. 2 with the bond
g(r)—1. In this way all four-point diagrams linear in gg,
and g, are counted correctly. Let E, and 4, be the con-
tributions of these diagrams. The scaling approximation
is then taken to be

Egu(r)=(145)E, , (2.242)
E,,(r)=0 for xy+dd (2.24b)
Agad 7ijs s i ) = (145 /2)A4(rij Ve, P ) (2.25a)
Ay, =0 for x,y,z#d,d,d . (2.25b)

The energies Epg, Ejg, and Ecy are calculated as a func-
tion of the scaling variable s, which is determined from
the condition

Epp(s)=Ep(s)=E(FHNC/S) . (2.26)

The Epg increases, while Ejr and Ecw decrease as s in-

creases. In normal liquid *He the Ecw(s) is very close to

the E(FHNC/S), but in the spin-polarized liquid Ecw(s) is

a little above the E(FHNC/S) as illustrated in Fig. 5.
Results of calculations with the pair correlation

far)y=exp[ — (b /r)’] 2.27)

are shown in Tables I and II and Figs. 3 and 5. The
FHNC/S energies are in close agreement with the avail-
able MC results. The success of this FHNC/S method
may be partly due to the fact that g4, and g,, tend to can-
cel each other (Fig. 2), and hence there are substantial can-
cellations between elementary and Abe diagrams with gg,
and g, bonds. Thus our approximation of diagrams hav-
ing two or more g4 ,8. bonds may not be too relevant. In
addition, the scaling equations (2.24) and (2.25) will
correct for the neglect of exchange elementary and Abe di-
agrams.

The problem of calculating the optimum f,(r) for the

gee

| | L
04 10 20 30

r(o)
FIG. 4. Typical g4, ga, and g.. functions at p=0.2770~> in
the Jastrow approximation.
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FIG. 5. Results of Jastrow calculations for fully polarized
3He. Top and lower dashed curves represent the Ecw energies in
FHNC/0 and FHNC/S approximations, respectively. Upper
and lower solid curves represent the E;r and Epp energies in
FHNC/0 approximation. Middle solid curve represents the
FHNC/S energies obtained by equalizing E;r(s) and Epg(s). All
calculations are carried out by using McMillan’s f.

Jastrow-Slater wave function has been resolved.!* Howev-
er, we have used here a simpler method. The f,(r) in a
Bose liquid is characterized by its asymptotic behavior

folr>w)=1—a/r*. (2.28)

The method of obtaining f,(r) with this asymptotic
behavior, by minimizing the energy is given in Ref. 11.
We obtain with it a family of f,(r,a) by minimizing the
mass-3 Bose liquid energy, and treat o as a variational pa-
rameter for the Jastrow-Slater calculation of Fermi liquid
3He. The energies obtained with the f,(r,a) for the nor-
mal liquid are shown in Fig. 3 by the dashed-dotted curve.
They are a little below those obtained with the McMillan
Jfa(r) of Eq. (2.27). However, in the case of spin-polarized
liquid the McMillan f,(r) with b=1.120 gives energies a
little lower than the f,(r,a). We note that in Jastrow
theory the normal liquid *He is very underbound and the
spin-polarized liquid is energetically favored.

TABLE 1. Results of FHNC/S calculations for normal *He
in Jastrow approximation. The correlation function (2.17) was
used with b=1.150. MC values E(MC) are from Ref. 1.

Scaling factor E (FHNC/S)

p(a_3) N EPBZEJF ECW E (MC)
0.237 2.86 —1.37 —1.34 —1.401+0.01
0.277 3.20 —1.08 —1.07 —1.08+0.03
0.300 3.34 —0.76 —0.74 —0.70+0.05
0.330 3.60 —0.16 —0.14 —0.10+0.05
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TABLE II. Results of FHNC/S calculations in Jastrow ap-
proximation for polarized ‘He using McMillan’s f, with
b=1.120.

Scaling factor E (FHNC/S)

p (6™ s Epp=Ejx Ecw
0.237 3.80 —1.88 -1.72
0.277 3.90 —1.85 —1.68
0.300 3.96 —1.66 —147
0.330 4.02 —-1.21 —1.00
0.360 4.10 —0.49 —-0.25

III. THREE-BODY CORRELATION

In this section we use the FHNC/S method to calculate
the binding energies with the wave function

\I/=1—If2(rij) H f3(r,-j,rjk,rk,-)<l> . (31)
i zifﬁk

Previous studies"*!> have shown that the dominant
three-body correlations in liquid *He are of the form

(3.2a)
(3.2b)

F3(ry,rie,ri ) =expl — $q(ry,ri,rii)1

q(rijrrjk,rki)=2§(rij)§(rik )(',';'j"/'\ik) ’
cyc
where 3, represents a sum over the three terms obtained
by replacing ijk with jki and kij, and 7;; and 7 are unit
vectors.

The FHNC equations for the distribution functions
with this wave function are given in Ref. 4. They are ob-
tained by replacing N,, +E,, in Eqgs. (2.3) and (2.4) by
Ny +E,y +C,,, where Cy, are given by

Caa(rij) =T((8aa +284e )it >(8aa i) » (3.3a)

Cae(rij)=T"((8ee +8ae )ik »(8aa Jij )+ T((8ae i» (8ae )xs)

(3.3b)

Cee(rij )= F((dee +8de )ikr(gde )kj) ’ (3.3¢c)

Coe (rij) =T((8ec )ik (8ec )ij) » (3.3d)
r((X)iky(Y)kj)=Pfd3’k[f§(rij’rjk’rki)_1]

XX(ry)Y(ry;) . (3.3¢)

The C’s are new diagrammatic elements dressed with
chains due to f3. The form of Egs. (2.7) for N, is not af-
fected by the presence of f;.

The three-particle distribution function is now given by

2
83(rijs i i ) =f3(rijs i s i)

X ngy(rij )gy’z(rjk )gz’x’(rki)

exch

X[ 14 Ayryryr (i i 7 )] - 3.4)

Following the method outlined in Ref. 12, we write the
sum of elementary and Abe diagrams as
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r(o)

FIG. 6. Comparison of two-body distribution function g(r)
for different choices of the wave function. Dashed, dotted-
dashed, and solid curves represent, respectively, the distribution
function with Jastrow (J), Jastrow plus three-body (J + T, and
Jastrow plus three-body plus backflow (J+ T+ B) wave func-
tions.

E, =E% +E., , (3.5)

Ay =A%, +Ay, , (3.6)

where E¢ and A? are sums of diagrams having only g,
correlations, while E' and 4’ must have one or more ex-
plicit three-body correlations. The pair distribution g(r)
(Fig. 6) does not change significantly by the inclusion of
f3. Thus the approximations (2.24) and (2.25), with scal-
ing factor s determined from the Jastrow-Slater calcula-
tion, are used for E? and 4%. Ej; and Ajy are approxi-
mated by the sum of four-point diagrams'? Ej;, and
Ajigs and the Ef, (x,y#d,d), Ay, (x,y,z5#d,d,d) are
neglected. The distribution function g(r) given by Eq.
(2.2) is used in the calculation of E* and 4’ so that four-
point diagrams with one g,, (xys~dd) are counted correct-
ly.

The PB and CW energies with wave function (3.1) de-
pend upon four- and five-particle distribution functions.

Hence only the Ej is calculated,
Ep=Tr+Wp+W4+Us+Ur, 3.7)

where Uy is the kinetic energy due to f3,
o
Ur= —1-6%’— fd3r,-jd3r,-kg3(r,j,rjk,rk,- WVWigq (rijsTjksTii) -

(3.8)

The Tr and Wy are given by Egs. (2.13) and (2.21), but
there are minor changes in the equation for Wy and Uj.
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TABLE III. Comparison of MC and FHNC/S energies in
J + T approximation.

MC fix Present fix

p (0™ E (FHNC/S) E \MC) E (FHNC/S)
0.237 —1.67 —1.68+0.02 —1.73
0.277 —1.49 —1.61£0.03 —-1.70
0.300 —1.14 —1.341£0.04 —1.53

The E, in Eq. (2.22) for W4 must be replaced with
E..+C,. and a factor f3 (rijs?jksTki) should be inserted in
the Uy integral [Eq. (2.23)].

In order to compare our results with the variational MC
results we have calculated the E (p) with the wave func-
tion of Ref. 1. Here the two-body correlation has the
McMillan form given by Eq. (2.27), and

2
—r r—r
vV Arexp|— - 2 forr<ry
§(r)= Wy rp (3.9)
0 for >rp . .

The values of parameters b, A,, r;, w,, and rp are taken
from Ref. 1. Results of our FHNC/S calculations for
E(p) are compared with the MC results in Table III. The
agreement is reasonable but not as good as in the Jastrow-
Slater case. It appears that the neglected E,:y, and A,ﬁyz di-
agrams may have contributions of ~0.1 to 0.2 K with the
&(r) of Ref. 1.

The last column of Table III gives the energies obtained
after removing the box factor from the £(r) function (i.e.,
rp— o ),

2
r—r,

E(r)=v'Ar exp

(3.10)

(2]

The optimum values of A,, r;, and w, were varied to mini-
mize the FHNC/S energy at p=0.2770 3 and found to be

A,=—0.75, (3.11a)
0,=0.450 , (3.11b)
r,=0.850 . (3.11c)

) 'R B S E— i -
r & (r) Monte Carlo
0.8 4

06} —
r €(r) Present

0.4k -

| | | | |
04 08 1.2 116 20 24

r(o)
FIG. 7. Comparison of the present and MC £(r).
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TABLE 1V. Calculated energies of normal *He in K; (T} and ( V') denote the expectation values of
kinetic and potential energies. The symbols J, J+ T, and J + T + B represent the results of calculation
with wave functions (2.1), (3.3), and (4.2), respectively. All the calculations have been performed with

the “optimized” correlation function f.

p (6™ v s (T) (V) E (var)
0.237 J 10.71 —12.17 —1.46
J+T 3.14 10.40 —12.19 —1.79
J+T+B 9.89 —12.11 —2.22
0.277 J 13.48 —14.76 —1.28
J+T 3.52 12.97 —14.80 —1.83
J+T+B 12.28 —14.64 —2.36
0.300 J 15.22 —16.28 —1.06
J+T 3.82 14.55 —16.33 —1.78
J+T+B 13.77 —16.12 —2.35
0.330 J 17.69 —18.29 —0.60
J+T 4.13 16.76 —18.31 —1.55
J+T+B 15.86 —18.03 —2.17

0.360 J 20.41 —20.28 0.126
J+T 422 19.21 —20.25 —1.04
J+T+B 18.16 —19.86 —1.70
0.384 J 22.69 —21.99 +0.70
J+T 4.59 21.21 —21.91 —0.70
J+T+B 20.09 —21.43 —1.34

The dependence of these variational parameters on the
density is found to be negligible within the accuracy of the
present work. The energies obtained with this &(r) are
much lower than those with the &(r) of Ref. 1. The two
&(r) are plotted in Fig. 7; the &(r) of Ref. 1 appears to be
too large at small r. The present f3(r;,r,r;) is much
weaker and hence the approximations of 4* and E* should

be less critical for the present calculations than for calcu-
lations with &(7) of Ref. 1.

The results of calculations using the semioptimized
Sa(rij) are given in Table IV. The optimum values of A,,
w,, and r, do not change significantly when the McMillan
fa(rij) is replaced by the semioptimized f,(r;;). [The re-
sults obtained for the spin-polarized liquid with the

TABLE V. Calculated energies for polarized *He in K. All the symbols have same meaning as in
Table IV. McMillan form (2.17) was employed for the Jastrow correlation function with b=1.120.

p (0™3) \/ s (T) (V) E (var)
0.237 J 3.80 10.06 —11.94 —1.88
J+T 10.01 —12.02 —2.01
J+T+B 9.86 —11.91 —2.05
0.277 J 12.40 —14.25 —1.85
J+T 3.90 12.43 —14.49 —2.06
J+T+B 12.24 —14.33 —2.09
0.300 J 14.06 —15.72 —1.66
J+T 4.00 13.91 —15.85 —1.94
J+T+B 13.69 —15.65 —1.96
0.330 J 16.15 —17.36 —1.21
J+T 4.02 15.91 —17.51 —1.60
J+T+B 15.62 —17.26 —1.64
0.360 J 18.39 —18.88 —0.486
J+T 4.10 17.96 —19.03 —1.07
J+T+B 17.62 —18.73 —1.11
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McMillan f,(r) are given in Table V and displayed in Fig.
11.] The optimum values of the triplet parameters were
found to be

A,=—0.6, (3.12a)
0, =0.450 , (3.12b)
r,=0.850 . (3.12¢)

The three-body correlations have a larger effect on the en-
ergy of the normal liquid, but in a Jastrow-plus-triplet
theory the spin-polarized liquid has lower energy as was
noted earlier.?

IV. BACKFLOW CORRELATIONS

Momentum-dependent two-body correlations, called
backflow correlations, were introduced in the variational
wave function of liquid *He in Ref. 4 to generate the
Feynman-Cohen? backflow. Following Ref. 1 we take it
of the form

frli,)=explin(ry)Ty; [K()—K()]} , (4.1)
which is identical to that in Ref. 4,
Frli, D=1 4in(ry) Ty [K()—K()] , 4.2)

when 7(r) << 1. K(i) are operators that operate on the ®
in the manner prescribed below.

|

V=TI || TT f3trpriori)
ij ij,k perm | i,j
i<j i<j<k i<j

> | TTexplin(r)r; ( Kni— En(j)] (—DFexp
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The variational wave function is
V= ([Tf20r) | TT f3ririesria) lnfkuj) P,
ij ik ij
i<j i<j<k i<j
(4.3)

and the antisymmetrized Fermi gas ® contains a sum of
terms

o= (—1)fexp , (4.4)
perm

i Kn(i)T;
i

where En( ;) is the momentum state occupied by particle i
and P is the number of pair exchanges required to reach
the state characterized by n (i), from the simple product
state @ having n (i)=1,

Dp=exp |i), K;T; 4.5)
i
The “operators” K (i) operate on the @ as
K(i)exp izin(i)'?i) =K, (€xp fZEnm'f'f ] .
i i
(4.6)

The K(i) in ¥* must operate on the ®*. Thus the varia-
tional wave function of Eq. (4.3) is interpreted as

4.7

izin(i)'?i ]
i

Expectation values with this wave function can be more conveniently calculated by antisymmetrizing only the left-

hand side,

(vjo|w) _ Jo [HfiL] [Hf3] [Hfz]O {Hfz] [Hf;] [Hf,f]cpndf

(¥|¥)

where ff operates to the left and f& to the right. Di-
agrammatic cluster expansions are obtained by expanding
the many-body integrals in terms of the quantities
f%(r,-j)— l,fg(r,-j,rjk,rk,-)— 1, and fy(i,j)—1, and canceling
the disconnected and reducible pieces of the numerator
against the denominator. The cancellation of the reduci-
ble diagrams may not be exact for wave functions contain-
ing backflow correlations, as discussed in Ref. 4.

It is difficult to sum chains of backflow correlations. In
Ref. 4 the effect of backflow correlations on only dressed
two- and three-body clusters was considered. Compar-
isons with MC calculations suggest that it is not a bad ap-
proximation, and hence we continue to use it in the
present work. The formulation of Ref. 4 needs to be
modified to use fj of the form (4.1). This form of f; has
great advantages in MC calculations.

We first consider the effect of f; on the distribution

o [T ) (1173 ] (1173 [T0AF @

, (4.8)

r

functions. The large direct diagrams, which come from
the term in ®* and have n(i)=i, are not affected by f%.
In these diagrams

< i

(8.1)

(8.3) (8.4)
FIG. 8. As explained in the text.



3778

SR8, j)=exp[ —in(ry) Ty (K; — K)1=1/fRG. ) ,
(4.9)

and thus
[l'[fEL(i,ﬂ ] [Hf,{‘(i,j) ]=1

in direct diagrams. This fact, together with small magni-
tude and range of 7(r) probably make the present treat-
ment of the effect of f; on the distribution functions and
energy adequate.

In Jastrow theory the two-body exchange diagram (8.1)
of Fig. 8 gives the following contribution to g,,:

(4.10)

> .8aalr; )exp(if,--f’,-j )cxp(iEj-f},-) , (4.11)
k,o

which upon summing over spins and momentum states,

Yy 2 eir'_r'=l(kFr) ,

(4.12)
Nkskf

becomes —ggy(r)I%(kgr)/v. This exchange contribution
comes from the term in ®* in which n (j)=i, n(i)=j, and
J

— 2084 (rij M (kpr;; )l'(kF’ij)fcosei’ikﬂ(’ik )84a 7k )(gdd(rjk)_l)fgd3rk="‘gdd(rij) |ilz(k1~‘rij)

Zo(riy)=p [ cosbirin(ry)ga(ra gaa(rix ) — 111 3d%ry .

Diagrams with fj correlations between jk double this con-
tribution. We can include it in the contribution of dia-
gram (8.1) by replacing I/(kpr) with [(kpr)(142Z(r)).
We also include the contributions of diagrams (8.2) and
(9.2) and many others by replacing /(kgr;;) by I(kgt;;) in
Eq. (2.4) with

K
iéﬁj | é@”]
(2.1) (9.2)
k K
|%v\w j im i
(9.3) (9.4)
k| M k
i i i i i
(9.5) (9.6) (97)
A\
i i
(9.8) (9.9)

FIG. 9. As explained in the text.
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the other n(k)=k. We now want to add the contribution
of the diagram (8.2), in which the wavy line represents
(f,:Lf,f—- 1), to (8.1). When i and j are exchanged we have

Rk pfRG, H=expl2in(ry))Ty(ki—k;)] . 4.13)
Thus the sum of (8.1) and (8.2) is obtained as

k,o

= —gdd(r,'j )Iz(kpt(rij))/v ,
t(ry=r[1429(r)] .

The I(kgr;;) in the FHNC/S equation (2.4) is replaced by
I(kpt(ry)). In this way the contribution of many dia-
grams having f; correlations, of the type illustrated in
Fig. 8, are correctly summed.

Some of the diagrams in which three particles are in-
volved in exchange with f; correlations are shown in Fig.
9. These diagrams have rather small contributions which
are calculated approximately with expansion (4.2). The
frEfR_1 in diagram (9.1) is in(r,-k)f',-k'(ﬁ,‘—l—('j), up to
order 7(r). Thus the contribution of (9.1) is given by

(4.14)

rw Zy(ry), (4.15)
(4.16)
r
t=r[1429(r)+2Z(r)], 4.17)
where
Z(r)=pfcos€,~r,~kn(r,-k)
X {8aa (rit [8aa rji ) +8ae (rjx )]
+8ae (rit )8aa(rjx) ) f3d°rx . (4.18)

The terms involving the product g,484. in the above equa-
tion can be understood following the discussion of dia-
grams (9.5) and (9.6) given later on.

Contributions of diagrams (9.3)—(9.9) cannot be
summed by modifying the Slater function /(x). They give
new FHNC elements* denoted by D,,, which must be add-
ed to the three-body elements C,,. Diagrams (9.3) and
(9.4) contribute to D, as follows:

Ded(ij)=2pr,-j77(r,-j)
X f A3l (rig )gee (ria )c080;8aa (rjx ) f3
+2pfd3rklp(r,~k )8ce (Pik)

X cosO 7k (7jx )8aa (T ji 3, 4.19)
where
ol(kgt(r))
L(n= P (4.20)
Two types of diagrams contribute to D, (ij),
D, (ij)=D,e(ij);+D,.(ij), . 4.21)
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The D, (i), is twice the contribution obtained by replac-
ing 844(rjk) by 84 (ry;) in Deg(ij). It sums diagrams of
type (9.5) and (9.6). The (f,fok —1) in diagram (9.6) is
given by

in(rp )T [(Ke—K)— (K — K]+, 4.22)

where thi ellipsis represents terms in 7% and higher, and
the f:];k'(k_,f—l_(’i) part of it contributes to the D,,. The
Tjx'(k;—k;) part has cos of the angle j of triangle kjl,
and its contribution is contained in the chain formed by
the Dy, (k,j) cluster, containing jk/ and the ee link ki. The
D,(i,j), is given by

Dee(i,j)2=4plp(r,~j)fd3rkc080ir,-k77(rik)
chc(rik)gcc(rkj)fg .

(4.23)
]
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The wavy line in these diagrams is
in(ry) T (2K, — K —K;) (4.24)
the f’,-k'Ei part is summed by the substitution

—

I(kgr)—I(kgpt), the Ty k; part gives the contribution
(4.23), and the Tk term is included in D,. The factor
4 in (4.23) comes from summing over the diagrams having
ik and jk wavy lines, and exchanges in both directions.

The three-body elements (9.8) and 9.9) contribute to D,,.
The correlation in (9.8) is given by (4.24) and the relevant
term is T 'k, while that in (9.9) is given by

in(ry Ty (ki —K;— K +Ke) (4.25)

where we assume that particle i goes in state /. The D,

includes contributions from the f’,-,--(l? j+Ek) term. We
obtain

D, (i,j)= —_‘%pfd3rkgcc(r,-k i (rig )cosOy L, (ri; ) 8aa (rij) — 1]

+ =2 [ & rlgaatri) 1 rideostyrym(ry e

after subtracting the contribution of separable diagrams.*
These D,,, sum all dressed three-body elements linear in 7.
Contributions of order 5 (or higher) to three-body ele-
ments are not summed exactly in the present work. The
contributions to clusters having four or more particles

0.4

-08r-

E(K)

-2.0

-2.4f-

0.32
-3)

0.36
plo

FIG. 10. Comparison of the calculated energies for normal
3He with experiment (Refs. 21 and 22), Green’s-function MC
(Ref. 5), and variational MC (Ref. 1) (unlabeled points with error
bars) calculations. Symbols J, J + T, and J + T + B are explained
in Fig. 6.

(4.26)

I
connected by exchanges for f} correlations are also not ex-
actly treated.

The JF energy is given by

EJF=TF+WB+W¢+U¢+UT+TB+T]‘ y (427)

-0.21~ —

-0.4 ]

-0.6— —

-0.8— —

E(K)

0.32
plo-3)

0.36 0.40

FIG. 11. Calculated polarized *He energies. Dashed curve
representing the normal *He energies is drawn for comparison

purposes.
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FIG. 12. Calculated liquid structure function S(k) (solid
curve) compared with experiment. Triangles represent the data
from Ref. 23 at T=0.41 K and circles represent the data from
Ref. 24 at T=0.76 K.

and the terms Ty to Uy are discussed earlier. W; is given
by

# p
W¢~_4m v

X fd3r{gdd[l_v(Ncc +Ecc +Ccc +Dcc)

X Vil(kpt)+171+vN, V1] .

(4.28)

There are minor modifications in U, of Eq. (2.23): (i) we
replace / by /,, and (ii) insert f % in the integral. The ex-
pressions for Tr [Eq. (2.13)], W3 [Eq. (2.21)], and Uy [Eq.
(3.8)] are unchanged; these quantities change only via the
changes in the distribution functions.

The T represents the JF kinetic energy of the backflow
correlation. Let B denote the product of pair and triplet
correlations in the ¥ [Eq. (4.3)], let F denote the product
of &, and let F T denote the product of f#£. We then have

400

300+

200+

C(p) (m/sec)

100~ i

L | L L |

L

0.28 032 0.36
plo=3)

FIG. 13. Sound velocities C(p) in m/sec for normal *He

(solid curve) and polarized *He (dashed curve). Dots represent
the experimental data from Ref. 21.
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TB=_—8%{ (@*(VIFNB | ¢) + (¥ | B(VIF)®)

—2({®*(V ,F")B|B(V,F)®)}/(¥|¥) .

4.29)
The Tk term comes from F T;&F,
# (¥|B(V,F)V,®)—((V,®*)F'B|B(V,F)®)

K= m (¥|w)

(4.30)

In Ref. 4 the dressed-cluster expansion is used to calculate
terms analogous to Tp and Ty in the PB energy expres-
sion. It was found that reasonable results are obtained by
retaining only the two-body terms. Hence we calculate T}
in that approximation as follows:

2
Tp= ﬁ;,:fpfd3r(n'2r2+21m'r+3n2)[gdd(r)+gde(r)]
ﬁz 3 " ’
—-zzpfd r(n"r +47")8ec (NI (1) (4.31)
7k}
Ty~ om pfd3r(1]'r+317){g,,d(r)+gde(r)] . (4.32)

The 7(r) is parametrized as in Ref. 1, except for the box
term (necessary in MC calculations) which is removed,

r—ry

(4.33)

7(r)=Ayexp
Oy

The optimum values obtained at p=0.2770 3 for the nor-
mal (polarized) *He liquid are the following:

A,=0.2(0.05) ,
r,=0.8(0.8)
0y =0.375(0.375) .

(4.34)

These values are used at all densities, and the calculated
energies are shown in Tables IV and V and Figs. 10 and

T T rr 11 rrrr & T T

o8k _

0.7+

0.6t

0.5+

0.4

0.3

0.2+~

O.1-

/
/
A0 U WU WU N W WA S W N G S S U N S S N

1.0 15 2.0 25 3.0
r(o)
FIG. 14. Distribution function of normal *He for parallel
spins g, and antiparallel g,, at p=0.2770 .
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q(r)

r(c)
FIG. 15. Comparison of the two-body distribution functions
for the normal (solid curve) and polarized (dashed curve) *He at
p=0.277073.

11. The calculated E(p) of the normal liquid is in fair
agreement with the experiment, and a little below the
GFMC upperbound.’ The uncertainties in the present cal-
culation are of the order of 0.1 K, and so the differences
between the present results and either the GFMC or exper-
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imental results cannot be meaningfully analyzed. A MC
calculation with the present wave function would be in-
structive. The liquid structure factor (Fig. 12), and the
sound velocity (Fig. 13) are in good agreement with exper-
imental data. Best of all, the normal liquid has lower en-
ergy than the spin-polarized liquid. The backflow correla-
tion has very little effect on the E(p) of the polarized
liquid and thus makes the normal phase stable. This
correlation is meant to represent the k (relative momen-
tum) and / (angular momentum) dependence of the pair
correlation. The f,(k,I) was studied in a crude approxi-
mation by Pandharipande and Bethe,” who find that the
k and I dependence is strongest for /=0. The /=0 corre-
lations are much different from the average correlation in
1540 states, and also have significant k dependence. The
polarized liquid has no /=0 pairs due to antisymmetry,
and thus it is not surprising that the backflow correlations
have little effect on this phase. The calculated pair-
distribution functions are given in Figs. 14 and 15; the
difference between g,, and g,, in normal liquid is substan-
tial, but that between the total g in normal and polarized
liquids is relatively smaller.
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