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The recursion method has been used to calculate the d-band density of states for a cluster simu-
lating amorphous Zr4Cus,. Normally these calculations are performed using energies and overlap
parameters obtained by detailed fitting of a linear combination of atomic orbitals scheme to existing
crystalline calculations. Here an alternative approach is illustrated, where the relative position of
the d resonances for the alloy is determined by self-consistently adjusting the diagonal elements of
the Hamiltonian to ensure that a given amount of charge transfer takes place. For transition-
metal—transition-metal alloys, the assumption of zero charge transfer is usually a good approxima-
tion. The overlap integrals tabulated by Harrison are used for the off-diagonal elements. The ener-
gy spread among atoms of the same kind due to different local environments is obtained and shown
to be small. The results of the calculations are in good agreement with x-ray photoelectron spec-
troscopy data and we find the density of states at the Fermi level to be consistent with measured

values.

I. INTRODUCTION

In the last few years much progress has been made in
the fabrication and characterization of amorphous alloys.
Among these systems the transition-metal glassy alloys
have received considerable attention, due to their interest-
ing magnetic and superconducting properties. Central to
understanding the behavior of these systems is a
knowledge of the electronic density of states. Lately, the
measurement of ultraviolet photoelectron spectroscopy
(UPS) and x-ray photoelectron spectroscopy (XPS) spectra
in this class of material has generated a great deal of in-
formation about binding energies and d-band widths.!—*
Experimental access to the density of states at the Fermi
level is also provided, usually by measurements of
specific-heat measurements. In superconductors this in-
formation is even more readily available via measurements
of the upper critical field H., versus temperature.’

It has been suggested”® that several features of the XPS
spectra of these amorphous materials, such as binding en-
ergy and d-line widths, can be explained in terms of the
density of states for crystalline compounds of similar
composition. A series of calculations of the density of
states in crystalline close-packed binary systems for vari-
ous compositions was performed to that effect.” (Here
these calculations will serve as a guide to the amount of
charge transfer we should expect for a determined alloy at
a certain composition range.) Although rough features of
the density of states, such as binding energies and average
linewidth, are similar for amorphous and relatively close-
packed crystalline structures, the line shape can be very
different because the density of states for amorphous ma-
terials lacks the sharp peaks generally associated with van
Hove singularities. Thus the density of states at the Fermi
level for an amorphous sample can be extremely different
from that of its crystalline counterpart. Therefore, if one
is, for example, interested in superconducting properties,
where the density of states at the Fermi level is the
relevant quantity, a calculation allowing for amorphous
structure cannot be avoided.

Here we are interested in using the simplest possible
method of calculation which will give us a meaningful
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description of the density of states for the amorphous
transition-metal alloys of interest. This will enable us to
perform calculations for a greater number of systems and
have a general view of the behavior of these materials.
The major difficulty involved in finding the density of
states for amorphous systems is due to the lack of periodi-
city. The powerful and well-established k-space methods
cannot be applied, and therefore, we have to rely on real-
space methods, usually based on a linear combination of
“atomic” orbitals (LCAQ). A great deal of effort has
been channeled into perfecting these real-space techniques,
which are well suited to treat d bands. Since a first-
principles solution is conceptually difficult and computa-
tionally costly, some of the most successful approaches
for®? simulating realistic systems are based on using in-
formation about the atom in a crystalline environment
(available from usual k-space methods) to establish the
behavior of the same unit in an amorphous environment.

The recursion method® which will be used here is based
on the above approach. To keep it simple (and low in
cost) we will neglect s-d hybridization when calculating
the d-band density of states and require our LCAO basis
set to be orthogonal.!® The s band will be included in the
free-electron approximation, making use of an effective
mass to simulate hybridization effects.!! Under these cir-
cumstances the input necessary to perform the calcula-
tions will be the Hamiltonian matrix elements H,,,, m and
n describing localized “atomic” basis functions, five for
each site. The off-diagonal elements are related to overlap
integrals and the diagonal terms are effective atomic ener-
gies. The standard way of obtaining this information is
by fitting a LCAO scheme to a crystalline k-space calcula-
tion for a similar compound, in the way described by
Slater and Koster.'?

In practice, however, we rarely have the necessary de-
tailed information about the crystalline bands. Even when
the information is available, in several instances the empty
orbitals above the Fermi level are not presented,13 making
fitting procedures difficult and unreliable. Even in the
ideal case where all information is available, we are
presented with a complex set of hybridized bands which,
to be consistent, must be fitted to a nonorthogonal LCAO
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set. With so many parameters, the fit is rarely unique,
and the accuracy of the parameters suffers. Finally, the
d-band matrix elements obtained in this way will certainly
be representative, but if the aim is to use an orthogonal set
of orbitals and not to include hybridization, it is not clear
that these parameters, obtained for a hybridized
nonorthogonal set, will be the best for this purpose.

In this paper we illustrate an alternative approach
which avoids the difficulties mentioned above. To find
the off-diagonal elements of the Hamiltonian we use the
overlap integrals tabulated by Harrison!' for each of the
elements. These parameters were obtained by a less
rigorous fitting procedure than described in Ref. 11, but
are readily available and certainly representative. Of
course, if better parameters are known, they can be used.

Now we must establish values for the diagonal terms in
the Hamiltonian which fix the relative position of the
bands in the compound. When different species are
brought together to form a compound, there is always the
possibility of charge transfer as electrons find unoccupied
levels of lower energy available. As this transfer takes
place, a potential difference is developed between the
atomic sites for the different species, shifting the energy
levels of different sites relative to each other. Equilibrium
is reached when the Fermi level is the same throughout
the material. Given the amount of charge transfer (gen-
erally small) we can calculate the diagonal matrix ele-
ments through a rapidly converging self-consistent calcu-
lation as described below. A similar procedure has been
used to treat the surface density of states of a monoatomic
crystalline system.'*

A first estimate for the diagonal energy term for each
species of atom is given. The local density of states at
each site is then found using the recursion method. A
given amount of charge is assigned to each site to give the
expected charge transfer and the Fermi level is deter-
mined. The diagonal values of energy for each atom are
then redefined to make the Fermi level coincide for all
sites. The calculation is then done using these new values
and the procedure is repeated until self-consistency is
achieved. Corrections to the off-diagonal terms are ex-
pected to be less important. Since they are very difficult
to include, they are neglected here.

In Sec. II we give a more detailed description of the
procedure and results are presented. In Sec. III we discuss
the results and compare with available experimental data.
Finally, conclusions and further discussion are presented
in Sec. IV.

II. PROCEDURE

We calculate the density of states using a tight-binding
Hamiltonian

sz |i>m6i,mm<i ' +2 Ii)mti',mm’m'<jl ’
im i,j
i#j

where we take the basis orbitals { |i),, ] to be orthonor-
mal such that

m<i lj)m’zsijamm’ .

Here i,j indicate the site and m, m’ the “atomic” orbital in
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the given site. We proceed to express H in terms of a ma-
trix with diagonal matrix elements given by “atomic” en-
ergy levels €, and off-diagonal matrix elements #;; um’
given in terms of a set of three parameters ddo, ddm, and
dds, according to Slater and Koster’s atomic-orbital
scheme. To find #;j ,»n' using this scheme!'? the position of
every atom has to be supplied.

Given the Hamiltonian we can use the recursion
method to find the local density of states at a given site.
This method, thoroughly described in Ref. 12, is given
here only in outline. The procedure is to define a new
orthonormal basis set { | u, )}, using the recursion relation

bn+1|un+1>=(H—an)|un>_bn |un-—1>

and the orthonormal requirement to find {a,,b,}. The
starting orbital |uy) is chosen to be equal to the |i),,
(the mth orbital at the site i), whose local density of states
we desire to find. This density of states is then expressed
in terms of the diagonal element of the Green’s function

n,-,,,(E)=1T—IIm(u0 ' (E—’H)—l l U()> s

which can then be written in terms of the parameters a,
and b, as a continued fraction

n(E)=—7"'Im
b}

E—a]—bg/E—az— ce

E —dao—

In the above equations, E has an infinitesimal ima-
ginary part. By construction, the recursion relation gen-
erates orbitals | u, ) which are spread out further and fur-
ther away from the chosen site as n gets larger, leading to
corresponding parameters a, and b, which contribute less
and less to the local density of states at the desired site.
This allows us to truncate the recursion after a number of
levels LL, neglecting contributions from |u, ) forn >LL.
Because of truncation the levels are discrete and a
rounding-off procedure'® is used to obtain a continuous
density of states at the site. The total density of states at
site i is then found by summing n;, (E) over m. Finally,
the total density of states in the compound is given by
averaging over all sites.

To simulate the amorphous Zr;Cusy compound we
have used the 39-atom cluster (Cu,3Zr;¢) with periodic
boundary conditions described by Jaswal et al.'® In their
procedure the atoms were packed so that the two constitu-
ents were evenly distributed in a cube. A Lennard-
Jones—type potential was used to relax the periodic unit
and the density was adjusted to simulate the density in
real systems. Given this periodic system, our cluster was
then built as a superposition of all points whose distance
to any one atom of the 39-atom unit was less than a given
Ry. We chose Rg=9 A corresponding to a sphere diame-
ter of 7 times the nearest-neighbor distance of Cu in a reg-
ular fcc structure. Using the procedure outlined above, we
obtained the 640-atom cluster, on which our calculations
were performed. As we stressed before the recursion
method does not require periodicity. But, since the over-
lap integral of each atom with every close neighbor has to
be computed, the amount of information to be stored is
substantially reduced by taking large enough periodic
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clusters. Also, to characterize the density of states, we
have to average over the local density of states for a
representative set of atoms. In a nonperiodic cluster this
set is not well defined and, being finite, it restricts the gen-
erality of the procedure. Here, if we average over the 39-
atom unit, we automatically get the best value for the
cluster. Having a set of atoms which represent the whole
cluster is also essential, if one wants to do an atom-by-
atom self-consistent procedure as we do here, without un-
reasonable cost. On the other hand, since our cluster is of
irregular shape and includes only 640 atoms, it is very un-
likely that any features due to periodicity will be present
in our results.

In the spirit of the Slater-Koster'? scheme, the calcula-
tion of the density of d states requires the knowledge of
the overlap integrals ddo, ddw, and dd6 for each com-
bination of neighbors. We use for these values those sug-
gested by Harrison, who allows the parameters to vary in-
versely with the fifth power of the distance r between the
two atoms being considered.!" We only retain the “first-
neighbor interaction,” in the sense that only interactions
between atoms a distance r < r, apart are considered. The
actual values for the cutoff distances r, and the overlap
integrals used in the calculations are summarized in Table
I

We tested different values for the level cutoff LL, using
different cluster geometries and sizes (for example, a cubic
cluster of size 2R, with a given atom at the center) to
maximize LL while avoiding significant contribution
from the boundaries. A value of LL =12 was chosen and
used in all calculations presented here. To treat the s
bands we follow Harrison!! and fix the bottom of the s
band at an energy E,; lower than the “atomic” d energy of
the corresponding element. An effective mass m; was
also used to simulate hybridization. The values used for
E; and m; for Cu and Zr s bands'' are shown in Table I.

Finally, to find the diagonal elements of the Hamiltoni-
an we must know the amount of charge transfer in this al-
loy. We can rely on the crystalline close-packed band cal-
culation for a compound of similar composition for this
purpose. Band calculations for Zr-Cu in both CuAu and
CsCl structures are available’ and show that charge can be
transferred either way (from Cu to Zr or vice versa) but in
very small amounts (of order 0.03 electrons). Based on
this information we assume approximate charge neutrality
when treating the Zr-Cu alloy around this composition.

In our calculations the “atomic” level of Zr is taken as
our zero of energy. The Cu “atomic” energy is then given
by E, and adjusted self-consistently to achieve charge neu-
trality. Our first guess was taken to be Ey= —0.355 Ry,
given by the renormalized atom approximation.
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III. RESULTS AND DISCUSSIONS

The total density of states (averaged over all 39 atoms)
for Eq= —0.355 Ry is shown in Fig. 1(a). The Fermi en-
ergy shown in the figure was found by filling the band
with available electrons without any restrictions regarding
charge transfer. We find as a result of this procedure that
for E,=—0.355 Ry, an average charge transfer of 0.23
electrons from Zr to Cu sites is required. However, as dis-
cussed before approximate charge neutrality would better
represent the Zr-Cu system.

In Fig. 2(a) we show the results for the d density of
states for Cu (average over 23 atoms) and Zr (averaged
over 16 atoms) calculated for E,= —0.355 Ry. The indi-
cated individual Fermi energies for Cu and Zr sites are
determined by imposing approximate charge neutrality.
They were calculated by choosing the average number of
electrons per spin around individual sites (including s and
d contributions) to be 5.5 for Cu and 2 for Zr. It is clear
that, in first approximation, we can make the two values
of Er coincide by shifting the “atomic” level E of the Cu
atoms by the approximate amount AE, as illustrated in
Fig. 2(a).'®

We can now use the new value Ey= —0.303 to recalcu-
late the density of states for the alloy. At this point, how-
ever, it is interesting to show the effect of local environ-
ment and illustrate how the d local density of states
behaves at different sites. In Figs. 3(a) and 3(b) we show
the local density of states for Cu and Zr atoms in two dif-
ferent environments. The question of how many such en-
vironments have to be considered to have a significant
average density of states comes immediately to mind. In
Fig. 4 we try to answer this question by calculating the
averaged density of states for two different sets of Cu
atoms, one containing 12 atoms and the other 11. From
our results it is clear that an average over 10 sites of the
same kind should already be representative of the density
of states of the chosen species in the alloy. The linewidth,
the general shape, the binding energy and the Fermi level
for the two sets of atoms shown in Fig. 4 are identical
within our resolution. On the other hand, we see that no
significance can be attached to the small oscillations on
the top of the d resonance. Actually they depend not only
on the local environment, but also in the value of LL.

Finally, calculations of the total density of states (aver-
age over all 39 atoms) and those of Zr and Cu for E,
= —0.303 Ry are shown in Figs. 1(b) and 2(b), respective-
ly. The correction AE, shown in Fig. 1(b) is now small,
indicating fast convergence toward self-consistency. Ac-
tually the difference in Fermi energy between Zr and Cu
atoms is of the same order as the spread in Fermi energy,

TABLE L. Numerical values of parameters used in the calculations. See text for explanation of sym-

bols. Energies are given in Ry and distances in A.

5

ddo ddm dds re (A) Ed m¥/m
Cu-Cu —2.73/d? 1.78/d°? 0 3.24 0.434 0.854
Zr-Zr —25.4/d° 13.7/d° 0 3.70 0.527 0.554
Cu-Zr —8.33/d°? 4.50/d° 0 3.46
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FIG. 1. Total density of states for the Zr4;Cusg cluster for the
three steps toward achieving self-consistency. The zero of ener-
gy is taken to coincide with the d “atomic” energy level of Zr.
The energy E, of the “atomic” level of Cu atoms and the Fermi
level are also shown for (a) Eo= —0.355 Ry, (b) Eo=—0.303 Ry
and (c) Eo=—0.299 Ry. In part (c), the “atomic” levels for the
Cu and Zr atoms were allowed to vary around their respective
mean values of —0.299 Ry and zero.

due to different local environments as illustrated in Fig. 3.
To proceed further toward self-consistency we must shift
the diagonal elements of the Hamiltonian in order to
make the values of Ef coincide for every atom throughout
the system. It is clear from Fig. 3 that we have to allow
each of the 39 atoms in the amorphous unit to contribute
to the Hamiltonian with a different diagonal energy term,
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FIG. 2. Calculated density of states for Cu (solid line) and Zr
(dotted line) in the Zr-Cu alloy for (a) Ey=—0.355 Ry and (b)
Ey=—0.303 Ry. The Fermi energies for Cu and Zr were calcu-
lated under the assumption of negligible charge transfer. A shift
AE) of the “atomic” Cu energy level is required to make the two
Fermi levels coincide.
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FIG. 3. Local density of states for (a) Cu and (b) Zr atoms in
two different local environments, calculated with E;= —0.303.
The respective Fermi levels, calculated under the assumption of
negligible charge transfer, are also shown.
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FIG. 4. Density of states for Cu atoms in the cluster averag-
ing over 12 Cu atoms (solid line) and averaging over 11 Cu
atoms (dotted line), distinct from those used in the previous
average.

reflecting the influence of local environment on the d-level
energy of the atoms. Since the difference in Fermi ener-
gies is small, we could almost stop at this point. Nonethe-
less, we will proceed under the assumption of approximate
charge neutrality to illustrate qualitatively the effect of
different local environments on individual atoms energies,
and how these effects can be reflected on the final line
shape.

In Fig. 1(c) we show the final result. The Fermi levels
for local densities of states at all 23 sites are made to coin-
cide within 0.008 Ry (~0.1 eV). The Fermi level is locat-
ed at an energy Er=—0.053 Ry relative to the reference
energy (now given by the average “atomic” energy for Zr
sites). The spread in atomic energies around an average
energy as measured by the mean-square value is 0.016 Ry
(~0.22 eV) for Zr and 0.013 Ry (~0.18 eV) for Cu. This
spread is small compared to the width of the respective d-
band resonances but, in the case of Cu, it does change the
line shape considerably, as shown in Fig. 1(c).

In Fig. 5 we compare our density of states to XPS mea-

N(E) (states/eV atom spin)
I(E) (ARBITRARY UNITS)

E(eV)

FIG. 5. Calculated density of states for the Srq;Cusg cluster
(solid line) is compared with the XPS results (arbitrary units) of
Ref. 4 (dotted line). The energy scale was chosen to make the
Fermi energy zero.
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surements for an amorphous sample of ZryCug.>* The
agreement is quite good in general terms. The binding en-
ergy is correctly given and a thinning of the Cu d reso-
nance occurs relative to the pure fcc Cu. Calculations for
fcc Cu with the same parameters give a width (at a height
of 10 states/Ry atom spin) of approximately 2.2 eV while
the linewidth for the Cu density of states in the alloy is
~1.6eV.

Finally, in Fig. 6 we compare our results with those ob-
tained by Moruzzi et al. for Zr;sCuso in a CuAu structure
using the self-consistent augmented spherical wave
method.!® It is suggested that the density of states of an
amorphous alloy can be well represented by that of a
close-packed crystalline compound of similar composi-
tion.%’ The advantage of this approach is that well-
established, extremely reliable k-space methods can be
used to calculate the density of states for simple crystal-
line compounds. We note that our results were calculated
using Harrison’s parameters taken from band calculations
for the pure metals. The results of Moruzzi et al. enter
our calculations only to support our procedure of neglect-
ing charge transfer between the atoms. Therefore, the
agreement between the two results shown in Fig. 6 regard-
ing the general features, binding energy, and linewidth of
the density of states supports the claim that UPS and XPS
data for amorphous alloys can be understood in terms of
their crystalline counterparts. On the other hand, as is to
be expected due to the variety of local environments, our
results for the density of states show much less structure
than those obtained for the crystalline compound. It is
clear that the single environment present in the crystalline
compound cannot reproduce the smooth density of states
of the amorphous alloy. As a consequence it is clear that
our simple procedure should give better values for the
density of states at the Fermi level for the alloy. We find
the density of states at the Fermi level to be given by
N (Er)=0.46 states/eV atom spin. This value can be com-
pared with N(Er)=0.39 states/eV atom spin obtained by
Jaswal et al.'® In a previous paper’® we have used a sim-
ple dilution model to find N(Ef) for split-band Zr com-
pounds with high concentrations of Zr. This model fails
when Zr is the minority compound, as thinning of the Zr
resonance gets to be important. Our calculated density of
states is higher than the one the simple model would
predict, and agrees with the trend shown by experimental
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FIG. 6. Results of Moruzzi et al. (Ref. 7) for ZrCu (solid
line) are compared to our results for amorphous Zr,;Cusy (a-
Zr4Cus, dotted line). In both cases the zero for the energy scale
is taken at the Fermi level.
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results.”’ No experimental results on the density of states
are available for amorphous CuyyZrg,, but for CusyZrsy a
bare density of states N(Ep)~0.47 states/eV atom spin
was inferred from experimental results.! The crystalline
close-packed CuAu structure for ZrCu shown in Fig. 6
gives N (Ep)~0.50 states/eV atom spin, in agreement with
our results and experiment. But we note that for ZrCu in
the (crystalline) CsCl  structure, N (Ep)~0.68
states/eV atom spin,!’ indicating the sensitivity of N (Er)
to changes in the local atomic environment.

IV. CONCLUSION

We have used the recursion method to calculate the d
density of states for a cluster of 640 atoms, simulating an
amorphous Zr4,Cusy alloy. To avoid detailed fitting pro-
cedures, we have used for the overlap integrals the param-
eters tabulated by Harrison. Of course, if available, pa-
rameters from other sources can be used. The “atomic”
energies were then found by a self-consistent procedure
where approximate charge neutrality (the amount of
charge transfer is expected to be negligible for this alloy)
was imposed. We find that the Cu d-resonance line is
thinner than that of pure Cu, in agreement with XPS re-
sults. Also, due to interaction with Zr, some of the Cu
states are spread over the energy range of the Zr band.
With some of the states shifted to higher energies the
number of states available in the d-resonance line is small-
er. Therefore, to maintain the same electronic occupation
the Fermi level has to be further from the center of the Cu
d resonance, explaining the higher binding energy of the
alloy relative to that of pure Cu. Actually, the same
behavior, a thinner d-resonance band with fewer states
available, can qualitatively explain why Zr-Rh and Zr-Pd
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show a split band for a wide range of compositions'? and
very little charge transfer.’

Despite the greater variety of environments allowed in a
binary alloy leading to very different local densities of
states, we find that an average over 10 sites is already
quite representative of the behavior of the density of states
of a given species in the compound. The local environ-
ment can cause a spread in the “atomic” energy of indivi-
dual sites of the same kind, but from our results these
“atomic” energy differences are expected to be smaller
than those found by Jaswal et al.?? Finally, if we com-
pare our results with those of a close-packed crystalline
compound (Zrs,Cus),” we see that the main features are
very similar (especially for the Cu density of states).
However, the crystalline calculation shows much more
structure, and may fail to represent the density of states at
the Fermi level for amorphous materials of similar com-
position. Our results indicate that the recursion method is
a powerful tool to obtain the density of states at the Fermi
level for binary transition compounds. Further work is
needed to evaluate the full potential of our procedure. Its
application to other materials is currently underway.
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