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Properties of monolayer solid heliiiiii and its melting transition
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High-resolution heat-capacity measurements of He adsorbed on exfoliated graphite have ex-

plored the incommensurate solid phase and its melting transition. The characteristics of the solid

and the melting peaks resemble earher measurements on Grafoil but the new results reflect greater

uniformity of the present substrate, higher experimental resolution, and detailed substrate character-

ization. For temperatures T g0.06T~ the Debye temperatures are independent of T, with values

approximately equal to previous results. In the range 0.06T~ g T & T~ the heat capacity is in-

creased by an exponential contribution attributed to the thermal activation of vacancies or disloca-

tion pairs. Activation energies of the defects depend on density, and range from 20k~ to 27k', in

close agreement with nuclear-magnetic-resonance results and with estimates obtained from some

computer-simulation studies. Peak temperatures are lower than the melting temperatures predicted

by the theory of dislocation-mediated melting. Substrate characterization indicates variations in

binding energy of 3.4)(10 . These variations cause appreciable broadening of the melting peaks.
We conclude that the experimental peaks are consistent with a first-order melting transition.

I. INTRODUCTION

The quantum systems of He and He adsorbed on the
basal plane of graphite have been studied extensively with
the use of calorimetric techniques, ' neutron scatter-
ing, nuclear magnetic resonance, ' molecular beam
scattering, and volumetric vapor-pressure isotherms. ~2' 3

The high-density region above 0.08 A is of special in-

terest due to the formation of a well-characterized crystal-
line two-dimensional (2D) solid' at low temperatures. At
higher temperatures, there is a line of heat-capacity peaks
whose peak positions increase in temperature as coverage
increases. These peaks, measured by Hering et al. ' for
He and by Bretz et a/. ' for He on Grafoil, are associated

with the melting of the incommensurate 2D helium solid.
The order of the transition was not clear from those stud-
ies, though the transition appeared continuous based on
the shapes of the experimental peaks.

The structure and melting of 2D solids have been the
subject of numerous theoretical studies. Kosterlitz and
Thouless' and Feynman' developed a theory of 2D melt-

ing based on the instability of the solid against the
creation of dislocations. This theory was later extended

by Halperin and Nelson and predicted a continuous transi-
tion. ' Chui' has proposed an alternative mechanism for
melting in which the formation of grain boundaries leads
to a first-order melting transition. Computer simula-
tions' have also been used to study 2D inelting. Some of
these simulations have been interpreted as indicating
first-order melting while others seem to show a continu-
ous melting transition.

The applicability of the theories of 2D melting to ad-
sorbed films is complicated by the structure imposed by
the underlying substrate. The most suitable systems for
testing the 2D melting theories in adsorbed films are in-
commensurate solid phases. He/graphite provides such a
system because the small size of the helium atoms relative
to the substrate sparing makes the close-packed solid

phase highly incommensurate. Other attractive features
of helium are as follows: (1) the solid is well described by
a simple harmonic Debye model up to temperatures close
to the melting temperature, (2) the solid phase and the
solid-fluid phase boundary extend over a wide range of
density and temperature, and (3) the low temperatures per-
mit high resolution in the specific heat.

There are additional considerations when studying real
experimental systems. The finite size of the substrate
crystal domains can produce broadening of transitions
which are sharp in the thermodynamic limit. Also, small
variations in substrate binding energy have been sho~n to
have appreciable influence on measured thermodynamic
quantities.

We have studied the high-density region of He ad-
sorbed on graphite foam, a graphite substrate with better
uniformity than Grafoil. Section II describes the experi-
mental details and specific-heat data. Sections III and IV
present analysis of the specific-heat data, while Sec. V
compares the results with theoretical predictions and other
experiments.

II. HEAT CAPACITY

A. Adsorption cell and experimental method

The substrate used in this study was exfoliated graphite
foam. The foam was machined into a cylinder, baked at
1400'C for several hours in purified flowing helium,
forced into a gold-plated copper cell, and sealed with an
indium 0-ring cap. The compression of the foam and the
gold-plated surface ensured good thermal contact. Heat
was applied with a 1000-0 Evanohm wire electric heater
fastened to the cell with GE 7031 varnish. A 56-Q Allen-
Bradley carbon resistance thermometer measured the tem-
perature of the cell; it was calibrated against a CryoCal
germanium thermometer. A thin-walled nylon tube pro-
vided structural stability and good thermal isolation for
the cell.
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The heat-capacity measurements were taken employing
the adiabatic technique. In this technique a known
amount of heat is introduced into the cell and the subse-
quent temperature change of the cell is measured; the
preheat and postheat drift rates are then extrapolated to
the midpoint of the heating interval to determine the aver-

age and the difference in temperature. An on-line mini-
computer aided in the acquisition and processing of the
specific-heat data. The heat capacity of the cell without
adsorbed gas was measured, and this background signal
was subtracted from the total heat capacity of both film
and cell to give the contribution of the adsorbed gas.

The area of the cell was determined by a study of the
v3 ordering transition of Heigraphite. ' The sharp
specific-heat peaks of the order-disorder transition are
used as an indication of the critical surface density,
n, =0.063 67 A 2. Although the value of the critical den-

sity obtained in this manner may differ from the actual
critical density '

by about 1%, it provides a useful basis
for intercomparison with previous studies where the area
was calibrated in this way. With the use of this technique,
the surface area of the foam cell is calculated to be 486.9
m from a helium-gas dose of 115.7 cm at STP. This
yields a specific surface area of 29.7 m /g for the 16.47-g
foam sample. This value is in rough agreement with
values obtained in other experiments ' on graphite foam.

B. Heat-capacity data

The V 3 ordering transition was also studied to compare
with previous heat-capacity measurements of He on gra-
phite foam. Figure 1 shows the specific-heat peak of a
coverage close to the critical density compared with an
analogous peak measured by Tejwani et al. The two
curves are indistinguishable from each other over most of
the temperature range, but differ slightly in the vicinity of
the peak. This difference is due to the fact that in the
peak region Tejwani used a finer temperature resolution (2
mK, as opposed to 4 mK in this study) so his maxima are

slightly larger but the individual points have more scatter.
Heat-capacity measurements of seven different cover-

ages of He adsorbed on graphite foam were taken
in the range 0.0842—0.09388 A . From previous work

by Bretz et al. , ' the region from 0.078 to 0.115 A is
known to be a region of incommensurate 2D solid at low

temperatures. The solid melts to a fluid phase at progres-
sively higher temperatures as the density is increased. The
density range of this study was chosen to avoid the effects
of layer promotion and desorption which Elgin and Good-
stein~ showed to be significant at the higher densities close
to monolayer completion. Figure 2 shows a composite of
the specific-heat data. The data points are omitted for the
sake of greater clarity. All the data points of one heat-
capacity curve are shown in Fig. 3, for the density of
0.08933 A . This curve has a unique feature not seen in
earlier work. Above the main peak, we now observe a
smaller and broader peak centered at about 3 K. The
height of this secondary peak is less than 0.03 above an
extrapolated base line. The curves at higher density and
the one at lower density do not exhibit a secondary peak.
For the higher coverages this may be due to the appreci-
able increase in height of the main peaks. At about the
same temperature increment (0.25 K) above the main
peak, the curves bulge slightly. The temperature differ-
ence between the peak and this bulge appears to remain
constant as density is increased, but the deviation becomes
less visible as the main peak height increases and is un-

detectable at densities higher than 0.091 67 A 2.

The low-temperature phase has been identified as a 2D
incommensurate solid by heat-capacity' and neutron
scattering measurements. Bretz et a/. ' found that the
low-temperature specific heat has a quadratic temperature
dependence, with Debye temperatures SD that vary with
density in a manner similar to bulk He behavior. In the
current study we also find this quadratic behavior of the
low-temperature specific heat with values of SD in good
agreement with the previous measurements. In the
present study we are particularly interested in the region
at higher temperature, where the heat capacity deviates

2.0
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FIG. 1. Comparison of He/foam specific-heat data of
present study and Tej~ani et al. (Ref. 5) for the order-disorder
transition. The temperature scale of the Tejmani data has been

shifted by + 8 mK.
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FIG. 2. Specific heat in the region of the incommensurate
solid melting transition.
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In the low-temperature limit, T «8D, the specific heat
approaches the quadratic form,

=28.848( T/8n ) (2)

I i » I I I I l I I I I I I I

2.4 2.S 3.2 3.6
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FIG. 3. Specific-heat data near melting, for the density
n=0.08933 A

from the quadratic law. For this reason we analyze the
data in detail to measure and account for these deviations.

Our analysis is based on the two-dimensional Debye
model, which has a heat capacity given by

eo" x'e dx=4(T/8, )' f '
Nk& o (e" 1)2

For bulk 4He this low-temperature approximation is valid
below T/8D =—0.02, while in 2D ~He films on graphite the
low-temperature behavior is seen to persist up to
T/8n=0. 07. Values of 8D for the new foam data and
for the previous Grafoil measurements are listed in Table
I. For higher temperatures it is useful to express the
heat-capacity data in terms of an effective temperature
dependent 8&(T), calculated from Eq. (1) at each tem-
perature. If one plots 8n(T)/8&(T=O) versus reduced
temperature T/8D(T=O) for all the coverages, the gen-
eral behavior of the heat capacity and information about
the density dependence of the frequency distribution can
be seen. Figure 4 shows the data plotted in this way.

The density dependence of 8D can be expressed in
terms of the Griineisen parameter, y=d ln8nld inn. A
value of y=4+0. 1 is obtained over the limited density
range of the present study. Values for y obtained from
the data of Bretz et al. are in the range of 3.5—4.0 for
densities between 0.09 and 0.105 A

TABLE I. Specific-heat data of the solid phase and melting transition for He/foam, He/Grafoil,
(Ref. 1), and He/Grafoil (Ref. 2).

HefGrafoil'

n(A )

0.0823
0.0873
0.0927
0.0942
0.0967
0.0991
1.1037
0.1D79
0.1134
0.1150

17.6

26.7
29.8
33.0
37.6
42.2
47.8
53.9
56.1

Tp (K)

1.93
2.65
3.12
3.65
4.18
4.7
5.8
6.8

T~ /ea
0.11

0.117
0.122
0.125
0.125
0.135
0.142

0.131

0.73
1.11
1.38
1.55
1.71
2.12
5.2

He/Grafoilb 0.078
0.082
0.084
0.087

14.5
17.4
21.3

1.2
2.0
2.25
2.60

0.083
0.115
0.108 0.6

0.7

He/Grafoil 0.078
0.079
0.080
0.082
0.087
0.092
0.102

17.6
17.9
19.2
21.1
26.9
33.7
52.3

1.28
1.48
1.66
1.97
2.80
3.74

0.073
0.083
0.086
D.D93

0.104
0.111

0.3
0.4
0.5
0.7
1.2
1.6

'Reference 1.
'Reference 2.

0.0842
0.089 33
0.09075
0.09099
0.091 23
0.091 67
0.093 88

25.1

26.4
26.7
27.0
27.5
30.3

2.30
2.77
3.10
3.15
3.18
3.27
3.69

0.110
0.117
0.118
0.118
0.119
0.122

0.74
1.00
1.27
1.30
1.33
1.39
1.59
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FIG. C. O,(r)yo, (T=O) vs TlO, (r=O).

Since the Debye model fits quite well at low tempera-
tures, it can be used to extrapolate the entropy at T=O K.
The film entropy is obtained by integrating the heat capa-
city,

=14.424(TO/Sg)) + J dT,S 2
T C

%kg To %AT
(3)

0.5

To/SD (0.06 .

Figure 5 shows the entropy of the helium film. The entro-

py change on melting is obtained by evaluating the in-
tegral expression in Eq. (3) over the temperature interval
of the specific-heat peak and subtracting an approximate
baseline entropy. Values for dS~,i, /Nks of 0.03+0.005
for n=0.08933 A i to 0.08+0.02 for a=0.09388 A '
are obtained. The bulk-helium melting entropy per parti-
cle is about 0.5 at comparable interatomic spacing. 2

Heat-capacity isotherms have the distinct property that
in regions of two-phase coexistence, C is linear in the total
number of atoms. This is a necessary but not sufficient
condition for the existence of two phases, since the heat

capacity in certain single-phase regimes is predicted to
vary linearly with density, although these phases are un-

likely to be present in the density and temperature regions
of interest to this study. Although the coverages are
closely spaced to be able to distinguish a narrow& tmo-

phase region, the data are inadequate to reveal linear sec-
tions with breaks in slope at the ends that would indicate
a difference between the coexistence region and the
single-phase region. Either there is no coexistence or the
two-phase region is too narrow to be delineated with the
present data. The resultant limits on the width of any
turbo-phase region are ET~0.3 K and hn &0.001 A 2.

In considering other features of the heat-capacity re-
sults obtained in this work it is constructive to compare
them with earlier experiments. Table I shorvs a compila-
tion of helium/graphite solid phase and melting parame-
ters obtained from various specific-heat studies. Bretz
et al. ' and Hering et al. studied the melting transition of
He adsorbed on Grafoil substrates. Bretz concentrated

on the high-temperature behavior while Hering's data em-

phasized the low-temperature portion of the phase boun-

dary. Results from both Grafoil studies agree quite well,
but comparison with the current foam study indicates a
sizable difference between their density-temperature phase
boundaries and peak heights. Figure 6 shows two sets of
data with comparable peak temperatures. The foam sig-
nals have an increased peak height of b,C/Nka -—0.2 over
the corresponding Grafoil peaks. In Fig. 7(a), the phase
boundary, as defined by the peak temperatures, is plotted.
The curves seem to be uniformly shifted, with the excep-
tion of the Bretz peak at n=0.0926 A . If that peak is
too high by 0.7%%uo, then the uniform offset of the two
curves is also about 0.7%. This is close to the error limits
of the experimental determination of the surface density
(about 0.5% for each study), and thus the deviations are
likely a result of systematic error. A similar shift is ob-

served in the density dependence of both the heat-capacity

l
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FIG. $. Entropy obtained from integration of specific heat.

0

FIG. 6. Comparison of specific-heat melting peaks on gra-

phite foam and on Grafoil.
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5.0 III. PROPERTIES OF THE SOLID PHASE
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FIG. 7. (a) Specific-heat peak temperatures versus density for

foam (o) and Grafoil (Q) substrates. (b) Specific-heat peak
heights vs density for foam (0) and Grafoil (6) substrates.

Open symbols: full peak height. Solid symbols: baseline-

subtracted peak height. (c) Specific-heat Debye temperatures vs

density for foam (0 ) and Grafoil (6) substrates.

The low-temperature specific heat for coverages be-
tween 0.078 and 0.115 A has the temperature depen-
dence of a 2D Debye solid, but above T/Sp -—0.06, the
specific heat increases faster than the Debye specific heat.
This increase is shown in Fig. 4, where the data are plot-
ted in terms of Oz(T)/eD(T=O). In this section we will
consider possible sources for the excess specific heat. One
possible source might be contributions from a continuous
melting transition but the temperature where the increase
begins,

~

T T,
~

—/T, =0.5, is far below the transition
temperature, so contributions from that source should be
small. Other possible sources of the increased specific
heat are frequency dispersion due to the discrete nature of
the lattice, anharmonicity, or the thermal activation of de-
fects. We will discuss each of these in the following sec-
tions.

A. Frequency dispersion and anharmonicity

A source for the failure of the Debye expression and the
increased specific heat is the neglect of the discrete nature
of the lattice. The Debye approximation assumes that the
lattice can be treated as an elastic continuum because only
long-wavelength phonons contribute to the heat capacity
at low temperatures. As soon as shorter-wavelength pho-
nons are excited, the discrete nature of the lattice must be
included. Goodstein and Greif calculated the dispersion
curves, co(k), of the longitudinal and transverse modes of
the 2D helium solid at n=0.092 A along the two sym-
metry directions of the Brillouin zone. From these curves
we have calculated the density of states G(co) by con-
structing the constant-co surfaces of both modes and by in-

tegrating the area in k space between closely spaced
constant-co surfaces to approximate the relation

G(co)de= f d k, (4)

such that

ri) &co(k) &co+dco .

It is only necessary to calculate the contribution from —,',

of the zone due to the symmetry of the triangular lattice.
Figure 8 shows the calculated G(co), normalized to the 2N

peak heights [Fig. 7(b}] and the Debye temperatures [Fig.
7(c)]. The shift for the Debye temperatures is only slight-

ly larger than the phase-boundary shift and is probably as-
sociated with the same systematic variations in density.
The peak heights, on the other hand, show a clear increase
for the foam data, as previously noted, even when the den-
sities are adjusted to allow for the systematic shift.

A significant feature in the density dependences of
T~k(n), SD(n), and C~i, (n) (Fig. 7} is the sudden in-
crease in the slopes of the curves occurring at a density of
about 0.089 A . Other evidence for some fundamental
effect occurring at that density is the anomalous depen-
dence of the reduced Debye temperature on reduced tem-
perature (Fig. 4) for the density n=0.08993 A 2. This
density is also the one for which the broad secondary peak
(Figs. 2 and 3) is clearly visible.

l.5—

I.O

0.5

0
0 I Debye 4

~ (IO sec )

FIG. 8. Phonon frequency spectrum calculated from disper-
sion curves of Goodstein and Greif (Ref. 24). Debye spectrum is
shown as dashed line.
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modes of the lattice. The zone-boundary singularities are
not visible, but the peaks at 1.5 and 3.7 (times 10'
rad/sec) show the distinct contributions from the trans-
verse and longitudinal modes. Any low-temperature devi-
ations from the Debye approximation (dashed line, Fig. 8)
are dominated by the dispersion of the transverse mode.

Thermodynamic quantities of the solid are calculated as
derivatives of the Helmholtz free energy per particle,
F(n, T)/N, given in the harmonic approximation by

F(n, T) co

N
eo—+u (n)+ —f coG(co)dao

2

+k&T f G(co)ln(1 e~—)dc@,

where u (n) is the static lattice energy per particle. Table
II shows the results of the calculation of the specific heat,
C= d F/B—T, for the distribution calculated above.
The heat capacities from the quadratic and Debye integral
expressions are included for comparison. Figure 9 shows
the calculation compared with the experimental data. At
low temperature (T/8n ~0.06) the calculation predicts
larger deviations from the Debye expression than are seen
in the experimental results. In three dimensions the
specific heat deviates from the Debye form close to the
temperature predicted by a similar calculation, but the
2D calculation predicts a breakdown of the Debye approx-
imation at T/8n-=0. 03, about half of the experimental
value. The 2D lattice dynamics calculation cannot ac-
count for the much larger specific-heat deviation above
T/SD -=0.08. The failure of the 2D calculation to predict
the T dependence of the experimental specific heat up to
T/SD -—0.07 suggests that the calculated density of states
is not accurate enough for this purpose.

The helium potential is highly anharmonic due to the
large zero-point motion. However, the effective averaged
potential gives rise to a solid which is well described in the
harmonic approximation. In three dimensions 8D(T)/
8n(T=O) for He, and the classical rare gases argon and
krypton are nearly the same at equal values of
T/8D(T=O). This implies that in three dimensions,
anharmonic contributions to the specific heat of He are
small and that the deviations from the Debye expression
result from other sources. The increased range of validity
of the Debye expression suggests that the effective anhar-
monicity is small in the helium film as well.

B. Thermal defect activation

—(u —Ts )Ik&T
(7)

where u, and s, are the energy and entropy of activation
per defect excitation at constant area, N~ is the number of
defects, and N is the number of adsorbate atoms. The
quantities u, and s, are taken to be independent of tem-
perature. Figure 10 shows in[EC(T/OD) ] vs 8D/T.

In a solid, defects such as vacancies, interstitials, and
dislocations are thermally activated in equilibrium con-
centrations that depend on the defect excitation energies.
Certain defects are expected to be predominant due to
their low relative activation energies. For example, in the
rare-gas solids the interaction potential strongly favors va-

cancy formation rather than activation of interstitials.
Isolated dislocations cannot exist in an infinite system at
low temperature because the elastic energy of a dislocation
diverges with the size of the system. However, dislocation
pairs have finite energy and are therefore excited at finite
temperature. They are also observed in computer simula-
tions of 2D melting. ' Other defects such as grain
boundaries and disclinations are not expected to contri-
bute at low temperature, although close to melting they
may be important. ' ' ' In the three-dimensional (3D)
rare-gas solids, vacancies are thought to be the primary
thermally activated defect, ' but analysis of the
specific-heat data is difficult because of the complex lat-
tice contribution. In two dimensions one expects that va-
cancies and dislocation pairs are the most probable
thermally activated defects; they have very similar struc-
ture when the dislocation pairs have a separation of one
interatomic spacing. '

We have analyzed our data in terms of a thermal ac-
tivation of noninteracting vacancies or unseparated dislo-
cation pairs. As we cannot distinguish between these mi-
croscopic configurations, we will refer to them simply as
defects. The lattice contribution to the specific heat is
taken to be the Debye expression above Tl8D—-0.06 so
that the excess heat capacity h, C is attributed to thermal
activation. In the dilute-concentration limit, the heat
capacity due to thermal activation is

Cg/Nks (u, /ks T) e—— (6)

and the fractional defect concentration is

TABLE II. Specific heat of He/graphite from lattice dynamics calculation. SD ——27.31 K, n =0.092
A . C~ equals the quadratic Debye approximation, CD equals the integral Debye specific heat, and

CLD equals the lattice dynamics specific heat.

T (K)

0.20
0.60
1.0
1.4
1.8
2.2
2.6
3.0
3.4

T/SD

0.007 31
0.021 92
0.035 3
0.051 15
0.065 76
0.080 38
0.09499
0.1096
0.12422

Cg/Nkg

0.001 54
0.013 86
0.038 51
0.075 47
0.124 76
0.18637
0.260 30
0.346 55
0.445 13

0.001 54
0.013 86
0.038 51
0.075 47
0.124 75
0.186 12
0.258 79
0.34096
0.429 97

CLD/Nk g

0.001 54
0.013 87
0.03903
0.079 82
0.137 86
0.209 47
0.289 26
0.373 11
0.458 44

SD( T)/SD( T=O)

1.0000
0.9996
0.9933
0.9724
0.9512
0.9422
0 9AAA

0.9532
0.9649
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I.o
TABLE III. Defect activation energies, entropies„and con-

centrations from specific heat of He/foam.

0.9—
il

o.8-
+x 07

o.6—

0 5-
I i I

0.04 0.08 0.I2

0.089 33
0.09075
0.09099
0.091 23
0.091 67
0.093 88

20.7
25.2
24.4
25.3
24.9
27.3

s, /kg
( +0.3)

2.2
2.9
2.6
2.7
2.5
2.4

5.2
3.1

3.3
3.1

3.1

3.0

T/Q» (T=O)

FIG. 9. Reduced Debye temperatures vs reduced temperature
for measured heat capacities ( ) and 2D lattice dynamics
calculation ( ———).

Over the range 9.5&SD!T&12.5, the data fall on a
straight line, consistent with Eq. (6). Table III shows the
empirical values of activation energy (+4%), activation
entropy (+15%), and defect concentration at
T/eD 0.11. T——he small fraction of defects is consistent
with the dilute-concentration approximation made in ob-
taining Eqs. (6) and (7).

The low-temperature (en/Tp 13) deviations apparent
In Fig. 10 may be due to feal corrections of to systematic
errors in the heat-capacity data, but these errors are small.
As can be seen in Fig. 11 the total speciflc heat is well

represented up to T/en —=0.10 by the sum of a lattice
contribution with constant OD and a vacancy activation
term.

NMR results9' for He/graphite also show an
activation-energy form and were interpreted as due to va-

cancy excitation. The analysis just presented is constant
with that description and agrees fairly well with the ac-
tivation energies obtained in that work. At a coverage of
n=0 0896 A. , the NMR results indicate u, /ka ——21+2
K while our measurements yield u, /ka ——20.7+0.8 K for
nearly the same density (n=0 08933 A. ). Although the
systems are different helium isotopes, the evidence sys-
tematically points to defect formation in these 2D solid

to ~i i 1 i l
I

V

systems below the melting transition. The excitation value
of u, /kii ——40 K reportni by Lauter et al. in a neutron
scattering study of He/Grafoil is of the same order of
magnitude but the uncertainties in the neutron data are
much larger than in the specific-heat and NMR measure-
ments. %e will discuss the neutron scattering results in
more detail in Sec. V.

IV. HETEROGENEOUS EFFECTS ON A FIRST-ORDER
MELTING TRANSITION

Above the region where thermal defect excitation is the
primary excess specific heat, the heat capacity rises quick-
ly to a peak previously identified as the melting of the 2D
solid phase. The order of the transition has been thought
to be continuous due to the rounded and symmetric
features of the peaks. However, finit-size effects and the
influences of variations in binding energy were not con-
sidered in making that identification. We now explore the
possibihty that the transition is intrinsically first order but
that the heterogeneous properties of the real film broaden
the ideal first-order peaks into the experimentally ob-
served peaks. Continuous melting transitions are dis-
cussed in Sec. V.

The techniques discussed by Ecke et al 'can be a. p-
plied to get a quantitative estimate of the effects of energy
heterogeneity on an ideal first-order melting transition.
For an accurate calculation of these effects, one needs a
complete thermodynamic description of the ideal system
and the distribution of substrate binding energies. This is
not possible with the specific-heat data and the characteri-
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with the values for the compressibility of the solid, ET,
taken from Elgin and Goodstein's expression for the
zero-temperatures 2D spreading pressure of He on gra-
phite, 4

/=5. 5(10n} +0 81. (9)

in units of dyn/cm. The liquid phase discontinuity is tak-
en to be equal to the solid discontinuity since the compres-
sibilities are comparable. At a density n=0.09 A and a
transition temperature of about 3 K, the calculated
discontinuity is hC/Nkz ——1.2. The compressibility close
to melting is greater than the T=O value, so this calcula-
tion sets an upper bound on the magnitude of the discon-
tinuity. We note that as the coverage increases the discon-
tinuity increases, due to the rapid dependence of the
compressibility on density. This is consistent with the in-
crease in height of the experimental specific-heat peaks.

The ideal width of the two-phase region is determined
by the condition that total entropy of melting be the same
for the ideal and experimental peaks. Since the width is
broadened by heterogeneity, it is less than the full width at
half maximum of the experimental peaks. The experi-
mental widths range from 0.1 K at n =0.089 33 A to 0.2
K at n=0.09388 A . The ideal two-phase region is
assumed to be symmetrically situated about T~q and the
ideal solid and liquid properties obtained earlier are extra-
polated to the phase boundaries. The presumed ideal

zation of heterogeneity by vapor-pressure isotherms, but
an estimate consistent with the measurements can be
made.

A. Ideal specific heat for first-order melting

We do not know the precise characteristics of an ideal
first-order melting peak but we can construct an approxi-
mate one from the experimental data. The specific-heat
contribution far from the melting peak is assumed to have
ideal single-phase properties. Ecke et al. ' showed that
energy heterogeneity has a small effect on single-phase
properties when the distribution of binding energies is
fairly narrow and symmetric. We will assume that the
behavior of the experimental specific heat outside a tem-
perature interval of T~k+0.2T~„ is that of an ideal sin-
gle phase. The lower temperature corresponds to the end
of the region described by the Debye plus defect contribu-
tions. The upper temperature is taken to be the same tem-
perature increment above T~~.

The low-temperature solid has been characterized below
T/eD =-0.10 earlier in Sec. III. Above the melting transi-
tion the specific heat falls smoothly to a constant value
(Fig. 2), with an increase in magnitude as T~i, is ap-
proached from above. (We neglect at this time the small
subsidiary peak or shoulder seen at temperatures slightly
higher than the peak. } This form is approximated as
C/Nks ——0.30+ 1.96/T. An estimate of the specific-heat
discontinuity is obtained from evaluating the expression
for the conversion heat capacity in the two-phase region
(see Appendix) at the solid phase boundary,

T 2
hC T 1 dn

Nkq nKT n dT

With the ideal specific heat calculated, the influence of
heterogeneity can be quantified. The finite sizes of sub-
strate crystallites and uniform domains lead to thermo-
dynamic fluctuations and edge effects which will result in
a smearing of the ideal behavior over a certain tempera-
ture interval.

Imry has shown that the temperature width due to
fluctuations is related to the entropy change in a first-
order phase transition by

T 1

T Ns' (10)

where s equals entropy change per particle and N equals
the number of particles in a uniform domain. Grafoil has
a linear domain size s' of roughly 100 A, while the
domain size for graphite foam 'i is at least 300 A. For
helium film densities of about 0.09 A ~, these domain
sizes give rise to particle numbers of 900 for Grafoil and
8100 for foam. The latent entropy of melting, in units of
kii, has been estimated to be from 0.03 for n=0 0893.A
to 0.08 for n=0.0939 A . Table IV shows the tempera-
ture broadening due to fluctuations for several densities
with domain sizes corresponding to Grafoil and foam. On
the basis of this comparison one can see that finite-size
smearing due to fluctuations will be unimportant relative
to the widths of the melting peaks (greater than 0.1 K) of
He/foam in the density range of 0.089—0.094 A . At

lower densities the decreasing latent heat will cause the
smearing to be greater. In Grafoil, on the other hand, the
temperature fluctuation of 0.12 K at n =0.09 A is about
the same as the melting-peak widths and should play an
important role in rounding the ideal specific-heat signal.
This inay be one of the reasons why the 0.0842-A peak
on foam is considerably sharper than the Grafoil peak at
that density. At higher densities in Grafoil, the smearing
is also reduced appreciably and should not be the dom-
inant factor in rounding the transition.

In addition to finite-size rounding due to temperature
fluctuations, there are effects due to the non-negligible
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FIG. 12. Calculated specific heat of an ideal first-order tran-
sition ( ), a heterogeneity-broadened first-order transition
( ———), and the experimental transition, for density
n =0.09075 A (~).
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first-order specific heat, constructed in this inanner, is
shown in Fig. 12.

B. Finite size
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TABLE IV. Calculated temperature broadening of first-order melting peaks due to temperature fluc-
tuations in small domains.

n(A ) T (K) s/kg
N= 8100

h, T/T hT (K)
N=900

hT!T hT (K)

0.0893
0.0910
0.0939

2.78
3.14
3.69

0.03
0.05
0.08

0.004
0.0025
0.0015

0.01
0.008
0.006

0.04
0.02
0.01

0.12
0.06
0.04

5T= n K&5p.
dT

n
(12)

With compressibilities calculated from Eq. (9),
ka5T=-0. 15@, for densities close to 0.09 A . The tem-

perature shift is only 0.004 K for Grafoil and 0.001 K for
foam. These temperature shifts are insignificant com-
pared to the measured widths.

C. Energy heterogeneity

Another source of heterogeneity is the variation in sub-

strate binding energy. Although no explicit calculation
has been done for helium melting in the manner described

by Ecke et al. ,
' one can obtain estimates of the effects by

scaling their results and by making reasonable assump-
tions about how the binding-energy variation depends on
the substrate-adsorbate interaction.

We have characterized the heterogeneity of the foam
graphite substrate with vapor-pressure isotherms of Kr
and Xe, using the analysis of Dash and Puff. By this
procedure we obtain the distribution of binding energy of
the test gases. The distributions are approximately Gauss-
ian over the central regions, with halfwidths 5e=4.5+1.5
K for xenon and 5e=2.5+0.5 K for krypton. With bind-
ing energies of 2000 and 1800 K, respectively, fractional
widths are 5e/a=0. 0025+0.0008 and 5e/@=0.0015
+0.0003. An average of these two widths, 5e/e =0 002,is- .
taken as the magnitude of the binding-energy variation.
The width of the variation in helium is estimated by scal-
ing the width for krypton in the manner described by
Dash and Puff,

(13)

where the subscripts 1 and 2 refer to different rare-gas ad-

edge-to-surface ratio of finite-size domains. The finite
size causes a shift in chemical potential relative to an in-

finite system, given byi

&1s

nr

where ai, is the liquid-solid line tension and r is the radius
of the finite-size domain. The 2D line tension is estimated
from the 3D surface tension as the surface tension in a
single atomic layer of thickness L by a~, iD ——Lai, iD. A
3D value of 0.10 erg/cm and a thickness of 3 A gives a
2D line tension of 3X10 erg/cm. For Grafoil, r=50
A, while r & 150 A for graphite foam. The resultant shifts
in chemical potential are 0.04 K for Grafoil and 0.01 K
for foam. The temperature shift in the melting peak due

to this variation in chemical potential is approximately

sorbates. The binding energy of helium is about 140 K,
so the scaled width in helium is 5@&0.28 K. The resul-
tant temperature halfwidth broadening, with the use of
Eqs. (12) and (9), is 5Th„&0.02 K.

The use of Eq. (12} to estimate the temperature
broadening of a first-order discontinuity due to variations
in substrate binding energy is an approximation which ig-
nores the specific-heat contribution due to the redistribu-
tion of the surface density. As the temperature changes,
the film density changes on areas of the substrate with
different binding energy. This redistribution requires en-

ergy in excess of the energy required to change the tem-
perature of the film (see Dash and Puff ). Thermal redis-
tribution effects can be large for some transitions; for ex-

ample, the liquid-vapor transition in the model system
described by Ecke et al. ' is temperature broadened by 5
times as much as an estimate based on Eq. (12}. In the
high-density region, the effects of redistribution should be
smaller due to the lower compressibilities of the solid and
liquid. We estimate that the full widths including distri-
bution are in the range 0.04 g hT g 0.16 K.

To reproduce an averaged specific-heat peak from the
ideal heat-capacity function presented in Sec. IV A, we as-
sume a Gaussian distribution of transition teinperatures
for the central region, consistent with the krypton and xe-
non isotherms. Rather than a single Gaussian, we use a
combination of Gaussians with widths oi and oi and
weights w, and wi to approximate the tails of the mea-
sured distribution because the results of Ecke et al. '9 indi-
cate that the tails of the distribution are broader than the
simple narrow Gaussian which describes most of the area.
We convolute the ideal specific heat with the broadening
function to obtain an averaged specific heat given by

'
2 Cid~i(2s 7)

+Ni F(Tg, Tg, cTi)de—8@2

where
(14)

and T, is the solid phase-boundary temperature. The
weights and widths of the distribution, the ideal heat-
capacity discontinuity, the two-phase temperature width,
and the solid phase-boundary temperature are adjusted to
fit the experimental specific heat at n =0.09075 A 2. The
ideal and averaged curves are shown in Fig. 12 for the fit-
ting parameters listed in Table V. Note that the fitted pa-
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TABLE P. Parameters jn calculation of averaged and ideal specific heat of He/foam. 0 &, ~&, W&,

II'2, and T, are described in the text in relation to Eq. (14). hC/Nks is the specific-heat discontinuity
of the ideal first-order transition, and hT is the temperature width of the ideal phase boundary at con-
stant density.

Parameter

Estimated
Fitted

crl (K)

0.02—0.08
0.05

oq (K)

0.20

Wl

35go

AC/%kg

g 1.2
0.925

T, (K)

3.05
3.04

5T (K)

rameters are all close to the estimates, with the possible
exception of the fraction of the substrate with the larger
temperature width. This fraction may not accurately re-
flect the wider portion of the binding-energy distribution
because it is difficult to separate single-phase contribu-
tions to the specific heat from the effects of heterogeneity.
Some of the increase in the experimental specific heat near
the peak could be due to an increase in the single-phase
specific heat and not due to a wider distribution of bind-
ing energies. Also, the effective distribution of transition
temperatures is not the binding-energy distribution. The
actual binding-energy distribution produces an effective
distribution of transition temperatures through the
averaging process. Since the averaging includes redistri-
bution contributions to the specific heat, there is no reason
to expect that the effective temperature distribution has
exactly the same form as the binding-energy distribution.

Voile the calculation of the averaged specific heat is
approximate, as noted earlier, the success in reproducing
the experimental behavior raises the possibility that the
transition is intrinsically first order, but experimentally
broadened by variations in substrate binding energy.
However, our analysis does not preclude a continuous
transition, and this will be considered in the next section.

V. COMPARISONS

We have presented evidence that defects are excited in
the low-temperature sohd phase of He adsorbed on gra-
phite foam and that the experimental melting peaks are
consistent with a first-order melting transition. In this
section we will compare our results with the predictions of
theories of 2D melting and with NMR, neutron scattering,
and spreading pressure measurements.

The dislocation-mediated melting model of Kosterlitz,
Thouless, Halperin, and Nelson' ' makes definite pre-
dictions about the properties of the solid phase and the
melting transition. The melting due to the unbinding of
dislocation pairs is a continuous transition, with an essen-
tial singularity at T . At an essential singularity all ther-
modynamic derivatives are finite, so there is no divergence
in the specific heat at T . A broad specific-heat peak due
to the progressive unbinding of the remaining dislocation
pairs would occur above T~. Halperin and Nelson
showed that if the melting transition is a continuous dislo-
cation unbinding transition, the high-temperature phase
retains some slowly decaying angular correlation. A
second transition is necessary to destroy this intermediate
phase, which Halperin and Nelson call the hexatic phase
due to the hexagonal symmetry of the angular correla-
tions. They showed thai the second transition, due to the
unbinding of disclination pairs, is also characterized by an

essential singularity.
Halperin and Nelson also considered the effects of a

periodic potential on the properties of the melting transi-
tion. For the melting of an incommensurate film on a
substrate with triangular symmetry (such as He/graphite),
the hexatic phase is stabilized and no second transition
due to disclination pair unbinding should occur.

Although Halperin and Nelson predict a two-stage con-
tinuous melting transition mediated by the unbinding of
pairs of topological excitations, they do not rule out the
possibility of a first-order transition preempting the
higher-order transition. Chui' proposed a grain-
boundary mechanism for first-order melting, but others
are also possible. In general, first-order melting occurs
when the liquid free energy becomes less than the solid
free energy. This may happen before the solid becomes
unstable to the formation of particular microscopic de-
fects. If the transition is first order, the melting tempera-
ture should be less than the temperature of unbinding of
dislocation pairs.

We can compare the predicted dislocation melting tem-
peratures with the He/graphite specific-heat peak tem-
peratures. If the melting transition is continuous as
described by the dislocation model, then the calculated
melting temperatures would lie below the peak tempera-
tures. For first-order melting the calculated temperatures
should be greater than the peak temperatures. The dislo-
cation melting temperature T, in terms of the Lame elas-
tic constants p, and A, of the solid, is

u0 p(@+A) (16)
4n ks (2p+ A, }

where ao is the lattice constant. By relating the elastic
properties to the Debye temperature at T=O K, one can
obtain an approximate expression for T in terms of SD,
by assuming the Cauchy condition, p, =A, (Ref. 41):

Oss
~

(17}
8$2 yg

Previous comparisons ' ' ' have utilized Eq. (17) and the
experimentally determined Debye temperatures because of
a lack of information about the elastic constants. Howev-
er, the approximation required to obtain Eq. (17}neglects
several important effects. The first is the assumption of
the Cauchy condition on the Lame coefficients. The
second is the neglect of the finite pressure required to sta-
bilize the helium solid. Stewart has shown that the ini-
tial pressure modifies the relationship of the elastic and
thermal parameters needed to calculate Eq. (17) from Eq.
(16). There is also a correction to the melting tempera-
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FIG. 13. Comparison of specific-heat peak temperatures for
He/foam and He/Grafoil with calculated Kosterlitz-Thouless

melting temperatures T . Experimental peak temperatures

( ); T, from Eq. (17) and experimental Debye tempera-
tures (——); T, from Eq. (18) and elastic constants from Good-
stein and Greif (Ref. 24) (—-).

tures due the orientational infiuence of the substrate. The
dislocation melting temperature of a 2D solid film with a
periodic substrate potential is'

uo p(@+A,) p, y
4nkii (2@+&) }M, +&

(18)

where y is the elastic constant which measures the resis-
tance to rotation of the overlayer lattice with respect to
the substrate. Goodstein and Greif24 have calculated the
elastic properties of He, taking into account initial stress
and substrate infiuences. With the use of their values for
p, A, , and y, the dislocation melting temperatures for
He/graphite can be calculated from Eq. (18). Figure 13

shows a graph of the calculated T and the heat-capacity
peak temperatures. Note that the 1 values calculated
from Eq. (17) are considerably less than those obtained
from Eq. (18}. The substrate correction is less than 5%,
so the primary difference is due to the Cauchy approxima-
tion and the neglect of the finite-pressure correction in Eq.
(17).

There is another effect which infiuences the calculated
melting temperatures. The elastic constants in Eqs. (16)
and (18} should be evaluated at the melting temperature.
As a first approximation, the temperature dependence of
the elastic constants can be estimated from computer-
simulation studies. The combination of elastic constants,
which enters into the formulas for the melting tempera-
tures, is p(@+A,)/(2@+A, ). In the computer study of To-
bochnik and Chester this combination decreases by
about 10% between 0.6T and T, including the effects
of renormalization near T . This decreases the values of
T calculated above. However, the dislocation melting
temperatures, which are calculated to lie 20% above the
experimental peak temperatures when the temperature
dependence of the elastic constants is neglected, are still
above the peak temperatures when this effect is included.
Although this result is consistent with a first-order transi-

tion preempting the dislocation melting mechanism, better
measurement or calculation of the temperature depen-
dence of the elastic constants for helium is needed before
the effect can be accurately assessed.

Numerous studies' ' 9' of 2D melting have been made
employing computer-simulation techniques. Some results
have been interpreted as indicating first-order melt-

ing,
' ' but others have shown evidence for continu-

ous melting. ' ' The order of the melting transition
may be difficult to determine from computer simulations
because there are finite-size and finite-time limitations
which make the interpretation of the results uncer-
tain. ' ' For temperatures below the melting region,
the studies agree qualitatively on the properties of the
solid. There is evidence for the thermal activation of de-
fects, including dislocation pairs and grain-boundary
loops, with activation energies of about 10k~ T~ (Refs. 29
and 45) and defect concentrations of about 5%.

Saito ' finds that for a group of interacting dislocation
pairs on a triangular lattice the order of the transition de-
pends on the dislocation core energy. For high core ener-

gy, he finds a continuous transition while for a 30% lower
core energy the transition is first order, characterized by a
large discontinuous increase in the defect concentration at
melting.

Several of the theoretical and computer calculations
have generated specific-heat peaks which can be compared
to the experimental curves. Our experimental peaks have
widths of 5T/T=0. 08. Values for three different
specific-heat calculations are as follows: (1) 5T/T=0. 2,
Saito, ' vector-dislocation model (Monte Carlo); (2)
5T/T=0. 27, Solla et al. , scalar XY model (renormaliza-
tion group); (3) 5T/T=0. 35, Tobochnik and Chester, si

scalar XYmodel (Monte Carlo}. The calculated curves are
broader than the experimental peak even though the ex-
perimental curve is broadened by energy heterogeneity.
However, the calculated peaks are nonuniversal. A more
rapid unbinding of dislocation pairs due to a smaller core
energy could produce a narrower peak but that would in-
crease the defect concentration at melting and tend to
favor a first-order transition if Saito's arguments are
correct. The defect concentration at the critical tempera-
ture for the XY model, closely related to the dislocation
melting model, is 0.3%, which is close to the defect con-
centrations at melting for the specific-heat data (Table II}.
This indicates that the core energies are comparable and
that a large decrease in the calculated width of the peak in
the XY model would require a core energy much smaller
than the experimentally determined core energy for heli-
um.

The specific-heat analysis of Sec. IIIA indicates that
vacancies (or tightly bound dislocation pairs) are thermal-
ly excited in He below the melting temperature with ac-
tivation energies that agree with the NMR results of
Richards and Owers-Bradley. The NMR results of Wi-
dom et a/. , which showed a frequency-dependent relaxa-
tion time, are interpreted by them as indicating a
Halperin-Nelson transition from solid to hexatic liquid
crystal. The temperatures of the onset of the frequency-
dependent relaxation time correspond closely to the tem-
peratures at which the NMR measurements detected the
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ao
(19)

From the spreading pressure measurements of Hurlbut
for He/graphite, 5$ -=0.18 dyn/cm, while KT -=0.05
cm/dyn from Eq. (9). The fractional change in ao is
0.5%. Since close to melting ET is larger than its value at
T=O K, the fractional change is somewhat greater than
0.5%.

With the use of the specific-heat parameters and a va-
cancy area of a„/a=0.7 consistent with the spreading
pressure measurements of Hurlbut, the decrease in ao due
to thermal activation of defects is 0.3% at 3.8 K. The de-
crease in lattice spacing due to both vacancy and first-
order melting contributions is 5oo/a0=-0. 8% at 4 K, in

beginning of vacancy activation (Table VI). The specific-
heat data indicate the onset of appreciable activation at
T/erp ——0.08 for densities close to 0.09 A 2. The iHe
NMR reduced onset temperature for n=0.0896 A is
T/ez ——0.083. We believe that this correlation of the on-
set temperatures of the frequency-dependent relaxation
time with the activation onset temperatures of the NMR
and specific-heat data indicates that the frequency depen-
dence of the relaxation time is a consequence of the
thermal activation and not due to a dislocation melting
transition as suggested by Richards et al.

The neutron scattering results of Lauter et al. show
a decrease in the lattice constant ao of solid iHe/Grafoil
close to melting. At n=0.0910 A, ao remains constant
up to 3 K. From 3 to 4.1 K, there is a decrease of about
1.0% in oo. Several factors could be responsible for this
decrease. The activation of vacancies causes an increase
in pressure in the solid and a resultant decrease in ao.
Lauter et al. found that an activation energy of 40 K, an
activation entropy of 5.1k', and a vacancy area of unity
could explain the decrease in lattice constant over the en-
tire range from 3 to 4.1 K. However, the solid melts at
3.8 K as evidenced by the specific-heat peak of Hering
et al. Also, the activation parameters obtained from
specific heat of He/foam (Table II) and from 1!ACR data
of He/Grafoil (Table VI) are significantly less than the
values obtained by Lauter et al. If the melting is first or-
der, an increase in temperature at constant coverage
causes a decrease in the solid lattice spacing because there
is a rapid increase in pressure in the two-phase coexistence
region. The magnitude of the decrease in lattice spacing
due to an increase in pressure is given by

approximate agreement with the neutron scattering re-

sults.
The diffuse secondary specific-heat peak that is visible

for the coverage n=0.08933 A 2 and the changes in the
density dependence of ez, C~i„and T~l, close to that
coverage remain to be considered. The second peak could
be interpreted as the transition due to the loss of orienta-
tional epitaxy in the fluid phase, described by Halperin.
He pointed out that if the incommensurate solid phase has
two favored orientation angles and if that orientation is
not destroyed by the initial transition, then a second tran-
sition might occur at higher temperature between this
oriented liquid and the hexatic liquid phase. This transi-
tion should have Ising-type behavior with the two Ising
states being the two angular orientations of the liquid.
Goodstein and Greif showed that 2D solid helium does
have such angles of orientation. They calculated an angle
of 22' for He at n=0.092 A and T=O K with an
orientation energy per atom of 0.07 K. He at the same
density has about the same angle but an energy of only
0.02 K. There are several reasons to associate the diffuse
peak with orientational epitaxy. First, the change in the
density dependence of 8&, C~i„and T~i,, occurs close to
the density, n=0.09 A . This is near the density where
the diffuse peak occurs in the specific heat and is also
about the density that the maximum value of the rotation-
al elastic constant of He/graphite, calculated by Good-
stein and Grief, occurs. Also, the change in the density
dependence of the Debye temperatures indicates that the
effect is associated with the structure of the solid. The
correlation of these properties suggests that the diffuse
second peak, the change in slope of the phase boundary
and the changes in the density dependence of the Debye
temperatures near 0.09 A are due to orientational epi-
taxy.

VI. CONCLUSIONS

Our results are consistent with past experimental stud-
ies of the He/Grafoil in the behavior of the solid film,
however, several new results have been obtained in the
current work. Evidence for vacancy {or dislocation pair)
activation is seen in the specific-heat data, helping to ex-

plain the low-temperature behavior in the NMR experi-
ments of Richards and others. i' We have shown that
the melting transition is consistent with a first-order tran-
sition broadened by a fractional variation of substrate
binding energy of 5e/@=3.4X10 . The interpretation

TABLE VI. Activation energy, activation onset temperature, and onset temperature of frequency-

dependent relaxation time from NMR measurements. 9 ~
Tf& (K) is the onset temperature of

frequency-dependent relaxation time.

Fractional
coverage

0.765
0.80
0.83
O.SS
0.92
0.96

n(A ~)

0.0826
0.0864
0.0896
0.0950
0.0990
0.104

u, /kg (K)

11
16
21
27
35
42

T, (K)
(+2 K)

1.2
1.75
2.55
3.30
4.10
4.95

Tgg (K)
(+0.2 K)

1.06(0.2)
1.96(0.08)
2.44(0. 12)
3.28(0.1)
4.08(0.2)
4.88(0.25)



3750 R. E. ECKE AND J. G. DASH

that the melting transition of He/graphite is first order is
also consistent with the neutron scattering results of
Lauter et al. '3 Furthermore, the predicted dislocation
melting temperatures are greater than the specific-heat
peak temperatures, implying first-order melting. Howev-
er, despite the agreement of the experimental data and the
theoretical arguments, we have not proven that the transi-
tion is first order. Additional measurements are necessary
before a decision between the two alternatives can be
made.

On the basis of the current study, we propose a modi-
fied He/graphite phase diagram, Fig. 14. We believe that
the 1-K peaks reported by Bering et al. represent a triple
line where registered, incommensurate solid and fiuid
coexist. Bering et al. also observed broad peaks close to
2.5 K which we attribute to the registered-fluid phase
boundary. Our estimate of the pure fiuid density at the
triple point is n=0.075 A . The experimental triple line
is curved, with a maximum temperature at the pure fluid
point due to a combination of energy heterogeneity and
finite-size effects. The details of such effects are not
known, but the basic mechanisms seem to offer the best
explanation for this region of the helium phase diagram.
If the melting transition is first order, the coexistence re-
gion has a density width of about 0.0005 A and a tem-
perature width of about 0.1 K except near the triple line
where it widens to 0.003 A and 0.5 K. At n-=0.09
A, the diffuse peak above the much sharper melting
peak, Pigs. 3 and 4, combined with the break in the slope
of the melting line, signals some new behavior. The dif-

l i 1 I I 1 I I'

O. l2 monolayer coverage

fuse peak above the melting peak may be due to remnant
orientational epitaxy in the hexatic fluid after melting. As
discussed in Sec. V, a second transition may occur above

if the orientation of the film is not destroyed by melt-
ing. The underlying hexagonal symmetry of the substrate
cail stabilize the fluid aild iilay also stabihze the orleilta-
tional epitaxy of that phase. Clearly more work needs to
be done, exploring this characteristic of the He film.
Theoretical work on the phase transition associated with
the loss of orientational epitaxy and on the properties of
2D melting on a structured substrate might be helpful in
understanding these questions. Also, new specific-heat
measurements with the use of better graphite substrate
could reveal more of the details of the second peak.
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APPENDIX

In Sec. IV we calculated the specific-heat discontinuity
at a first-order phase boundary from Eq. (8}. This is an
exact formula which can be derived from the expression
for the total heat capacity in the two-phase region.

The total entropy S«i,i is the sum of the single-phase
entropies, S~ and S2. Similarly, the total particle number
and surface area are given by N =N i +%2 and
A =A

~ +A 2. The total entropy per unit area ls
s =S«„i/A =s&(Ai/A)+sz(Az/A). The area fraction of
atoms in phase 1, x, is 3 i/A. In terms of the number den-
sities of the phases x =(n 2

—n }/(n 2 n i },—where
n =N/A. So the expression for the areal entropy in terms
of the single-phase contributions is

Q. l0— s =xsi+(1—x)s2 (A 1)
LC so

+re
008 = . - fluid IC solid

. '- --,"g fl d

registered f I 0 id
o+ 006- &

registered
'

+ vapor

0.04—

dsi
+(1 x)T—

dT n2

I'

Qs) dni Bsi dna+T +T
T dT

The heat capacity pel' ai'ea, c =C/2 =T(ds/dT)gy
lows from Eq. (Al):

T

dsi dxc =xT +T(si —sz)
dT n dT
P

0.02—

0 t 1 t 1 l 1 1

0 l 2 5 4 5 6 7 8 9
T (K)

FIG. 14. Proposed phase diagram of He/graphite. The solid
lines ( ) represent regions where the data are adequate to
determine the phase boundary. The dashed lines ( ———) indi-
cate our conjectured phase boundaries. The line of experimental
peaks at 1 K is curved slightly, but we have displayed the triple
line as occurring at constant temperature as it would in the ideal
film. The curvature in the real film is thought to be due to
heterogeneous effects.

The first two terms are the single-phase contributions to
the total heat capacity per unit area. The remaining terms
represent the conversion contributions. From now on we
will just consider the conversion part of the total heat
capacity,

cco~v dx ~s i dn i

T

BS~ dll2+
Bn2 T dT

From the Gibbs-Duhem relation, n d}u = —s dT+dP and
the Clausius-Clapeyron equation
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d$ nisi —nis2

dT n2 —n2
(A4) dp, dni

dT dT

one gets Sp dp, dn2+(1—x) —aqKr +
)f2 2 cfT

(A6)
dp, 1 2

dT 52 —Pf )

Using this expression and the relation (t)s /t)n )T
=s/n a—/nKq, where n is the thermal expansion coeffi-
cient and ET is the isothermal compressibility, we get

(A5)
Finally one can show that sin ct—/nKr+dis ldT
=(dn/dT)/n Kr, which yields

'2 '2
C~» x I dni I x I dna

T KTi ni dT KT2 nt dT
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