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Determination of Hamiltonian parameters of anisotropic one-dimensional quantum chains
by susceptibility measurements
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With the use of finite-chain calculations, the perpendicular and parallel susceptibilities of
anisotropic XXZ chains have been determined in all parameter domains of the model. It is
shown how these results can be used to extract the parameters J, 6, and g of the model
unambiguously. Application to published materials validates the approach. If one consid-
ers all three components of the susceptibility (P~~, P ', P ), they show a characteristic
behavior in the different parameter regimes (ferromagnets and antiferromagnets, displaying
planar- and uniaxial-anisotropic spin coupling, respectively). From the ratio T,„/T,„one
can decide whether or not a given material is XXZ-like.

I. INTRODUCTION

Recently there has been renewed discussion of
models of one-dimensional magnetic materials, both
for quantum mechanical (e.g. , eigenstates of the
Hamiltonian) and thermodynamic properties (e.g.,
susceptibility, correlation functions) of the models.
This is caused by the availability of more materials
with one-dimensional magnetic character as well as
by further advanced theoretical methods for the
treatment of lattice theories. For a model described
by the XXZ Hamiltonian for spin —,,

N
H =2JQ (S,". S;+ ) +SjSf+ ) +AS,'S,' )+)

+gh S;, S= —, cr, J)0
we investigated the variation of static magnetic
properties, such as the susceptibility parallel and
perpendicular to the chain, with the anisotropy
parameter 6 for all parameter domains. Results can
be made plausible by the aid of a semiclassical inter-
pretation of spin correlation. For the antiferromag-
netic domain, a new method is proposed to deter-
mine the anisotropy parameter from experimental
data. Former ambiguities are removed, and the pro-
cedure is not sensitive to the value of spectroscopic-
splitting factors (g factors) and overall corrections
(background) to the data. The ferromagnetic
domain has also been studied and information on
the behavior of the susceptibility and the determina-
tion of b, is given. Fisher's exact results' on the an-
tiferromagnetic Ising chain could be reproduced, as
well as Takahashi's results on the parallel suscepti-
bility of planar chains which he obtained from the

solution of a nonlinear integral equation derived by
the Bethe ansatz. But his solution is possible only
for some selected values of A.

Using experimental data published in the litera-
ture, materials such as CsCuC13,
Cu(NH3)4 SO4.H20, KCuF3,

[C6H))NH3]CuC13 [ =CHAC],

[(CH3)3NH]XC13 2H2O, X =Co,Cu,

can be described by the (anisotropic) quantum XXZ
chain. For CHAC and [(CH3)3NH]CoC13. 2HzO in-
terpretation as a slightly planar rather than Ising-
like ferromagnet is proposed, contrary to. '

CsCoC13 which has been regarded as an Ising-like
antiferromagnet with 1/b, =0.1, does not seem to be
an XXZ-like magnetic material at all. This might
explain contradicting interpretations of elementary
(dynamic) excitations in CsCoC13 which were pub-
lished recently.

All results were derived by finite-chain calcula-
tions. Extensive information is given in Ref. 8. Ac-
curacy is believed to be high as has also been shown
by previous investigations. The finite-chain calcula-
tions are discussed in Sec. II and the Appendix, re-
sults on susceptibilities are presented in Sec. III, and
in Sec. IV we propose a new method to compare ex-
perimental and theoretical results and to obtain vari-
ous parameters of the model. Our conclusions are
presented in Sec. V.

II. FINITE-CHAIN CALCULATIONS

A. Spectrum

Finite-chain calculations have been used to find
eigenstates and eigenvalues of the XXZ chain. This

373 1983 The American Physical Society



K. G. BUCHER AND J. HONERKAMP

approach has been pioneered by Bonner and Fisher
in the early sixties, and recently been used to deter-
mine neutron-cross sections by some groups. '

By means of a computer, one numerically diagonal-
izes the Hamiltonian (1) for a finite number of lat-
tice sites N. As there are 2 basis states, one care-
fully has to exploit symmetries of the Hamiltonian.

(i) Translational invariance and invariance under
spin rotations around the z axis render the momen-
tum q and the total z component of spin

X
;=gs,'

as good quantum numbers. H, therefore, is of block
diagonal form, and the size of the largest matrix to
be diagonalized thus reduces from 2 X 2 (e.g. ,

1024X 1024=10 in the case of N = 10) to approxi-
mately

tained from

g (T)=NL (g((y~)'Sf draSII(0, ~)

while perturbation calculations' and Hohenberg
and Brinkman's exact sum rules' both give

X'(T) Nr (g,p=p)' 2f S'(0,~) . (4)

X'= lim z', i =xyz or ii, l0 F(T,h)

ah,'

where F(T,h) is the free energy of the chain. Owing
to the quantum mechanical structure of the model,
the susceptibility is not isotropic (except at 6 =+1),
and one discriminates the susceptibility X~ ~ =X
parallel to the chain, and a perpendicular suscepti-
bility X =X"=g&, if a field perpendicular to the
chain is applied. Direct evaluation of (2) gives

NI is Avogadm's number, pe the Bohr magneton,
P= 1lkT, g the spectroscopic splitting factor, and
S'(q, co) the dynamic form factor

S'(g, ) g' =f d( '(S ((')S; "( (0), ),
j,m

1=x,y

N equals the chain length. Here the angular brack-
ets denote the thermodynamic average,

(A& }=—tr(e ~ AB) .1

z (6)

By using a set of eigenstates, I i
A, ),A, =1,. . ., 2

with eigenvalues E~, we obtain

S'(q, co) =—ge 5(co —(Eg —Eg) )
z~, ~

X
i

(A,
i

S"(q)
i

A, ')
i

where

1~ ge —'&'s," .S"(q)=

Matrix elements of the type (A,
i

S'(0)
i

A, ') have to
be calculated to find g~~ and matrix elements of type
(A,

i
S+(0)

i
A, ') are necessary for calculation of X,

where one takes advantage of the relations

S"= —,(S++S ), (8a)
B. Susceptibility

1 1
X

(i.e., 26 X26 for N = 10). This task can easily be ful-
filled with present-day computers.

(ii) Owing to inversion symmetry only states with
0 (S,'&N/2, due to reflection symmetry, only states
with momentum 0(q (m have to be calculated.
Therefore, a large part of (S,', q) blocks of H need not
be diagonalized and explicitly determined. Eigen-
states of negative S,' are obtained from the respective
positive S,' states by inversion of the spins (except
for phases).

Eigenstates of momentum q larger vr are obtained
from the respective states of momentum 2' qby-
complex conjugation of their coefficients (in a basis
of translational invariant Ising-basis states, e.g. ,

i
a,q), to obtain the eigenvector with momentum

q =277 q, all
i
tx, q) ale—replaced by i

ct, 277 q)—
and the new coefficients are the complex conjugates
of the old ones).

These symmetries and invariances help to serve a
good amount of computer time and storage. Unfor-
tunately for numeric calculations, H is given in
operator form, so in a first step the matrix H has to
be calculated in a suitable representation. Great
reductions of computer time in this very time con-

1

suming process [—,(2 ) 6N spin operators have to be
applied] can be made by application of Lanczos's
method' (see the Appendix), which for a m Xm
matrix directly leads to a tridiagonal form in m —1

operations only (compared to m X m operations plus
explicit tridiagonalization).

Having calculated all eigenvalues and eigenstates,
expressions for the physical susceptibility were ob-

(A. iS (q) i
A, ') =(A,'iS ( —q) i

A)* . (8b)

Selection rules can be used to greatly reduce the
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number of matrix elements to be calculated:

(9a)

are shown against the relative temperature

T'=kT/J . (10b)

(9b)

(9c)

Qwing to the inversion and reflection symmetry, one
again does not have to calculate all matrix elements
left by the rules [9(a)—9(c)]. Qnly a minor part of
the 2 X2 matrix elements actually has to be deter-
mined. For chains of the length 8 and 10 no further
"computing tricks" had to be applied, and calcula-
tion times kept in the range of seconds (chain length
8, Univac 1100 machine).

C. Accuracy

III. SUSCEPTIBILITY RESULTS

Directions in which spin coupling is dominant
(Ising-like,

~ ~; planar, I) will be denoted as "hard"
directions as opposed to "soft" interactions (Ising-
like, J; planar, ii). The exchange parameter J will be
taken to be positive throughout the following sec-
tions. Ferromagnetic chains then correspond to
b, &0, antiferromagnetic chains to 6)Q due to the
operator U which transforms H(5) into'—

H( —b, )=—UH(h)U

Figure 1(a)—1(g) show the parallel and perpendicu-
lar susceptibilities for some selected values of 5 in
the parameter domains of ferromagnets (antifer-
romagnets) [5&Q (6)0)] and planar (Ising-like)
chains [ ~

5
i

&1 (
i
6

i
) 1)]. The dimensionless

quantities

X"=XJ/NI g pa (10a)

Several authors, including Bonner and Fisher, in-
vestigated how finite-chain results extrapolated to
N = oo. ' Concerning static properties (ground-
state energies, integrated amplitudes, autocorrelation
functions, susceptibilities) one obtains results
surprisingly close to the N = oo limit even at very
low N, and good convergence of results (see exten-
sive treatment by Blote, Bonner, and Fisher).

For the few exact results, finite-chain calculations
at N = 10 differ by only 0.3% from the exact values

for infinite chains. The results presented in the fol-
lowing thus are either extrapolated or corrected by
an overall factor. Therefore we believe our results to
be of high accuracy in representing the infinite
chain, the actual computational error being negligi-

le.

For the planar ferromagnet and the antiferromagnet
[Fig. 1(a)] the parallel susceptibility displays high
and narrow maxima at low temperature. As b, in-
creases from —1 (isotropic ferromagnet), these max-
imum move towards higher temperatures, decreases
in height and are broadened. The perpendicular sus-
ceptibility of the antiferromagnet [Fig. 1(b)] shows
the same behavior but the change in shape of the
curves is less pronounced. For both types of suscep-
tibilities (ii, l) the maxima move towards infinity as
5 increases, but at a different rate. This observation
will be the basis for the new method to determine
J,h, g proposed in Sec. IV. The parametrization of
the model,

H=2J'$ (Si Si~+i+Sfsi+i)+S S +i

is helpful in the Ising-limit, where one avoids the
very broad maxima shown in Figs. 1(a) and 1(d) thus
making the determination of g",„and T",„easier
and more accurate. Nevertheless all data are given
in terrrls of Hamiltonian (1).

As can be expected from a pure Ising ferromagnet
(which has a ferromagnetic groundstate as opposed
to the planar ferromagnet which has an antifer-
romagnet ground state) gii of the Ising-like fer-
romagnet diverges as T~Q [Fig. 1(c)]. For g of
the planar ferromagnet we find a divergent behavior
too, Fig. 1(c).

In the soft direction of the Ising-like ferromagnet,
shows maxima [Figs. 1(d) and 1(g)] which simi-

larly to Pii of the planar ferromagnet increase in
height and move towards T =0 as b, increases from
—~, till at b, = —1 we find a power-law divergence
(being the isotropic model, X has to display the
same behavior as g at this value). For the hard
directions of the ferromagnet (Ising-like,

~ ~; planar,
i) the divergence is nearly independent of b, [Figs.
l(e) and l(f)], as is shown in a log-log plot. This is
not, foo surprising because anyway maximum spin
coupling will be found in these directions so that
alignment should not be too sensitive to the actual
strength of the strong (hard) coupling. In both cases
as T~Q we find a power-law divergence. Com-
pared to the curves calculated by Takahas» for X,
using nonlinear integral equations derived from the
Bethe ansatz, and to the maxima of Xii and X of the
antiferromagnetic Ising chain calculated by Fisher, '

we find small deviations for temperatures
kT/J & 0.2 which are due to finite-chain effects (see
above). Position and height of maxima close to
b, = —1 therefore show only the general trend. At
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FIG. 1. Susceptibility of the XXZ model parallel and perpendicular to the chain in all parameter domains (X =6)
versus T'(=kT/J): (a) parallel susceptibility of planar ferromagnet, planar, and Ising-like antiferromagnet, (b) perpendic-
ular susce tibility of the antiferromagnet, (c) perpendicular susceptibility of the planar ferromagnet and para e suscepti-
bility of the Ising-like ferromagnet, (d) perpendicular susceptibility of Ising-like ferromagnets, (e) perpendicular susceptibil-
ity of planar ferromagnets, (f) parallel susceptibility of Ising-like ferromagnets, and (g) perpendicular susceptibility of the
Ising-like ferromagnet with 6 (—1.
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b, = —1 the behavior of X~ ~ changes from a very high
and narrow (antiferromagnetic) peak close to T =0
to the diverging type which is expected for a fer-
romagnet, similar as X when moving from b, = —oo

to —1 [Fig. 1(g)].
From a physical point of view these results can

easily be made plausible by considerations of spin
interaction. The Ising-like ferromagnet shows
long-range order at T =0, the susceptibility there-
fore diverges. Nevertheless average spin projections
into perpendicular directions can be zero, X of the
Ising-like ferromagnet therefore displays maxima.
The antiferromagnet, displaying staggered long-
range order shows no spontaneous magnetization at
T =0, therefore we expect maxima at finite T. Now
consider the planar case: Both ferromagnet and an-
tiferromagnet display an antiferromagnetic ground
state in this domain, S,'=0. For the parallel suscep-
tibility we therefore find the same qualitative
behavior as in the antiferromagnetic regime. As for
the perpendicular susceptibility, even under the con-
dition S,'= 0 the spins can order ferromagneti-
cally or antiferromagnetically in the xy plane for the
planar model. So this argument supports the ex-
istence of a divergence (maximum) in the planar fer-
romagnetic (antiferromagnetic) regime for X .

IV. DETERMINATION
OF EXPERIMENTAL PARAMETERS

BY THEORY

In the following, T,„always denotes the position
of the maximum, and X,„denotes the value of the
susceptibility at the maximum. Quantities without
index r denote values measured in experiment, while
the index r denotes finite-chain results [cf. Eqs. 10(a)
and 10(b)]. Up to now, information on maximum
positions existed only for a few isolated values of 6
and experimental data were either fitted to the iso-
tropic model (Bonner and Fisher's results), to the Is-
ing model (using Fisher's calculations), or to the XY
chain. But these determinations still contain a lot of
ambiguity, as Fig. 2 shows. The same experimental
points can both be fitted with J high, 6=0, or with
J small, and 6=0.25.

Though distinct, both curves lie very close togeth-
er and coincide within experimental error. No sug-
gestion can be made whether deviations from the
theoretical curves are caused by anisotropy, bad
one-dimensional character, crystal fields, etc. This
behavior is especially pronounced in the hard direc-
tions.

From extensive numerical studies we therefore
propose the following unambiguous method to
determine 6 and J from susceptibility measure-
ments, starting from the knowledge of the position

0.5
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E 0. 3

/
J

0.2-

—6=0.25
experiment

0.1-
0.5

l

1.0
T (K)

1.5
I
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FIG. 2. Perpendicular susceptibility of CsCoC14 (Ref.
14). The planar antiferromagnet chain with 6=0 and
6=0.25 has been fitted (hard directions, therefore only
small deviations among the curves).

of the maxima in both
~~

and l direction (i.e.,T,„/T,„). It is applicable in the antiferromag-
netic regime only but does not require the
knowledge of the g factors which rather can be
determined this way.

Fi ures 3(a)—3(c) show the ratio T~,„/T
=T",„/T",„ for the planar or Ising-like antifer-
romagnet, as determined by finite-chain calcula-
tions. This ratio is a function of b. only. Experi-
mental knowledge of the position of maxima of

therefore suffices to deteririine h. The pro-
cedure is not sensitive to background or overall
corrections. J then results from the position of the
X~~ or X maximum, as given by J=kT~»/T~»(b. ).
The more accurate measurement (

~ ~, J.) can be used
to determine J. Values of T','„vs b, are given in
Figs. 3(d)—3(g) for the measurement in a parallel
resp. perpendicular direction. The absolute heights
of X",„T",„(Figs. 4 and 5) serve to calculate the g
factors appropriate to the material concerned [Eq.
(11)]. Results obtained this way can then be com-
pared with specific heat or other measurements for
the same material.

We are able to determine J and b, independent of
g. This is of special advantage because J and 6 are
the characterizing parameters of the XXZ model
which are important for comparisons with nonmag-
netic properties (specific heat, internal energy, etc.).
The g factor is the only quantity influenced by
temperature-independent correction or background,
e.g. , the absolute height of the susceptibility X.

In the case that separate measurements of X,X~~

are not possible, e.g., because of unknown crystal
structure or unknown mixture of X~~ and X in the
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FICx. 3. (a) Ratio Tii,„/T,„ofthe antiferromagnetic XXZ chain, 0& 6 & 30; (b) as (a), for the planar domain; (c) as (b),
for the Ising-like domain; (d) position of maximum of X"ii; (e) as (d), for the planar domain; (fl position of maximum of X";
(g) as (f), for the planar domain.
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periment. X",„T',„vs b, is shown in Figs. 4 and 5
for the parallel and perpendicular directions.
X",„(6 )T",„(b, ) monotoni cally increases (decreases)
for l (

~ ~
) with h. If X,„T „and g are known with

reasonable accuracy one can therefore use their ab-
solute value to determine b„choosing the appropri-
ate figure J then follows from Eq. (10b), using Figs.
3(d)—3(g) and 6(a) and 6(b).

But as Figs. 2 and 4 show, data on hard directions
cannot serve to extract both J and 6: variation of
curves is smaller than experimental error, and only
one parameter can be calculated if the other is
known already. This is not a drawback of our
method but rather a special property of the XXZ
model: its magnetic properties in hard directions are
insensitive to the actual strength of the coupling.
Nevertheless X,„T,„says whether the measure-
ment corresponds to a hard direction: one only can-
not decide between different parameter pairs in this
direction. This method of determination has to be
applied if data on only one direction are known, or
in the ferromagnetic regime where only the soft
direction susceptibility displays maxima.

0.0
0.0 10 15 20 25 30

V. CONCLUSIONS

FIG. 4. g',„T',„as determined for hard directions.
P~

sing-like, X",„?',„.

other crystal directions one has to determine J and b.
from the knowledge of the absolute height of the
susceptibility measured and the position of the max-
imum (see below). But this procedure is strongly
sensitive to the accuracy of the g factors and to
background corrections of X. Both J and 6 can be
affected by errors in g.

Nevertheless we can provide new numerical re-
sults which make the deteinIination of internIediate
values of 6 possible. The best way seems to us to be
the following: Equation (10) could serve to calculate
J if 5 were known already. Because this is not the
case, we replace J in (10a) by (10b):

kTX'=X „XLg pg .

Equation (11) now is applied at the position of the
maximum:

=X",„(b)T",„(b,) .
NLg pa

The right-hand side is a function of the anisotropy
parameter chosen, the left-hand side is given by ex-

Our results can be summarized as follows (Fig. 7).
The susceptibility of antiferromagnetic XXZ chains
displays maxima, both measured parallel or perpen-
dicular to the chain axis. The ratio of the tempera-
tures at the maxima, T,„/T~,„, cannot exceed
2.404 but is larger than 0.64. Ferromagnets display
a more complicated behavior: In the hard directions
(Ising-type, ~~; planar, l), the susceptibility always
diverges as T~O. (All spins point into this direc-
tion, forced through the strong interaction. ) In soft
directions (when the averaged spin component is
zero then), the ferromagnet shows antiferromagnetic
features, i.e., the susceptibility stays finite and has a
maximum. Only at 6= —1 both X,X~ diverge.

Owing to anisotropic g factors the curves for the
perpendicular directions can split into two (Fig. 7).
The anisotropy of the spin interaction causes the oc-
currence of two different maxima resp. maximum
and divergence of X~~,X . The anisotropy of the g
factors causes the splitting of the perpendicular sus-
ceptibility.

We developed a new method to extract the Hamil-
tonian parameters from measurements which we ap-
plied to data published in the literature (see Table I,
Fig. 8). As for KCuF3 (Ref. 4), we can confirm the
results on J and 6: KCuF3 is an isotropic antifer-
romagnet, with J/k =190 K. Here X is shifted rel-
ative to X due to anisotropic g factors [see Fig.
8(a)]. Both CsCuC13 (Ref. 19) and
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FIG. 5. g', „T',„, as determined for soft directions: (a) Ising-like, X',„T',„; (b) planar, X',„T',„; (c) planar ferromag-
net, g'~~ „7'~~ „; (d) Ising-like ferromagnet, g~,„T",„.

Cu(NH3)4SO4 HzO (Ref. 3) are slightly Ising-like
antiferromagnets, with 5=1.36 and 6=1.22,
respectively. Using these values we have also deter-
mined the parameters J, g~~, and g . Now let us look
at CsCoC13, which attracted the experimentalist's in-
terest in order to discriminate between the theories
of elementary excitation of des Cloiseaux and Cxau-
din' or Ishimura and Shiba' in Ising-type antifer-

romagnets. Here XII has a maximum at 85 K, from
T t,„/T,„(2.404 we see that T,„should be )35
K, if CsCoC13 represents a one-dimensional XXZ
model in this temperature range. We can find a
maximum of g at 17 K, ' well below the tempera-
ture predicted by the XXZ' model, and even below
the transition temperature T& ——25 K to higher di-
mensional ordering.
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FIG. 6. Position of maximum temperature for soft direction of ferromagnets: (a) Planar ferromagnet, T",~ (b) Ising-
like ferromagnet, T~,„.
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FIG. 7. Principal behavior of the susceptibilities: (a)
Planar antiferromagnet, (b) Ising-like antiferromagnet, (c)
planar ferromagnet, (d) Ising-like ferromagnet.

Thus we can either conclude that CsCoC13
behaves higher dimensional even in a temperature
range extending beyond Tz ——25 K and also beyond
T „)35 K, because this maximum is suppressed.
Or we have to assume that CsCoC13 is one-
dimensional above T&, but then cannot be governed
by XXZ-like behavior until well above T =35 K.

X~~ of the ferromagnet [(CH3)3NH]CuC13. 2H20
could be fitted equally well to the Ising chain or the
isotropic Heisenberg chain (see Ref. 18). But from
the divergence of X,X ~, Fig. 8(b), we note that this
material must be an isotropic ferromagnet. Here g '

l2and g ' are split probably due to anisotropic g fac-
tors. Next CHAC is slightly planar rather slightly
Ising-like as can be seen in Fig. 8(c). It displays a
maximum measured parallel to the chain, while the
perpendicular susceptibilities diverge (again split due
to g anisotropy).

Although the identification of the soft direction
of the ferromagnet is easy (it is the direction in
which there is a maximum), one still has to distin-
guish between the planar and the Ising-like case, be-
cause the magnetic behavior in both domains is
quite similar. If the soft direction is perpendicular,
one observes two maxima —and therefore the system
is Ising-like; if the soft direction is parallel, one ob-
serves only one maximum but two divergences and
the system is planar (see Fig. 7). From this reason-
ing we suggest that [(CH3)3NHjCoC13. 2HzO is a
planar ferromagnet. We determine b, = —0.08 and
J/k =8.2 K. Experimental data further show that
X'/X'=X /X =const=gj /g~, consistent with

the existence of a divergence which is split by aniso-
tropic g factors. According to the duality of the
planar and Ising-like model which will be discussed
elsewhere one could equally fit X of the Ising model
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FIG. 8. (a) Heisenberg linear antiferromagnetic chain, fitted to KCuF3, (b) data points of [(CH3)3NH]CuC13 2HQO, an
isotropic ferromagnet, (c) data points of CHAC, displaying the planar character of this ferromagnet, (d) magnetic suscepti-
bility of [(CH3)3NH]CoC13'2HQO, a planar ferromagnet.
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to, X~~ measured as has been done by the authors in
Ref. 6. Of course this would predict two diver-
gences and does not correspond to the measure-
ments.
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APPENDIX

Lanczos's method' ' for matrix diagonalization
will shortly be described. As noted above, its major
advantage is the fact that H can be given in operator
form. The method consists in determining a special
basis in which H has tridiagonal form. It is an
iterational method which stops after n —1 steps
(compared to n applications of H, if one evaluates
the full matrix). Let

~
1) be an arbitrary base vec-

tor, and apply H to
~

1 ):

Some simple considerations show the a; to be zero:
The scalar product of H

~

n ) with (j ~, j(n —2,
yields

(j )H
~
n) =a =((j jH)

~
n), (A3)

ai b 0 01

b( a2 b2 0

0 b2 a3 b3

H being Helntitian. But H
~
j) can only be a linear

combination of states 1, . . . ,j+ 1, therefore the sca-
lar product has to be zero.

Our operations thus give the following structure:

H~1)=a( ~1)~b) ~2),

H
)

n ) =c„)
(

n —1)+a„~n )+b„(n+1)
and the whole process terminates if b„—:0. The ma-
trix H in this new base

~

n ) is tridiagonal and b; =c;
because of Heririiticity:

H
I
I) =al

I
I)+bl I»

H
I
2&=ci

I
1)+&z

I
2)+b213) .

(Ala)

(Alb)

0 0 b

Thus new base vectors
~
2),

~

3) are generated by
orthogonal decomposition. Repeated applications of
this process always render

~

u) =H ~i ) as linear
combinations of the base vectors already obtained,
and a new base vector

~

i + 1) orthogonal to all pre-
vious ~i ) as long as I ~i ) I is not complete. After
the nth step one obtains

8 —2

H ~n)= ga; ~i)+c„,~n —1)

+a„~n) b„~n+1) .—

a, =(t iHit),

b = (H/i) b; ) Ji —1)——a; fi) f'.

H has to be applied m —1 times only instead of m
times. In actual computations truncation errors can
occur and reorthogonalization can be necessary. As
Roomany et al. we found no need to do so.
Reorthogonalization seems of more importance if
the Lanczos method is applied to matrices of order
m equaling several thousand, cf. Whitehead et al. '
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