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The redistribution of charge, which generates the Hall voltage, cannot occur only at the edges in a two-

dimensional system but must occur in the bulk. Using a Hartree approximation we derive a self-consistent

equation which describes the charge, current, and Hall voltage distributions in a two-dimensional electron

gas with filled Landau levels. These distributions are weighted toward the sample edges with a decay

length into the bulk which depends on sample size and magnetic field strength.

The observation by von Klitzing, Dorda, and Pepper' that
the Hall resistance of a two-dimensional (2D) electron gas
with filled Landau levels is simply related to the fine-
structure constant and the speed of light has sparked consid-
erable interest in this phenomenon. The interest centers on
the fact that the Hall current I is given by

I = ne'V/h

where n is to a very high accuracy an integer. Theoretically,
this result has been shown to be valid whenever the Fermi
energy lies in a region of localized states. " In addition,
semiclassical arguments4' have been used to show that no
matter how complex the impurity potential and the resulting
field distribution is, the voltage V across the entire sample
must satisfy Eq. (1). The general result must therefore be
satisfied by any calculation of the electric field distribution
for Hall experiments.

The only calculations of actual field distribution in two-

dimensional Hall-type geometries are the classical calcula-
tions using a local conductivity tensor. Here we show that
in the case of filled Landau levels, the field distribution
and, consequently, the current are not given by the local
result in the simple case of an infinitely long conducting
strip. The calculated current is nonuniform even in this
idealized geometry.

We consider a 2D electron gas in the x-y plane with a

magnetic field H in the z direction. We choose to work in

the Landau gauge

A =H(0, x, 0)

and introduce a potential energy V(x), which depends only
on x and is, for the moment, unspecified, The eigenfunc-
tions of the Schrodinger equation are then of the form
L»

' 'iexp(i ky»)P„(x —xp), where

0 cky
Xp=

L» is the length of the gas in the y direction and P„(x) sa-
tisfies

f2 d2

, + ,'mes, 'x—' +V(xp+x) q„(x) e„y=„(x)

y„(x —xp) = P„(x—xp )

where ($„) are harmonic-oscillator wave functions,

1 m c V'(xp)
„=eh'co, (n +

2 ) + V(xp) +-
eH

(6)

and

Xp =Xp—
mc' V'(x, )

H e'

The allowed values of ky are fixed by adopting periodic
boundary conditions in the y direction or, equivalently, by
assuming the Corbino ring geometry:

kyLy = 2mp

where p is an integer. Defining xp 5xp p, where

2mck 2maL

LyeH Ly

(8)

(9)

and aL = (fc/eH) 'i2 is the magnetic length, we find that the
density of the current in the y direction is

jy(x) = — ' $(x —x»)@„'(x—x~')
y p, n

(10)

where x»'=x» —V'(x»)/m~, '. The sum in Eq. (10) is over
all occupied states and we shall assume that no Landau lev-
els are partially occupied. (This requires, from Eq. (5), that
V « t~, and that [ V'(xp) (2/mco2 && 0'co, . These condi-
tions are normally satisfied in the high-field limit. ) Since
Bxp/aL —aL/L « 1 we can convert the sum in Eq. (10) to
an integral and obtain

(4)

Provided that V(x) is slowly varying, i.e., V"(xp) « mes„
we can replace V(xp+x) by V(xp) +xV'(xp) and obtain
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[ ( L /2 ) 2 x2 1/2
(13)

cannot be self-consistently generated. To see this we evalu-
ate the surface charge density of the electrons, in the same

j~(x) =(ne/h) V'(x)

where we have again assumed that V"(xo) « mes,'. Equa-
tion (11) essentially expresses the fact that the current den-
sity is such that the Lorentz force is locally canceled by the
electrostatic force. On integrating over x we obtain Eq. (1).

The potential V(x) must be generated by a redistribution
of the electron density in the 2D gas, Sa (x):

p L„/2
V(x) = —2e J &

In~x —x'~Sa(x') dx' . (12)

We see immediately that, unlike the 3D case where a linear-
ly varying potential is produced by a surface charge at the
sample edges, any finite linear charge density at the edge of
the 2D gas would produce an infinite Hall voltage. We
must therefore allow the density redistribution to occur in
the bulk of the 2D gas. On the other hand, the density
change required to produce a linearly varying potential,

manner as we evaluated the current density in Eq. (10).
The result is

So (x) = X@„'(x—x,') —@„'(x—xp)
y p, n

n V"(x)
o)c

in the limit Sxo/aq « l.
When Eq. (14) is inserted into Eq. (12) a homogeneous

integrodifferential equation is obtained, which, when lengths
are expressed in units of L„/2, becomes'

4e nV(x) = —
J dx'In~x —x'~ V"(x')

h(o, L„

We have used the charge-neutrality requirement that

fi 1

J dx Sa.(x) = "
[ V'(I) —V'( —1) ] =0—1 h o)c

(15)

(16)

which restricts us to odd solutions of Eq. (15). Equivalent-
ly, Eq. (15) may be obtained by minimizing the Coulomb
plus kinetic energies in the magnetic field

4 2 f 1 Pl
1 t 1

E = — dx dx'S(r(x) In~x —x'~Sa(x') + dx [ V'(x)]2
SXoma)'L„" -i

with So.(x) and V(x) related by Eq. (14).
The solutions to Eq. (15) give us the profile of the Hall

potential drop in 2D gas and via Eqs. (11) and (14) the
current-density and charge-density distributions. The mag-
nitude of the prefactor in Eq. (15) is typically much smaller
than 1 in the high-field limit and decreases ~H ' as the
magnetic field is increased. (For example, if L, =S&&105

a.u. , hem, =4X10 3 Ry, and n =1, the prefactor is 10 3).
If, as a rough approximation, we replace ln~x —x'~ by
—S(x —x'), then we see that V(x) and V"(x) are propor-
tional to each other and the Hall potential drop is confined
to a distance W = (L„e'n/h ~,) '~' from the sample edges.

We have not succeeded in solving Eq. (15) analytically
but approximate solutions may be obtained numerically by
discretizing the integral, using finite difference approxima-
tions for V"(x), and assigning definite values for V(x) at
the end points of the interval. The resulting matrix equa-
tions may be solved by standard methods. [We actually use
V"(x) = —V"( —x) to reduce the integral to the interval
from 0 to 1 and set V(0) =0.] Equation (15) may be
viewed as an eigenvalue equation and our success in finding
approximate solutions indicates that the eigenvalue spec-
trum is continuous. Correspondingly, our solutions, which
may be regarded as eigenfunctions of a linear operator, may
be multiplied by an arbitrary constant. Therefore a change
in the current through the sample does not change the
shape of the distribution. The Hall voltage obtained at
W/L„= I/440 is illustrated in Fig. 1. Note that, unlike the
3D case, the electric field produced by the charge redistribu-
tion is nonzero outside the metal. The corresponding
current and charge distributions are illustrated in Fig. 2 and
we see that these are localized somewhat more strongly at
the edge compared with the potential drop.

We have solved Eq. (15) numerically for prefactors
( W/L„)' varying in magnitude from 40.1 to v'0. 00001.

I

The characterization of the solution by the length 8' men-
tioned above, while certainly qualitative, describes reason-
ably well the dependence on its prefactor. For example,
when the prefactor decreases by an order of magnitude from
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FIG. 1. Hall potential for the current-carrying state of a 2D
electron gas in a magnetic field. These results were obtained by
dividing the interval from 0 to 1 into 100 equal-length subinter-
vals, replacing V"(x') by a finite-difference approximation in
each subinterval and doing the logarithmic integral in each subin-
terval analytically. The points just outside the interval near 0 and
1 were set to the values V(x) =0 and 1, respectively. The vol-
tage is in units of (h/2ne )I, half the quantized value from Eq.
(1).
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FIG. 2. As in Fig. 1 but for the Hall current [see Eq. (11)] and
the electron density change [see Eq. (14)].

1.0

40.1 to 40.001, W/L„ is red'uced by a factor of ~10= 3.16.
For the same prefactor the length measured from the edge
at which V(x) =0.5 V(L„/2) changes from 0.422L„ to
0.208L„, i.e., a factor of 2.0. For V(x) =0.6V(L„/2) the
corresponding change is from 0.327 to 0.137, a factor of 2.4.

Generally, we find that measures of the potential drop
length as a fraction of L„decrease toward zero somewhat
more slowly than W/L„, at least in the range of this param-
eter which we have surveyed. Another important feature of
our numerical results is that V"(x) seems to diverge near
the edge with an exponent = ——,. This feature is expected

from Eq. (13) and because the integral equation clearly al-
lows no solution which is analytic at the edges.

In conclusion, we have shown that the current-carrying
state of an ideal 2D interacting electron gas in a magnetic
field, treated in the Hartree approximation, is substantially
different from that of a noninteracting gas where the Hall
potential must be supplied by an external electric field. At
this stage we have made no attempt to include edge effects, '
but do not believe these to be important since even in the
high-field limit 8' should be much larger than a~. The
result of this investigation emphasizes the importance of
electron-electron interactions in theories of the quantized
Hall effect.
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