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With the use of the Krieger-Nightingale model, the donor binding energy in Si is calculated

variationally as a function of donor concentration. The impurity potential incorporates an effec-

tive dielectric function of the host and impurity electrons. The mass anisotropy of the electron

is also included. The Mott constant, aN,', obtained is compared with the earlier results.

It is well known that the donor binding energy de-
creases as the impurity concentration increases and
becomes zero at a critical concentration N, in semi-
conductors. A number of theoretical investigations
were made in the recent past to estimate the Mott
constant aN, ' ', where a is the effective Bohr radius
in the material.

Krieger and Nightingale' have made a variational
estimate of donor binding energy as a function of im-

purity concentration in many valley semiconductors
using a hydrogenlike trial function. Greene, Aldrich,
and Bajaj' have improved the Krieger-Nightingale
model by using the Hulthen function as a trial wave
function. Martino, Lindell, and Berggren3 have
solved the relevant Schrodinger equation numerically
and estimated aN, ' '. In these works the impurity po-
tential in the Hamiltonian is the Coulomb potential
screened by the Lindhard4 or Hubbard-Sham' dielec-
tric function in which the screening due to the
valence-charge distribution of the host material is in-
cluded in the form of the static dielectric constant K.
The present authors have extended the variational
calculations using an effective dielectric function in

the impurity potential which takes into account the
spatial variation of the dielectric function of the host
material. In all these works the effective mass of the
electron is assumed to be isotropic while it is known
that the constant energy surfaces corresponding to
the conduction-band minima in Si and Ge are
spheroids.

Aldrich' has considered the anisotropic nature of
the electron masses in Ge and Si in his variational es-
timate of donor binding energies in these materials.
However, in his work the spatial dispersion of the
host dielectric constant was also neglected.

In the present paper we make variational estimates
of the donor binding energies in silicon taking into
account the mass anisotropy of the conduction elec-
trons and the spatial variation of the host dielectric
function as in Ref. 6. The nonisotropic nature of the
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It, , p, and e are variational parameters chosen to
minimize energy. Equation (2) is different from the
one given by Aldrich, ' but ensures correct normaliza-
tion for )tt.

The Hamiltonian for the system is
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where the potential V(r) has the Fourier transform
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where e,ff(q) is the effective dielectric function. We
use for the host dielectric function et, (q) the modi-
fied dielectric function of Azuma and Shindo, a the
modification incorporating the electron-mass aniso-
tropy,
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electron mass is included along the lines of Aldrich. '
The trial wave function for the donor electron is

chosen as
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where A, B, 0.~, o.2, and o.3 are numerical constants and
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For the screening due to impurity electrons the modified Lindhard dielectric function is used. This is given by
r
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where kF is the magnitude of the Fermi wave vector. Now

(-) K 1+ Es EAs
s +n s +n

s' 4me' 3N 1 4KF' —s' 2kF + s+ —+ ln
$ + +3 Kq 2' 2 8k~s 2k~ —s

(9)

"F(q) d'q

V'&.rr( q )

(10)

Equation (5) with e,ff(q) in Eq. (9) with A =B=0
and n~ = ~ yields the impurity potential used by oth-
er authors. ' ' The screened potential for a point
charge with e,ff as the screening function has been
presented recently in the r space by Geetha and
Balasubramanian.

The units of energy and distance in our calculations
are the effective Rydberg R'= M'e /2jf'E' and ef-
fective Bohr radius a = Eh'/M'e', respectively. The
numerical values of M', M~~/Mq, K, A, B, nt, a2, ct3

used are 0.2981, 5.16, 12, 0.0726, 0.0107, 26.635,
36.674, 12.132.

The expectation value of H in Eq. (4), in the
present units of energy, is
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The energy value for a given concentration is nu-
merically evaluated by locating the minimum of E
with respect to p„P,and e. This is repeated for vari-
ous concentrations. The results are presented in Fig.
1 in which the binding energy is plotted as a function
of impurity concentration. Ours earlier results and
the results of Aldrich are also given for comparison.
The values of the Mott constant aN, ' ' are given in

Table I, along with earlier theoretical and experimen-
tal values.

We find that the introduction of the mass anisotro-

where F(q) is the Fourier transform of tritii' given by

'a~ 0.6

TABLE I. Values of Mott constant. Experimental value
of Mott constant =0.21 (Ref. 1).

Dielectric function Electron mass

0.0 ohio
~«f with ~„=E Isotropic

Anisotropic
0.263 (Ref. 2)
0.25 (Ref. 7)

FIG. 1. Donor binding energy in Si vs impurity
concentration. ———,present authors' earlier work (Ref.6);,present authors' current work; . , Aldrich's
work (Ref. 7).

e,rr as in Eq. (9) Isotropic
Anisotropic

0.288 (Ref. 6)
0.27 (present work)
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py decreases the binding energy and critical density,
whereas the inclusion of the spatial variation of the
host dielectric function increases these quantities.
Thus the error in the spherical band approximation
and the error due to the neglect of spatial dispersion
partially cancel each other.

It may be emphasized that the results presented are
of model calculations, since the valley-orbit interac-
tion and "umklapp processes" have not been includ-
ed. These effects are known to be important for the
electronic ground states of shallo~ donors in Si and

Ge. tc The importance of these effects at high impur-
ity concentration may have to be investigated.
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