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Physical dynamics of solitons
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A collective-coordinate Hamiltonian is derived for a sine-Gordon or @ soliton. It describes a material

particle whose translational motion is coupled to an internal degree of freedom. The Hamiltonian equa-

tions of motion are solved for exactly and show that the "soliton" may exist in a dynamical state of con-
stant translational momentum and constant total energy with an internal vibration which imparts an oscilla-

tory component to the soliton's translational velocity.

In a recent paper' on a phenomenological theory of soli-
ton formation in the linearly conjugated polymer trans-

polyacctylene, a collective-coordinate Hamiltonian was intro-
duced for the soliton. Its construction was based on identi-

fying the soliton's translational position and width as
dynamical variables. In a subsequent paper, ' this Hamil-
tonian was used as a starting point for a quantum-
mechanical theory of the absorption of electromagnetic radi-
ation by a mobile charged soliton (such as that which might
occur in polyacetylene).

In this Brief Report we derive the collective-coordinate
Hamiltonian specifically for a sine-Gordon (SG) or "@"
classical field. Thc Hamiltonian found describes the soliton
as a material particle whose translational motion is coupled
to an internal (vibrational) degree of freedom. The Hamil-

tonian is exactly solvable and shows that the "soliton" may
exist in a dynamical state of constant translational momen-
tum and constant total energy with an internal vibration
which imparts an oscillatory component to the soliton's
translational velocity.

We consider the Lagrangian density functional
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governing a classical field Q(x, t) in one space dimension x.
If we choose h. =-, and V($) =I —cos(g) (I) describes a

SG field while if we set /i=8 and V(@)=8 '(I —@')' (I)
describes a @ field. ' In (I) «, cp, and «ip are constants of
the field. The Euler-Lagrange equation of motion for
@(x,t) is

(2)

The (uniform) ground-state configurations of (I) are
@p=2rrn(n =0, +I, . . .) for the SG field and go= +I for
the @' field. If we introduce the dimensionless space vari-
able y (x/Pd), where d =co/pip and P—= I for SG and
p=2 for $', the well-known static solitary wave solutions of
(2), which interpolate between the degenerate ground
states, satisfy

associated with these solutions are

dy[4'"(y) }' .

Our Hamiltonian description is based on introducing the
ansatz

y(x, t) =P'*'(i/i(x, t))

ill(x, t) = [x —x„(t)l[2/l(t) 1

(6a)

(6b)

for a time-dependent single solitonlike solution of (2). At
time t this ansatz describes a SG-like or $ -like solitary
wave of (total) width /(t) centered at the position x„(t)
As discussed in detail in Refs. 1 and 2, the motivation for
considering these two dynamical variables is the physical
picture of the soliton as an extended, deformable object,
having an identifible center [x„(t)j and an internal struc-
ture [characterized most simply by the width parameter,
l(t)[. We shall refer to x„as the "translational coordi-
nate" and to i as the "internal coordinate" and, more
loosely, to the solitonlike object (6) as the "soliton. " Since
these collective coordinates are effectively parameters in the
structure of the soliton, we call our approach a "parametric
collective-coordinate" method and seek equations describing
the time dependencies of the collective coordinates x„(t)
and l(t).

The latter equations of motion are obtained from a sta-
tionary variation of the classical action S =f dt L where the
Lagrangian L =f dx [Lp'"( /)i]t. Since L =L(x„,x„,l, l)
~here x„and i denote the total time differentials of x„and
i, thc sought equations of motion are evidently the
Lagrange equations
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and the task reduces to the evaluation of L. With the use
of Eqs. (3) and (6) we find

L =
2 M, (/)!'+ 2 M, (/)xi —V(l)

(2P')-'@2= V(y) . (3) where

and are

P"(y) = +4tan '[exp( +y)1

y"(y) = +tanh(y)

for SG and @', respectively. The creation or rest energies

V(/) = (E*/2)(lol + lo I)

M, ( I) = ( IoE,/co2 ) I ', Mt(/) = nM, ( I)

m'/48 (SG)
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and /o=2Pd. We shall refer to V(/) as the "internal" po-
tential energy of the soliton and to Mi(/) and M, (i) as the
soliton's interna1 and translational inertial masses, respec-
tively.

The final step of the derivation is to evaluate the Hamil-
tonian H=p~l+p„x„—L, in which p~ and p„denote the
canonical momenta pi=BL/B/and p„=BL/Bx„. We there-

by arrive at the Hamiltonian system

The solution of Eq. (16) is of the form

$(/, E, r) = d/(2M(/) [E—V(/;p„) ])'" E—r,

((r)/( (p„) = E/E (p ) —([E/E (p„)]i —1]i/i

&&sin[Q;(p„)(t —ro)] (18)H = [p,'/2M ( /) ] + V( /) + [p„'/2M, ( /) ] ,

pi = —BH/B/, / = BH/Bpi

P„=—BH/Bx„, x„=BH/Bp, .

(12) in which

(19)II (p ) =(a&/2pa' ')[I+(p /Mc )']' '
(13)

which with the explicit /dependences given by Eqs. (8) and
(9) may be readily evaluated, hence enabling Eq. (17) for D
to be explicitly solved for l. We obtain

x =p„/M„(i) = (p„co'/E, /p) /, (14)

It describes a material particle whose translational motion is

coupled to an internal degree of freedom.
In the subsequent discussion of this paper we shall omit

the subscript n from the translational coordinate x„. Since x
does not appear explicitly in the Hamiitonian (11) the
translational momentum p„ is a constant of motion. Conse-
quently, the Hamiltonian equations of motion are

and where E may be identified as the total energy E=H
(E~E,) and ro=D a constant determined by the initial

condition of motion.
The solution (18) of the nonlinear equation of motion

(15) is somewhat remarkable. For arbitrary E )E, it

describes harmonic motion about a center of oscillation

(/) =/, (p„)E/E, (p„); the latter increases with increasing E
whereas 0; is quite independent of E. In view of Eqs. (19)
and (10), the characteristic frequencies 0, are, for p =0,

d(/Mi(/) ) B V(/;p„)
dt 81

(15)

E = H = (M,'c04 +cop„') '/'

= M, co /[1 —(x/co) '] ' ' =E.(p )

These are the standard relativistic results for a soliton
translating at a constant velocity x.

The exact time-dependent solution of (15) may be
derived by employment of the Hamilton-Jacobi method.
The Hamiltonian corresponding to (15) is

H H((pi) =p / ii2M(/i) + V(/;p„)

with dynamical variables l and p~. We introduce the
Hamilton-Jacobi function $(/, E, r) which generates a canon-
ical transformation to a new set of dynamical variables D
and E which are time independent. The Hamilton-Jacobi
equations are

H(/, (B$/B/)) +B$/Br =0

p&=B$/B/; D= —B$/BE .

(16)

(17)

where V(/;p ) = V(/) +p„'/2M, (/). The task of arriving at
the time dependences of x and l thus reduces to the solution
of (15). This equation is the equation of motion for a parti-
cle with a position-dependent mass, M;(/), moving in a po-
tential well V(/;p„). Despite its apparent highly nonlinear
character it may be solved exactly.

We first discuss the special case l =0. For this case our
ansatz (6) has the form of the exact single solitary wave
solution of the original SG or $4 field Eq. (2). Thus Eqs.
(14) and (15) should lead to the standard SG or P rela-
tivistic dynamics. The solution of (15) is /=/, (p„), where

/, (p, ) =/0/[I +(p„/M, co)']'/' is the minimum of the poten-
tial V(/;p„). We have introduced M, = M, (/0) = E,/cd.
From (14), x = (p„/M, ) /0 '/, (p„) On exp. ressing p„ in

terms of x we obtain p„=M,x/[I —(x/co)']' ' and

/, (x) = /0(1 —(x/co)')'('. The total energy is

(12/m') '/'aio (SG) (20a)

[3/(ir'-6)]'"0~0=(4)'"~0 (y') . (20b)

Since /(r) is oscillatory it follows from Eq. (14) that the
soliton's translational velocity x possesses an oscillatory
component. The latter is superimposed on a mean constant
translational velocity:

(x) =(p /M, /0)[i, (p )ElE,(p )]
Thus in a state of constant translational momentum p„and
total constant total energy E )E,(p„) the "free" motion of
the soliton resembles that of a cross-country skier.

The Hamiltonian system of Eqs. (11)-(13),does not, of
course, in general, correspond to an exact solution of the
original SG or @ field equation. Indeed, inserting the an-
satz (6) directly into the field equations (2), one can see
that only for uniform translational motion (/=0) is it an
exact solution. We believe, however, that the picture it
gives of the soliton as a deformable material particle ~hose
translational motion is coupled to an internal degree of free-
dom may be useful in providing physical insight into the
dynamical behavior of solitons subject to perturbation. For
example, if a soliton is accelerated from rest by the applica-
tion of an arbitrary external force F it is evident that in gen-
eral F will excite internal kinetic energy (/ AO). This wiII

lead to a time dependence of the soliton's translational velo-
city which will not be simply that of a Newtonian particle,
i.e., x~ t. Recent numerical studies by Fernandez et al.4 of
the SG equation in the presence of an external force have
revealed that (at least for certain times during their accelera-
tion) SG solitons do not behave like Newtonian particles.

The internal kinetic energy of a translating soliton may
also be excited either by a collision or, if the soliton is
charged, by the absorption of electromagnetic energy
("discrete Drude absorption"'). Indeed, a resonance struc-
ture in qh kink-antikink collisions has recently been ex-
plained by Campbell, Schoenfeld, and %ingate, ' in terms of
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a resonant energy exchange between the translational and
internal modes of the individual kinks. Further, as dis-

cussed in Ref. 2, for the charged soliton the oscillatory com-
ponent endows the mobile soliton with an oscillatory electric
dipole moment which is proportional to its mean transla-
tional velocity.

Finally, we note that very recently Segur has shown that
in $ theory a "wobbling kink" solution, with behavior
similar to that of the oscillating soliton found here, can be
constructed by asymptotic expansion methods and can be
proven to be close to an exact solution of P' for reasonably

long times. Also, for the SG equation, Segur6 has shown

that standard inverse scattering methods allow the construc-
tion of a solution which has the properties of an oscillating
kink, although the stability of this solution is unclear.
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