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Long-range correlations in Bethe lattices
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%e show that the long-range correlations in Bethe lattices contain pathological features that cause great

difficulties when calculating physical properties that depend on them.

The Bethe lattice' is a mathematical artifact widely used in

calculating properties of disordered systems. '3 Its use is

justified because it preserves the local coordination Z of the
atoms and does not assume long-range order. In addition,
it is easy to handle mathematically.

When calculating local properties, such as the density of
states or the IocaI response at defect sites, this approxima-
tion gives reasonable results in spite of the unphysical na-

ture of the network. ' When trying to calculate properties,
ho~ever, that involve correlations between distant atoms,
such as infrared spectrum and Raman and neutron scatter-
ing responses, the Bethe lattice fails to give satisfactory
answers. '

Under these circumstances, extreme care has to be taken
in defining a Bethe lattice, and the existence of a surface in

the network is of paramount importance for determining the
character of long-range correlations.

Let us examine the problem in its simplest form by con-
sidering an s-like tight-binding Hamiltonian with a hopping
integral V between neighboring atoms. The equations of
motion for the Green's functions are

The sign of the square root is uniquely determined by the
analytical properties of the Green's function. The band is
confined to the energy range —2V(Z —I)'t2& E
& 2V(Z —I)'t', so that the spectral limits (uEu = ZV) are

not attained for Z & 2.
The infrared spectrum and neutron and Raman cross sec-

tions are related to the imaginary part of quantities like'

ggoJ,
J

which in the Bethe lattice can be calculated by use of (3)
and (5).

The sum of the first r terms of the Bethe lattice described
by (I) is

~r go, 0+Zgo. 1+Z(Z 1)g0, 2+ ' ' ' +Z(Z I) go,

Z-go, o I+ X l(Z —1)t)'
1 1

1 —Z V (Z —I ) '( I —t )go, r

E —ZV

Ego, o=1+ZVgo

Ego, 1= Vgo, o+ (Z —I) Vgo, 2,
which has the limiting form

X = 1/(E —Z V) (7b)

Ego.s = Vgo, n —1+ (Z I ) Vgo, a+I

These equations are valid for all the atoms in a shell n.
When the lattice has a surface, the equation set terminates
at the last shell N (i.e., the surface) which has a different
equation

However, the finite sum (7a) does not converge uniform-

ly to the limiting form (7b), and, as an example, we show
in Fig. 1 the result for the imaginary part of (7a) for N =50
on the linear chain Z =2. It will be seen that there are N
oscillations with a period I//y.

The imaginary part of (7b) is a g function at E =ZV

Ego, w
= Vgo, ~-i (2)

for free ends.
In any large physical system, the number of surface atoms

is negligible in comparison with the number of atoms in the
volume, but in the Bethe lattice this is not so. The ratio
between the number of sites in the surface and the total
number of sites tends to (Z —2)/(Z —I) as N ~, which
is not zero for Z & 2.

If we ignore Eq. (2), as is usually done, and assume an
infinite network, we find the solution of Eq. (1) by defining
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~here the transfer function t is simply

E + IE' 4V2(Z —1)1't'—
2V(Z —1)

(3)
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FIG. 1. Imaginary part of X~(E) in units of 4m [Eq. (7a)] for

(5) N -50 on the one-dimensional inflnite chain (Z =2).
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where there is not an eigenstate of the Hamiltonian for
Z ) 2 if boundaries are included via Eq. (2).

We shall show below that the surface effects described by

Eq. (2) cannot be neglected.
Note that, although the modulus of the argument of the

sum in (7a) can be greater than one, the sum is correct. In
fact, the sum (6) can be done exactly for the finite system
with free ends. Writing the equations of motion in a con-
venient way we get

Ego, o= 1+ZVgo, i

ZEgp &

= ZVgp p+ Z V(Z —1)gp t

Z (Z —1 )Eg p g
= Z V(Z —1)gp t+ ZV(Z —1) gp 3

Z (Z —1) 'Egp g = ZV(Z —1) g p, w —1

Summing up (8) we obtain a finite sum X~ similar to (7):

EXN=1+ZVXN —ZV(Z —1) gpN

1 —ZV(Z —1) gpss

E —ZV
(10)

There are several important results which follow from this
equation:

(i) There is no 5 function at E = ZV because at this ener-

gy the numerator of (10) is exactly zero for all N. This can
be seen by solving (1) for gp N as a set of linear equations:

det

E —ZV 0
—V E —(Z —1) V

0 —V E

0 ~ ~

0 ~ ~ ~ p
—(Z —1)V . 0

gp, w(E) =

det

0 0

E —ZV 0
—v E —(z —1) v

p —V E

—V 0
I

0 ~ ~ ~ p

0 ~ . 0
—(Z —1)V 0

0 0 —V E

and for E = ZV,

—V

0

0
det

ZV —(Z —I) V

—V ZV ~ ~ ~

—V

gO, N(E) =

ZV 0
—V (Z —1)V
0 —V

det

0 ~ ~ ~

(z-1)v

—V! VN

Z(Z 1)NVN+1 ZV(Z l)N
(12)

—v (z —1)v

(ii) If the surface is ignored (i.e., gpN =0) we recover Eq.
(7b).

(iii) The sum X N is entirely dominated by the correlation
between the central atom and the surface ones for Z ) 2,

I

because of the very large factor (Z —1)".
(iv) The limit of X N when N ~ is not X . This can be

seen by writing the surface term in terms of the Chebyshev
polynomials of the second kind (u„). In this way we get
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(Z —1)'"+"i' (Z —1)x
(

X ug i(x/2)
ZV Z-1 g, ,= —(Z-1 -'i'

uiv(x/2) 2 ug(x/2)u~ i(x/2) u~ i(x/2)
+

(Z —1)'i'V (14)

The imaginary part of (13) will consist of a divergent collec-
tion of (N+1) g functions, alternating in sign, whose
weight increases like Z (Z —1)'

We expected the inconsistency between Eqs. (7) and (10)
because the presence of the surface prevents the existence
of the uniform mode. A way of illustrating this is to
suppress the surface in a finite Bethe lattice. Realizing that
the only difference between surface sites and bulk sites is
the coordination, one could always close the surface by join-
ing in pairs the surface dangling orbitals which is the natural
way (i.e. , periodic boundary conditions) for Z=2. There-
fore Eq. (2) now reads

Ego@= Vga~ i+ (Z —1)VgoN,
In this case it is clear that

t

any finite system with a free surface there is no uniform
mode and we cannot strictly regard (7) as the limit of (10)
when N ~. In fact, there is not a simple way to deal
with the surface in the infinite network because of the large
number of distant sites.

%e conclude that attempts to give any physical signifi-
cance to results arising from long-range correlations in a
Bethe lattice are not correct. This has been pointed out in

connection with phase transitions of the Ising model in the
Bethe lattice.

In practice, when calculating physical properties of this
sort one can avoid the surface by arguing, on physical
grounds, that there must be a decay in the correlations and
that only near-atom correlations are important in determin-
ing the responses. This has been done when dealing with
the Raman spectrum of a-Si (Ref. 9) or the infrared spec-
trum of a-Si:H (Ref. 10) and SiOi (Ref. 11), all giving
reasonably satisfactory results.
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