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We propose a self-consistent description of the diffusion of electrons dressed by the Coulomb exchange
interactions in a disordered system, as the metal-insulator transition is approached from the metallic side.
The critical anomalies of the single-particle density of states and dielectric function are evaluated each in

terms of the other. New scaling laws between the critical behaviors of these quantities as well as the dif-

fusion constant and the frequency-dependent conductivity are obtained. It is argued that the density of
states which appears in the expressions for the conductivity and the dielectric function becomes the
anomalous one for frequencies higher than some relaxation rate of the many-body system.

The transition at very low temperatures of a conductor to
an insulator' as a function of increasing disorder is quali-
tatively understood for noninteracting electrons on the basis
of the scaling theory' of Anderson localization (see, how-
ever, Ref. 7). This transition is caused by the mobility
edge, E, crossing the Fermi energy, EF. However, the ef-
fects of electron-electron interactions become important
near the transition and modify it markedly. It has recently
become clear ' that these interactions play a much more
important role in disordered conductors than in pure ones.
Since the interactions can by themselves precipitate a Mott-
Hubbard type metal-insulator transition even in ordered
systems, it is not surprising that they should become
relevant near the disorder-induced transition as well. In
fact, the interaction-induced single electron density of states
(DOS), n (E), anomalies" '4 have been experimentally
found to increase as the system approaches the transition
from the metallic side, an effect which appears to be the
precursor of the Coulomb gap' ' below the transition
[n (EF) =0 at the transition and in the insulating phase].

Guided by these observations, McMillan" has recently
constructed a heuristic renormalization-group (RG) theory
of the metal-insulator transition with both localization and
exchange interaction being relevant. He has obtained a
second-order transition with a dc conductivity, ~, that van-
ishes continuously as the transition is approached from the
metallic side. McMillan's pioneering theory has also yielded
the above-mentioned DOS anomalies as well as the diver-

gence of the static dielectric constant, ~, as the transition is
approached from the insulating side. Specific relationships
among the critical exponents characterizing these critical
anomalies were derived as well as the temperature and fre-
quency dependence of cr. In this note we treat this problem
differently and in a more simple-minded fashion. While the
static (equilibrium) DOS, rln/Bp„, is not expected to behave
singularly, we propose that above a certain frequency one
crosses over to a regime where the co-dependent single-
particle DOS determines the physical properties of the sys-
tem. This DOS is expected to become singular as the tran-
sition is approached. We obtain new and differenr relations
among the critical exponents. We hope that our results will

be checked by experiments as well as by more detailed
theoretical computations. The latter are also necessary in

order to obtain numerical values for the two independent
exponents of this scaling theory, which our approach does

not yield. We argue that our scaling relations rely on gen-
eral enough arguments so that they have to be obeyed by
more detailed theories as we11 as by real systems.

We start by observing that in the case of noninteracting
electrons, where the DOS is noncritical —one can get the
critical behavior of both the conductivity and dielectric con-
stant" ' from the scaling theory of localization and linear-
response theory. In the presence of interactions a critical
behavior of the DOS may arise from the exchange correc-
tion to the self-energy. ' "" We also treat only the ex-
change corrections to the self-energy, which should be aug-
mented by the Hartree as well as by higher-order terms in a
more complete theory. We follow McMillan" in assuming
that the critical modified DOS also appears in the conduc-
tivity and diffusion constant and enters the linear-response
expressions. This should be valid for frequencies above
some characteristic rate of the system cu„." We have put
these modifications into the theory, by evaluating the renor-
malized DOS and dielectric function self-consistently each in

terms of the other,
The dependence of the effective energy-level separation

on the time scale is analogous to the well-known Franck-
Condon effect. Similar effects are expected to occur in oth-
er many-body systems. "

In the metallic phase the system has a finite macroscopic
diffusion constant D which should vanish when the transi-
tion is approached with some as yet unknown power, x, of'

The divergence of ( in terms of the experimental control
parameter (e.g. , the difference2 from the critical concen-
tration) is given in terms of another unknown critical ex-
ponent v, which will not enter into our arguments that will

describe everything in terms of powers of (. As the transi-
tion is approached, the behavior of the static quantities
[e g. , the q-dependent dielectric constant e(q) or a(q)] is

essentially the same as for noninteracting electrons, since
the static screening length A, = (4rre dn/dp)' is a non-,

diverging quantity. For frequencies ao )~„one should
rather use the critical "dynamical" density of states n (cu).

Hereafter we assume that" ru„( E [where E —D/g' is
the crossover frequency from the macroscopic to the micro-
scopic (critical) regime" 2O], which means that at the fre-
quency E, the effective DOS is the dynamical one. It is
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straightforward to consider other scenarios as well (e.g. ,
to, &E)

As the transition is approached, the behavior of the
dielectric constant (for ru & to, ) as a function of the wave
number q is schematically given for small q in Fig. 1. For
macroscopic q, q « I/(, the metal should screen the
Coulomb interactions and therefore a(q) =—I/q'Aq. In con-
trast with the case of noninteracting electrons, Aq should
also diverge as the transition is approached, as discussed
below. In the microscopic regime, q » I/g, e —1/q'
where q is the critical exponent associated with the correla-
tion function which is related to the dielectric constant. The
coefficient in front of q" ' is noncritical. ' By matching the
above two forms at q —I/g we obtain for the divergence of
Ag

(g/2 (2)
m (0)

Note that it follows from Fig. 1 that ~ diverges like (' " as
the transition is approached from the insulating side. We
assume q ~ 2. In the limiting case q =2 one would obtain
Aq- g, which, however, does not necessarily follow from
our picture. Note also that our q which conforms to the ac-
cepted critical phenomena notation, is equal to 3 —qM,
where q~ is McMillan's q. From the Thomas-Fermi
screening theory in the metallic phase (which one would ex-
pect to hold in the macroscopic metallic range, as was actu-
ally demonstrated in Ref. 20), one finds that Aq is propor-
tional to the inverse of the single-particle DOS at the Fermi
energy, n (0); thus,

n(0) —g " . (3)

The single-particle DOS in the metallic phase near the tran-
sition (where energies are measured from the Fermi energy)
is schematically depicted in Fig. 2 where E —( "+ ' (this,
incidentally, establishes the dynamic critical exponent z).
In the macroscopic range (E « E), n(E) is given by

+(q tttha)

eo $2t'hg

It now follows from the Einstein relation that the critical
vanishing of the low-frequency (to, ~ca & D/(') conduc-
tivity is given by

(4)

I

Eo

FIG. 2. Schematics of the density of states (in units of the unper-
turbed one) vs energy (measured from EF). For E ((E, n(E)

n(0) [1+const(E/E)' ], and for E )& E, n (E) —(E/Ep)

n (0) plus a small energy-dependent correction which will be
evaluated later. For E & E, the microscopic range, n (E) is

proportional to some power of E [we measure n (E) in units
of the unperturbed density of states no(0), so the coeffi-
cient in Eq. (5) is of order unity]:

n ( E) =—(EIEo) (5)

where n is another critical exponent and Ep is a (noncritical)
scale energy. Of course, at the transition E=0 and (5) is
valid for every (small) E Matching (5). with (3) at E yields
one relation among the critical exponents

n = v)/(2+x)

To make further progress we have to analyze the dif-
fusion of a single electron thrown into the electronic sea, on
the microscopic scale, L « g. Since here D(L) depends
upon L, the mean-square displacement (xz), of a wave

packet started locally from the origin' ' ' at t =0, grows
with the diffusion constant D(L —((x') )'t ). Assuming
that D(L) is proportional to a power of L for L « g and
matching with Eq. (1), we find that D(L) —D(L/() for
L « (. It thus follows that (xz) grows like t't" +' in the

microscopic range. From this we can obtain the dynamic
structure factor for the electron, " by Fourier transforrn-
ing exp[ —O(qzt t'z+"')] and constructing an interpolation
formula between the large and small co limits

2

So(q, oo)—
(4 )/(2+ )+ t 4+ (7)

FIG, 1. ~(q, co) co„) in the metallic phase (full line) and in the
insulating phase (dashed line) —schematic. For q &) 1/g, e(q) is

given by a noncritical constant divided by q2 ~. For q &( I/(,
e(q) —l/q A&, where A~ is the metallic dynamic screening length,
in the metal and e(q) g /A~ —g ~ in the insulator.

So can be used to evaluate the wave vector and frequency
dependence of both the dielectric constant and the conduc-
tivity, in terms of the squares of the matrix elements of e""
between the eigenstates for the diffusing electron moving in

the field of the others. The squares of these matrix ele-
ments' "' '" are proportional to So(q, ~) and to the in-

verse of n(~) (co is equal to the difference in energy
between the initial and final states). We thus find at the
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transition, or for cu & E/Ir (and for q 0)

~(~) ~1+a—2/(2+x) ~(q+x)/(2+x)

x+q —1

2+x
which together with Eq. (6) yields

(10)

x=1
This is one of our main results and may also be obtained by
requiring that Eo is not critical. This means physically that
in terms of ( the vanishing of D in the interacting system is

identical to that of both cr and D in the noninteracting sys-
tem. However, in the interacting system, o- picks up a fac-
tor ( "due to the DOS correction (for ru„& co & E/Ir)

We have checked the full q and ao dependencies of both o-

and ~. Everything is consistent with the picture presented
so far. For example, the behavior of Fig. 1 is recovered for
a(q, co ~ ru, ) and the appropriate behavior for cr(q, ru & ru, )
can also be obtained. A quantity of interest for the optical
properties of the disordered conductor is a(cu, q =0). We
find for ru » E/t

( ) a —2/3 (12)

which is, of course, valid for all frequencies at the transi-
tion.

It is also interesting to notice that under our assumptions
one might expect that near the transition the frequency-
dependent conductivity should cross over from its static
value to a much lower dynamical value [i.e., one should
take into account the critical n(co) when cv becomes larger

This (as well as the preceding formulas) generalizes the
noninteracting electrons result co'/ (where a =0 and x = I).
Equation (6) was used to obtain the second equality. Equa-
tion (8) is immediately seen to match with the dc result Eq.
(4) at cu —E/h. To obtain the dc conductivity at finite tem-
peratures one replaces ao by the inverse inelastic (or phase
breaking) time.

One can now immediately evaluate the correction to the
DOS, due to the exchange self-energy X(E), which is
thought to give the main single-particle DOS anomaly in the
disordered conductor" '

X(E) —Jt, dE'n(E') Jtd q q
F

(9)
This yields correctly n(0) of Eq. (3) with a small "macro-
scopic" correction of the order of n (0)(E/E) '/ for E « E
(see Fig. 2) and the form (5) for E » E, with Eo Dgl-
(I being the relevant microscopic length, e.g. , the elastic
mean free path) with

x=1; a=g/3 (13)

Thus, everything is determined by q (or by q and v in
terms of the physical parameters). Our relationships are dif-
ferent from those obtained from the pioneering approximate
RG calculation by McMillan. " In particular, the results for
o(cu) and a(cu) are new. We are currently considering the
insulating phase where the Hartree terms are of decisive im-
portance""" as well as the two-dimensional case. These
terms may also be relevant for low-density conductors close
to the transition. Measurements of the temperature and
frequency dependence of a- and e near the transition, as
well as of the critical behavior of the DOS" ' should yield
stringent tests on our relationships as well as specific deter-
minations of the values of q and v. Of special interest are
the optical properties in the far-infrared range resulting
from this theory.
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than ro, ] .This is true in principle for other quantities as
well.

An important question is how close does the transition
have to be approached in order for the above interaction ef-
fects to be felt. The condition for this is that the depression
of the DOS be significant so that the increase in A has to be
taken into account self-consistently. This is not the case in
the weak localization case where only a small JE anomaly is
obtained" ' due to exchange interactions even in the sim-
plest localization picture. Once the scale energy Eo is much
larger than the crossover energy, E, the microscopic
(E/Eo)"/3 behavior and a strong DOS anomaly will occur.
This happens when g » I.

To summarize, by using the renormalized density of
states and dielectric function self-consistently, we have con-
structed a scaling theory of the approach to the transition
from the metallic side. The exponents a, q, and x, in terms
of which all the critical behaviors of the relevant physical
quantities are given, satisfy the relationships

On leave of absence from the Department of Physics and Astrono-
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