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The copper halide crystals, namely CuI, CuBr, and CuCl, though they have predominant-

ly ionic binding, possess zinc-blende structure, and crystals having this structure have, in

general, rather significantly low ionicity. This peculiarity is attendant with a number of
unusual properties of this group of solids, and the various attempts to understand them in

terms of the existing models show certain problems. Recently we have developed a general

energy expression for an assembly of ions occupying an arbitrary configuration from a mi-

croscopic analysis of the problem. Inspection of the energy expression shows that within

the S' approximation (up to and including second-order exchange) the following distortions

are allowed: the two types of short-range dipolar deformations apart from the long-range di-

polar one, scalar, and quadrupolar deformations. A model based on this energy expression
has been employed to make a unified study of the different lattice-mechanical properties of
the three copper halides. The specific properties that we have tried to correlate are the
cohesive energy, the elastic and the dielectric properties, and the dispersion of phonons with

the same set of parameters for each crystal. Finally, the results for the different crystals
and the possible sources of the remaining discrepancies are discussed.

I. INTRODUCTION

The interpretation of the phonon dispersion rela-
tion of the copper halide crystals has recently been
undertaken by several authors because of the pecu-
liarities in their physical properties which are dis-

tinctly different from that of simple ionic crystals,
as well as from crystals with the zinc-blende struc-
ture. Their ionic charge' is large, almost compar-
able to some alkali halides, being substantially
higher than those of other materials with the zinc-
blende- and wurtzite-type structures. The cuprous
halides have low melting points comparable to those
of Rb and Cs halides, while being comparatively low

with respect to Ga compounds having the zinc-
blende structure. In addition, the mixed conductivi-

ty, the superionic behavior, the irregular value of
thermal expansion coefficient with teinperature, 3' a
number of structural transitions with pressure
undergone in particular by the CuC1 crystal and
even the speculation of the CuC1 crystal for being a
candidate for a high-temperature superconductor,
have attracted considerable attention for an under-
standing of the physical processes in this group of
solids. However, the entire emphasis in the study of
the lattice dynamics of these crystals has been con-
centrated on the reproduction of the dispersion of

phonons in terms of various types of polarizable
models. In order to contribute to a better under-

standing of them, we should try to make a unified

study of the static and dynamic properties in the
framework of a single set of parameters. We have
elsewhere discussed in a series of works the im-

portance of this type of study and the information it
gives is more revealing than an attempt to reproduce
very accurately only the phonon frequencies. So far
no such attempt has been made in this direction for
these solids. The major contention of the present
study is to see how far it is possible to incorporate
the different lattice mechanical properties of the
three copper halide crystals, namely CuI, CuBr, and
CuC1, within the framework of a single phenomeno-
logical model. We propose to make a microscopic
analysis of the problem and attempt to construct a
well-defined potential function for the energy of the
crystal. Then this energy expression containing dif-
ferent terms, described in terms of parameters, may
be put to a straight empirical test by calculating
both the static and dynamic properties of the solid.
Following the outline sketched above, we have suc-
cessfully done such calculations for the AgC1 (Ref.
10) and the NiO (Ref. 11) crystals, where the majori-

ty of terms have some a priori justification.
Prior to discussing our work, let us briefly appre-
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ciate the difficulties encountered in the investiga-
tions already carried out. Various versions of the
rigid-ion model, shell model, and the deformation
dipole model have been used to fit the lattice
dynamics of these halides. The number of fitting
parameters varies between six to fifteen. But all

these models require a very low value of the ionic
charge for the three Cu halides in order to obtain a
fit to the phonon dispersion relation.

If the values of the ionic charge obtained by dif-
ferent authors' ' for the copper halides are used
to estimate the cohesive energy it will lower the en-

ergy by an order of magnitude in the extreme case.
Kunc et al. ' and Hoshino et al. ' have even ob-

tained negative values of ionic charge (which is by
definition positive}. However, the cohesive energy is
not a sensitive property for this group of solids and
its agreement does not provide justification of the
lattice dynamical models. In many models it is dif-
ficult to simultaneously reproduce the dispersion of
phonons and the dielectric constants, e.g., in the
work of Prevot et al. ' the discrepancies in the elas-

tic constants and the static and high-frequency
dielectric constants are about 35—45%. Vardeny
et al. ' obtained some improvement in the phonon
description of CuC1 by introducing an additional
shell to treat the effect of the d electron in copper
ions, but they have not taken into account any of the
static properties. Jaswal' has obtained good agrm-
ment for dispersion curves of CuC1 by introducing a
screening factor to reduce the Coulomb interaction.
But all the above models have been constructed after
the force constant approach so that it is not possible
to discuss the equilibrium condition of the lattice.

The broad common result emerging out of the
above studies is that we require rather a high value
of ionic charge to reproduce the cohesive energy of
these solids and a quite low value of the ionic charge
to have reasonable value of the phonon frequencies.
The static charge, when the lattice is in equilibrium
condition satisfying the symmetry of the crystal, is
larger than the effective charge which comes into
play when the symmetry is violated by lattice vibra-
tion. If we critically analyze the concept of charge
deformation for an assembly of ions of arbitrary
configuration, we may obtain the following elemen-

tary deformations: two types of short-range dipolar
deformations, the long-range dipolar one, and the
scalar and the quadrupolar deformations, all of
which contribute to the properties of the lattice
when the symmetry is violated by lattice vibration,
but the dipolar and the quadrupolar deformations
do not have any effect on the cohesion of a static
lattice structure of a cubic crystal. Hence an
analysis of the properties in the framework of a gen-
eral potential function which incorporates the ef-

fects of these deformations may resolve the incom-
patibility just mentioned. It is important to mention
here that a first-principles analysis' ' of the dipolar
deformation of the charge cloud clearly shows that
there are two different types of short-range dipole
polarization effect and none of the works done so
far has considered both of them. It is interesting to
note that the short-range polarization effect which
arises out of the overlap of the unperturbed wave
functions corresponds to that of the deformation di-
pole model of Hardy and Karo' and the other
short-range polarization effect due to the perturbed
wave functions corresponds to that of the shell
model. The two dipoles having entirely different
origin have separate effects on the properties and a
complete theory must include both of them. Fur-
ther, the effect of the quadrupolar deformation of
ions has so far been neglected in the study of the lat-
tice mechanics of the copper halides. The recent
works by Kleppmann and Weber ' and Ghosh
et al. ' on AgC1 show the importance of this effect.
It has also been demonstrated that the virtual d-s ex-
citation of Ag+ induced by the neighboring Cl
leads to a quadrupolar deformability of its charge
cloud. The Cu+ has also a filled d shell and this de-
formability may be important for the study of
copper halides. In fact, one of the nmjor motiva-
tions of this work is to develop the relevant equa-
tions for incorporating the effect of quadrupolar po-
larizability for a zinc-blende structure crystal. In
our previous works we have developed similar equa-
tions for the sodium chloride2i and the cesium
chloride structure crystals and have found the ef-
fect to be important in several crystals.

In the next section we write down the general en-

ergy expression of an assembly of ions occupying ar-
bitrary position, indicating briefly the origin of each
term. Next we develop the energy expression corre-
sponding to the quadrupolar and the scalar deforma-
tion of ions and calculate their contribution to the
different static and dynamic properties. In the sec-
tions that follow, the complete model is applied to
calculate the cohesive energy, the elastic constants,
the dielectric constants, and the lattice dynamics of
the three copper halides. In the last section we dis-
cuss the results of our calculation crystalwise, to-
gether with the success and limitations of the
present approach for each of them.

II. MODEL

A. General energy expression

The basic approximation in writing the energy for
an assembly of ions consists in assuming that the
free ion wave functions may be regarded as a start-
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ing point and any change in the crystal environment

may be treated as a perturbation. Then with the
perturbed wave functions one may construct the
Slater determinantal functions for the individual
ions and then the Heitler-London-type antisym-
metric wave functions for the whole crystal. Fol-
lowing the procedure outlined by Ghosh et al. ' and
Banerjee et al. ,

' the total Hamiltonian of the solid

may be written as

V=
&
g' VGG~ ~

6,6'

where Ho is the Hamiltonian of the isolated ions
and VGG is the interaction between the nuclei and
electrons of ions located at 6 and 6' centers. It is to
be noted that V does not represent the total potential
energy of the ions. It represents only the interaction
energy between the ions and is small compared to
the energy of the isolated ions. The total energy for
an assembly of such ions is given by

f ppHkgdr
E

J"40@od&

(2)

where (G,v) and (G,v;6', v') are the excited states of
the crystal in which only a 6 ion and G and G' ions
are excited. Using Eq. (3) and making a multioole

expansion of V, we expand E in terms of V and S .
If we retain terms up to purely second order in V
and first in S, i.e., up to and including se:ond-order
exhange, the total energy of ions for arbitrary con-
figuration may be written as

eo— eG and 40=AC'0
6

in an obvious notation as defined in Ref. 10. To in-

clude the effect of perturbation we introduce the fol-
lowing wave functions,

0 0++ G (G v)+ g GG' (G vG'v') ~
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where (M;=(M;+(u; represents the total dipole mo-
ment of the ith ion; p I(' is the deformation dipole
arising out of the first-order exchange interaction
due to overlap of the ground-state wave functions of
the ions and p; is the dipole moment due to the per-~St
turbed wave functions. E; and E; represent the
monopole and dipole fields due to all other ions at
the lattice site i. a; is the polarizability of the ith
ion, c,j and d;1 represent the dipole and the quadru-
pole van der Waals coefficients for the ij ion pair.
Here r;i = r; —r1 is the distance between the ith and
jth ions. Z; is the static ionic charge of the ith ion.
The first three terms represent the pure electrical in-
teractions and the fourth term represents the self-
energy corresponding to the electric dipole. The
fifth term is the interaction of the quadrupole mo-
ment Q; with the electric field E; due to monopoles
and dipoles of other ions. The sixth term represents
the van der Waals interaction. The seventh term is
the changes in the nearest-neighbor overlap interac-

t

tion due to formation of dipole moments by the per-
turbation of their wave functions. The eighth and
the ninth terms represent the usual overlap interac-
tion between the nearest-neighbor and the second-
neighbor ions, respectively. The last term represents
an effective three-body interaction between the ions,
arising out of the scalar deformation of the charge
cloud. A(k) is some constant which measures the
deformability of the kth-type ion. We have neglect-
ed the modifications of the van der Waals interac-
tion, the second-neighbor overlap interaction, and
the three-body interaction due to the presence of di-
poles pi in the ions. The modification has been re-
tained only in the dominant term of the energy,
namely, the nearest-neighbor overlap interaction.
The detailed calculation of the derivation of Eq. (4)
from Eq. (2) has been discussed in Refs. 10 and 18.
We shall now employ our energy expression (4) to
study the different properties of the copper halides.
In the next section we develop the relevant equations



28 UNIFIED STUDY OF THE LATTICE-MECHANICAL . . ~ 3537

to incorporate the effect of the quadrupolar and sca-
lar deformations.

B. Energy expression due to quadrupolar deformation

The theory of the effect of quadrupolar deforma-
tion of the charge cloud in centrosymmetric crystals
has been developed by Ghosh et al. In the follow-

ing we develop the same in case of noncentrosym-
metric structure crystals (zinc blende). The change
in total energy of an assembly of ions due to quadru-
polar deformation of the charge cloud consists of
changes in (a) the multipole electrostatic energy, (b)
the self-energy, and (c) the short-range overlap ener-

gy in decreasing order of magnitude. We shall con-
sider only the first effect. Now the quadrupolar mo-
ment in an ion may be generated due to (a) an over-

lap between the unperturbed wave functions of the
nearest neighbors; this is the exchange quadrupole,
and (b) perturbation of the wave function by the gra-
dient of the electric field produced by the other ions;
this is the electrical quadrupole. It is difficult to
judge a priori the relative importance of these two
effects. However, our preliminary investigation for
the CsI crystal indicates that the second effect is
negligible. However, since we shall treat this effect
by parametrization we need not go into its detailed
mechanism.

The exchange quadrupole originates by making a
multipole expansion of the exchange charge distri-
bution and we locate it on the ion centers similar to
that of the exchange dipole. Consequently, there
will be no self-energy associated with this quadrupo-
lar deformation. Now following the treatment of
Ghosh et al. we write the short-range quadrupolar
moment q'p(l, k) in an ion (l, k) due to the displace-
ment of its nearest neighbors,

1 I' 1 1'

gap(l, k ) =g'dk4apy k k& uy
I', k'

I'
where u(k k ) is the displacement of the (1'k') ion rel-
ative to ion l, k, dk is the parameter denoting the
quadrupolar polarizability of the kth-type ion, and
the third rank tensor 4'py(k k) is related to the
nearest-neighbor overlap interaction by

and
+q aPysll'5kk' (7b)

1 I'
'$ ~~~$

~py —~ .»kkI'k'

Here a,P, y denote Cartesian components.
The last term in Eq. (7b) exists in noncentrosym-

metric structures only when a&P&y. Since there is
no self-energy associated with the exchange quadru-

pole, the energy of interaction is given by

1 1
W~ = —gq' k gradE k (&)

1,k

where the total field gradient at the site (l, k) due to
monopole and dipole charges is given by
(quadrupole-quadrupole effect is neglected)

1 1 1' 1'k,~ py k k' "y k'
1',k', y

1 1' 1'

pyk k'~yk'
I', k', y J J

(9)

and the first and the second terms on the right-hand
side of Eq. (9) represent the field gradients due to
monopole and dipole charges, respectively. These
are written as

1 1' 1 1'

@apl k k' = @apy k k'
J ~ J

overlap given by the Barn-Mayer potential
b exp( —rip) and r(k «) the separation between ions
l, k and I',k'. b and p are the short-range repulsive
interaction parameters. We rewrite Eq. (5) as

1 1' 1'

p(l, k)= gdkkapy k k, uy k, , (7a)
I'k'y

where

1 1' 1 1'

~apy k k&
= +apy 1 1

( l II' kk'

1 1'
S
a» kk' where

+ irjaPPII'5«k' Zk' ~

dr k Brp
J

1 1'

k k'

where p(r(k k ) ) represents the nearest-neighbor

1 1'

k kI'k'

and Zk is the ionic charge of k'-type ion. The
above term exists for the noncentrosymmetric struc-
ture only when a&P&y.

The term 4 py(k k ) is given by
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where rp(»») is the equilibrium value of r(»»). So,
using the above equations we may write the addi-
tional energy due to quadrupolar interaction as

I II t It
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It is evident from Eq. (12) that this energy van-

ishes when the lattice is in equilibrium configuration
and hence this interaction does not contribute any-

thing to the cohesion of the lattice. But it will con-
tribute to the vibrational and other properties of the
lattice. In the following sections we work out the
relevant equations for them.

C. Contribution to elastic constants
from quadrupolar deformation

The contribution to the elastic constants due to
quadrupolar deformation is obtained by the
method2~ of long waves due to Born. Since dipole
polarization has no effect on the cohesive energy
and elastic constants of a static lattice of a cubic
crystal, in order to obtain the quadrupolar contribu-
tion to the elastic constants we assume a rigid-ion
model. Putting @=0 in the force constants defined
above, we evaluate the following terms in brackets
(for notation and details see Born and Huang ),

tt t tt t

s(i)&~~ k-k "~k k2Up

t tt t I I"
s(2)

k' k" ~ "» «» k k' @«Ps k k"
I,k,
N, P

Pt lt
X &~ (15)

(14)
where Up is the volume Per unit cell and

I I' I I'
r(»» ) =r(») —r(» ). Substituting the force constants
from (13) in Eq. (15) we get

[5rvvl = 1

2Up»a. ln»w.
l, k;N, P

I E" I I' I I' I I"
ps kk @pr kk +d»~pr kk C'ps

I I' I I"
i' k k' "~ k k"

I E' Itt

"kk' "" kk"
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To simplify these expressions we use more compact notations by introducing the following terms in curly
brackets:

and

l l' l l'

~@&kk' "~ kk'
I', k'

l l' l l' l l'

~,@ & k k' 'i k k' " k k'
I', k'

(17)

l l'
l pyj'=&, "*-» k k

l*,k'

and so on for the terms in brackets with superscript S. In terms of the curly brackets expression (16) reduces to

[&y vl= g dk(lal+1'lapywv1 lap»—j'lap' 1 lap~—s 1'lapyvj
2UO k

+ l ap&vv 1'japr 1+ l apyl v 1'l ap& 1 l apr—~ 1'l aP»1

laprv —1'iap5I 1+ laPrj'lap&I vj )

Since both the short-range and the long-range
sums denoted by lapyj and lapypvj vanish for the
zinc-blende structure, we finally get the general ex-

pression for the elastic constants as

[~yI v]= —g dk({aP»1'laprvj
1

2"Ok a p

l

aild

C~ ——[1122]

(d+ —d ) (l 12121 l12121'
Uo

+ l21121l21121' )

(20)

+ lap', 1'lapyv1

+laPyI 1'laP»1

+ laPrvj'lap~i 1) .

(19)

where d+ and d are the quadrupolar polarizability
parameters of positive and negative ions, respective-.

ly, and Ci2 is calculated from the bulk modulus us-

ing the relation

8=Cii+2Ci2 ——0 .

Using Eq. (19) the contribution of quadrupoiar
deformation to the individual elastic constants is
given by (neglecting the contribution of quadrupolar
deformation to internal strain)

Cii ——[1111]

(d~ —d ) ( l 11111 l 1111 1'
Uo

+2l22111l22111' )

The method of evaluation of the long-range lattice
sums is discussed in Appendix A and the relevant
sums are given in Table I.

D. Contribution to lattice dynamics
from quadrupolar deformation

In this section we calculate the contribution to the
dynamical matrix from the quadrupolar deforma-
tion energy. The dynamical matrices Q~~'(k'k") and
Q'rs'(k'k") corresponding to the force constants
4P"(k k-) and 4'ie'(f, k-) defined earlier, may be
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TABLE I. Lattice sums for calculating elastic con-
stants.

alld

~» ~ -i(l e) & -i(l„N)

—0.42028

-i(l,m)e
I

—0.488 37

r

1l 1lt

g(2)(ktktt) gq s~(2)

Is»

1l 1ll
g(l)(ktklt} gg s(l)

Is/

1l 1tl

)(exp —Iq r k, k„ (21)

1l 1ll

Xexp —Iq r. k, k„. (22)

After some straightforward manipulation Eqs. (21)
and (22) are given by

Q' yS(k'k") =g —gdkg' py(kk')QapS(kk")Zk-
a,P k

+Zk-[dk-QaPy(k "k')P PS+dk q'PygaPS(k'k")](1 —5PP 5k k-)

dk Zk-q—'Pyf PSsk k-5I I-+()'

+g~dk +dk )(qayyfaPSZk-+q' PS PaPyZk }
C,P

(23)

alld

g (~(k)'k")= g dkQ'py(kk—')Q ps(kk")+gdkq'pyg ps(k'k")
k, a,P a,P

+g k "qaP fa)(5( k'k"
a,P

(24}

alld

11' 1 1'
gapy(kk )=g 4apy k kt CXp I q'r k kt

I L L

t

1 1" 1tt

Q ps(kk } g4aps k k" exp —Iq r k k"I"

(25)

The individual elements are given by

Q'y's&11) = g[d Q py(21)g—aps(21)+d+q' pyQ ps+d Q'aps(12)Q py(12)+d+q' ps/ py)Z)
a,P

+y(d++d —}Zl(q @ye ps+q pslt» py}
a,P

Q~'(22)= —g[d Q+'p„(12)g ps(a12)+d g+' p(a21s)g p„(21)+d q' pylt» ps+d q''pslt» py]Z2
CE,P

+g(d++d- »2(qa'pylt»aps+q "pslt» py»
a,P

(26b)
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Q'„~'(12)=QI[d Q'py(21)g ps+d~q "pyQ p@(12)]Zp
a,p

+ [d+ Q' ps(12)g py+d q''psQ' py(21)]Z i

+(d++d )(q'pytft psZ2+q'ps% pyZi)I (26c)

and

Qys(11) g[d Q py(21)Q ps(21) d+q pyQ ps(11)] gd+q pyg
a,p a,p

Qys'(22) = —g[1 +Q' p(12)Q ps(12) d—q'
p+~ps(22)] gd—q' pyP ps,

a,p a,p

Qys'(21)= —g[d+Q'py(i»Q ps(11)—d-q'pyQaps(21)l+gd+qn'pyfaps
a,p a,p

Qys'('2) = —X[d- Q' py(2')Q ps(22) —
d+q "pyQ ps(»)]+Ed q "py&-ps

a,p a,p

(27a)

(27b)

(27e)

(27d)

Indices 1 and 2 refer to the two particles on ttM two
different sublattices. The method of evaluation of
the periodic long-range sums in the above equations
is discussed in Appendix A and the relevant sums
which are of general interest are given in Table II.

Unlike the other cubic crystals with a center of
symmetry the effect of quadrupolar deformation
does not vanish in the limit of long-wavelength opti-
cal vibrations. Hence quadrupolar deformation con-
tributes also to the dielectric properties of these
crystals which we shall discuss in a later section.

E. Scalar deformation and its
contribution to different

pfOpeitles

The last term of our general energy expression (4)
represents an effective three-body interaction be-
tween the ions generated out of the isotropic defor-
mation of the charge cloud. Ghosh and Basu7 have
derived the form given in (4) from a statistical

l

model analysis of the charge distribution inside a
crystal. It is shown in Refs. 25 and 26 that the
dominant contribution of the breathing degree of
freedom of the electron charge cloud in the breath-
ing shell modelz7 generates an effective three-body
interaction which is identical to the above form.
The effect of this deformation has been found to be
quite important in various types of crystals.
But so far there has been no attempt to investigate
its effect on the properties of ionic crystals with
zinc-blende structure. Unlike the quadrupolar de-
formation it will contribute to the cohesive energy.
Starting from the expression given in Eq. (4) it is
quite straightforward to obtain its contribution to
the elastic constants which is given later in the final
expression for the elastic constants. In this section
we calculate its contribution to the dynamical ma-
trix. Denoting the last term of Eq. (4), the energy
due to scalar deformation by E', the general expres-
sion for the force constant is given by

/ I'

Pkk'
$2E s

2ri a r& ~ a ~ r& r2 & 2 r~, r2
I /' Itt ktt

(jr Qy, NN of I,k~ k

where

Itl ktt

NN of I'k'

[(ri) (ri)pDi+5 pDi+(&3)p(&i)&ia3]4«i r3) (28)

aild

I I' I ~r Itt
1 d

3 r 4r

P(ri, r2) =A(k)exp[ —(ri+r2)/p] .
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For the ZnS structure, the nonvanishing value of the scalar deformation force constants between l', k' and

l",k" exist only when k"=k' and l"=l' or l",k" is an ion of type a as shown in Fig. 1. The corresponding

force constant matrix is given by

A (k)
a =

2 exp
3p

—1 —1 1

—1 —1 1

—1 —1 1

(29)

and the force constant matrix between the nearest neighbors because of this interaction is given by

2»
(30)

M' (k",k')=4P(k)5(k", k')[cos(qpa )cos(qua ) —cos(q a )cos(qpa) —cos(q a )cos(qua )+1],
M' p(k",k') =4P(k)5(k",k') [sin(q a }sin(qpa )+i sin(qua }[cos(q a )—cos(qpa )]],

2 2 2 1 2 1
2+ 2+

3p p» 3p p» 3p p»
l' 1 2 1 2 2 2 14' k, k

———[A(k)+A(k')]exp —
2 + —

2 +
P 3p P" 3p P" 3p P"

1 2 2

3p p» 3p p» 3p p»

where A (k) and A (k') are parameters describing the scalar deformation of the charge cloud of the two types of
ions. The contribution to dynamical matrix because of the force constants (29) is given by

P(k) = exp
A (k) 2»

(32)

where 2a is the lattice constant, k =k', and k, k', k"
take up values 1 and 2 corresponding to positive or
negative ions and

Now we are able to discuss both the lattice statics
and the dynamics of copper halides with the help of
the energy expression (4) together with the equations
in Secs. IID and IIE provided we use the adiabatic
condition,

aWya, =0. (33)
The additional two-body interaction given by (30) is
treated in a similar way as that of the nearest-
neighbor repulsive interaction.

Unlike the quadrupolar deformation, discussed in
the preceding section, the scalar deformation effects
vanish in the limit of long-wavelength optical vibra-
tion and consequently do not contribute anything to
the dielectric properties of the zinc sulfide structure
crystals.

I

i

1T I

I I )(
/

IE
WF

I

I a 4E

Ik '

FIG. 1. position of partic1e (a) for which nonvanishing

force constants exist in a ZnS structure. Other particles

are obtained from symmetry.

In the final application we have made some sim-

plifying assumptions in order to keep the number of
parameters as small as possible and also to ensure
that the essential physical picture is not lost in
mathematical complexity. Since in all the three
halides the dipolar polarizability of the copper ion is
much smaller than that of the halides, we consider
only the negative ion polarizable. Both the dipole
polarizabilities due to exchange charge and pertur-
bation of the wave function are associated with the
anion. The three-body interaction generated out of
the scalar deformation has been confined to the case
only when the interacting ions have common nearest
neighbor. The second-neighbor overlap has been as-
sumed to aet between the anions only. Fixing the
value of the static ionic charge to unity, the present
model contains eleven adjustable parameters: b and

p, the short-range overlap parameters: c and p', the
parameters describing the deformation dipole arising
from the exchange charge; a and y, the parameters
for the dipole due to perturbation of wave functions;

d+ and d, the parameters for the quadrupolar po-
larizabilities of the two types of ions; A(1} and A(2},
the scalar deformation parameters; and b' and p, the
overlap interaction parameters between anions. The
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values of the parameters are given in Table III. In
the present investigation we are not looking for an
exact fit of some properties, rather we want to see
how far it is possible to reproduce a gross overall
description of different properties in terms of a sin-

gle set of parameters. So the approximations men-
tioned above will not seriously affect our conclusion.

III. COHESION AND ELASTIC PROPERTIES

From the general expression for energy (4) for an
assembly of ions occupying arbitrary configuration,
we can write down the energy per unit cell for a
zinc-blende structure lattice in equilibrium configu-
ration. From the symmetry of the lattice the dipole
and quadrupole terms vanish and the static lattice
energy per unit cell is given byr, R
4z„s———az„s +4b exp ——+ 12b' exp

+4c+ /r 4d+ /r +—6A exp( 2r/p—),

(34)
I

TABLE III. Values of the parameters.

Parameters

b (10 ' erg}
b' (10 ' erg)

p (10 ' cm)

y (D)
a (10 cm3)

c(10 'D)
p| (10 cm)
A(1} (10 erg)
A(2) (10 6 erg)

1+ (10 2' dyncm }
d (10 23 dyncm )

CuI

6.58
56.94
0.2150
6.4098
8.7587
0.7386
2.4

273.4
—273.4

—4.0
4.026

0.7119
0.7942
0.2533
2.7237
7.4008
0.3064
2.4
3.228
Q.Q

—0.4
0.0

0.303
0.1054
0.273
2.8973
5.1954
0.0876
2.5
1.5828

—1.5828
—0.2

0.1

where e is the electronic charge, A=A(1)+A(2),
c+ and d+ are the van der Waals coefficients,
and r and R are the harmonic nearest-neighbor and
second-nearest-neighbor distances, respectively. We
have used the harmonic values since we neglect the
vibration part of the energy. 2 The expression for
the second-order elastic constants is calculated from
the general energy expression together with Eq. (20)
and is given below

v 3 1 b r 1 2 30c+-
4r 3 p p p r r

4b' R+ exp
p p

1 1 2 1 1 e2Z2
+—A (r) ——— +0.035

p R p p r (35a)

exp
4r 3 P p

66c+

p r r

104d+
-10
T

I

R 1 5 2 1 2 eZ
exp —— —+= +——+—A(r) —0.3726

P P R P P
(35b)

V3 1 b r 1 2
C44 = exp

4r 3 p p p r r

56d+
-10I'

2b' R 1 3 2 1
exp —— ——= +—A(r)

P R P 3P

'2

1 b—exp
p p

48c+ 80d+—+-
p r r P

2 1 (2.519Z e )3+-
3p r 16r
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b r 1 2—exp
P p p r

30c+
r~

56d+

T
-10

2A(r) 1

p 3p

(mZ e )3

48r

Z e 3.1579ea 1—0.0169 ~ + '

2 (d+ —d )
—+—exp

r Uopr p r p
(35c}

where A (r) =[A (1)+A(2}]exp(—2r/p) and the oth-
er parameters have been defined earlier. It is found
that the quadrupolar deformation contributes only
to C44 while the scalar deformation affects all the
three elastic constants. The contribution of quadru-
polar deformation to internal strain has been
neglected. The values obtained for the individual
elastic constants and the cohesive energy for the
three crystals are given in Table IV.

IV. LATTICE DYNAMICS
AND DIELECTRIC PROPERTIES

The dynamical equations are obtained by expand-
ing Eq. (4) about the equilibrium configuration and
retaining terms up to second order in displacement,
u,j. and/or dipole moments )M;. Then using Eq. (33)
the total dynamical equations are given by

[(Z+D)C(Z+D')+R'+Z+Q"'] U

+[(Z+D)C R'y 'pQ—' '])M=mw U

[—C (Z+D ) —y '(R') +(Q"') ]U

(36a)

+[C+a 'y 'R'y ']p =0, (36b)

where U=(Ui, U2) and p=()Mi, p2) are the ampli-
tudes of the ionic displacement and dipole fluctua-
tion vectors [p is not to be confused with p; in Eq.
(4} which is the total moment], respectively, and Z,

R'=R+H+ P', (37)

where R, H, and V represent the matrices for
nearest-neighbor overlap interaction, the overlap in-
teraction between the anions and the van der Waals
interaction. T matrix represents scalar deformation.
The equations (36) are now solved for the three sym-
metry directions to yield the eigenfrequencies for the
three crystals and the results are shown in Figs.

Next we calculate the macroscopic dielectric
quantities. The dielectric equations are easily ob-
tained from the dynamical equations (36}in the lim-
it q~O which are given below: The force equations
are

~ ~

miui ——(Zi —Do)E ff—Ro(ui —u2)

—(Roy '+Q'))
~ ~

m2u2 (Z2+Do)E ff Ro(u2 ul}

+(Roy '+Q')I
and the adiabatic equation is

y, m, a, are the usual 6X6 matrices —C,D, and Q
are the 6 &(6 matrices corresponding to the
Coulomb, deformation dipole, and quadrupole,
respectively, and R' is given by

TABLE IV. Cohesive energy, elastic and dielectric constants of the Cu halides.

(10' dyn/cm )

Crystal Theor. Expt.

C&2
(10'2 dyn/cm2)

Theor. Expt.
(10' dyn/cm )

Theor. Expt.

Cohesive energy
(10 " erg)

Theor. Expt.
E'p

Theor. Expt. Theor. Expt.

CUI 0.497
CuBr 0.453
CuCl 0.405

'Reference 32.
Reference 3.

'Reference 33.
Reference 15.

'Reference 34.
fReference 35.

0.451'
0.458'
0.522b

0.390
0.373
0.330

0.307' 0.170
0.354' 0.157
0.428 0.170

0.182' —13.58
0.139' —14.11
0.133 —14.45

—14.81' 10.276 9.12 5.969 5.48
—15.01' 6.232 6.29 4.41 4.06
—15.42' 6.02 5.95' 3.65 3.61'
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(41)

where m a d
~

an m ar
mt of th e positive and ne

df ed —R
ar y and

D(ij ) is writte
aro the deformation d' rix

en as
]pole matrix

d
p; =QD(j,i )uj.

J

e„=1+4mb22, .

4m.b ]1

(40) (42)

Ep= E'

where m =c ex — ' aw =c exp( rl ') a-
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(Zie)
3up

1 — a,4m

up

(43a)

and

Zie
(mu )'"

1

4m
1 — a,

3up

(43b)

a~
22=

up 4 ir

3vp

where

(43c)

1 1

ae O.'

Rp

2Q 2

and

Rpa,
Zie =e(Zi Dp) — ——a, Q

e

Ci ——Rp—
Rpa, QDa—(2Rp+yeQ )

2p 2 ye

Here up is the unit cell volume, Zi is the charge of
the positive ion, and m =(ypgi pn&)/(uii+ui&) is
I'educed Iiiass.

V. DISCUSSION

Examining the results given in Table IV and in
Figs. 2—4, we find tgat the present phenomenologi-
cal model based on the energy expression (4), is cap-
able of providing a broad overall description of the
lattice mechanical properties of the three Cu halides
with a single set of parameters for each crystal.

Next we discuss the role of the various types of
charge cloud deformation envisioned in the present
model in the description of the properties of dif-
ferent crystals. It is well known that the scalar, di-

polar, and quadrupolar deformations of the charge
cloud of an ion depend upon the details of the
ground-state wave functions of the ion and the
modification it undergoes in a crystal environment,
which is, of course, difficult to judge beforehand.
But the results of the present calculation indicate
certain trends. An inspection of Table III shows
that the parameter values increase or decrease pro-
gressively from CuI, CuBr to CuC1. The second-
neighbor interaction is particularly important for
CuI but its importance decreases progressively from
CuBr to CuCl. This is also evident from the value
of the parameter b' in Table III. The effect of sca-

lar deformation, in particular for the charge cloud
of the copper ion, increases progressively from CuI
to CuC1 and its contribution to some phonon fre-
quencies also increases in this order. The contribu-
tion of this deformation to elastic constants is large,
but its contribution to the cohesive energy and the
dielectric properties is quite small in all three crys-
tals. On the other hand, the effect of the quadrupo-
lar deformation increases from CuC1 to CuI. In
particular, the (100) and (111)zone boundary fre-
quencies are affected most. In CuBr and CuC1, the
quadrupolar deformation affects the LO, LA, and
TA branches in the (100) and (111)directions but
the strongest effa:t is seen in the (100) zone boun-
dary frequencies in the case of CuI, where the effect
is about 15%. The two types of short-range dipolar
deformations considered are found to be essential
for a consistent description of the diele:tric proper-
ties and the phonon dispersion relation in all the Cu
halides. The deformation dipole has considerable ef-
fect on the TA and TO branches along (100) and
(110) directions and on the LA branch along
(111) direction .g., in CuBr its effect is about
64% at the (100) TA zone boundary and 20% at
the (111) LA zone boundary. Without the distor-
tion dipole the TA frequencies along all three sym-
metry directions turn imaginary. In all the calcula-
tions we have kept the ionic charge fixed at unity,
which appears to be too stringent. Slight lowering
of the same might further improve the agreement
for the phonon dispersion relation, while not deviat-
ing too inuch from the measurmi cohesive energy.

Before we conclude let us discuss some of the lim-
itations of the present calculation. The present ap-
proach is not a microscopic one. What we have at-
tempted is to adduce only some plausibility justifica-
tion for the general energy expression that we use.
Naturally the procedure has the usual limitations as-
sociated with a phenomenological approach. A
comparative study of the result of the three crystals
approximately indicates that the adequacy of
description in the framework of the present model,
gradually decreases as we pass from CuI to CuC1.
Although we do not find any large-scale discrepancy
in any property as in previous calculations, there is a
definite trend in discrepancy in the (100) zone
boundary frequency TO, which gradually increases
from CuI and becomes about 15% low for CuC1.
Again, the overall agreement of the elastic constants
for the CuC1 crystal is not as satisfactory as that of
the other two crystals. All these tend to show that
although we have obtained an overall description,
there is some definite effect not included in the
present model, which is at least essential for the
CuC1 crystal. One such may be the inclusion of the
effect of the d-s-p hybridization of the d states of
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the copper ion. This may be plausible since the de-
crease in distance between the copper iona as one
passes down the series from CuI to CuC1 may in-

crease the hybridizat&on which will contribute an ad-
ditional term to the energy expression (4). This con-
tribution may be calculated if we start from the hy-
bridized orbitals instead of the free ion orbitals as in

Eq. (2). This might be a possible direction of refine-
ment at the microscopic level. A proper under-
standing of the physical processes in these solids re-
quires a microscopic calculation from which we are
still far off and the present calculation only provides
a suitable interpolating phenomenological model
with its several inherent weakness and inadequacies.
What has been concretely achieved in the present in-
vestigation over the existing calculations is that we
have been able to obtain an overall description of the
different lattice mechanical properties of the three
copper halides with a set of physically meaningful
parameters for each crystal.
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APPENDIX A

We briefly discuss the method of evaluation of the

long-range lattice sums that occur in the elastic con-
stants and the lattice dynamics. Since the results

obtained are of general interest and do not refer to
any particular interaction we tabulate the sums for
the symmetry points which may be us+i for various

purposes. The lattice sums required for the calcula-

tion of the terms in curly brackets, i.e., for the elas-

tic constants, are evaluated by the method of Born
and co-workers ' and are given in Table I; li, lz, l3

denote the coordinates of the lattice points of a
zinc-blende structure crystal. (ai,a2, as) is taken as

(m, tr, n. )to .take account for the alteration of sign of
the positive and the negative ions. The sums have

been evaluated assuming k to be positive and so
when k is negative, the sum is to be taken with a
negative sign.

The long-range periodic lattice sums between the
unlike particles in a zinc-blende lattice that appear
in the lattice dynamics cannot be evaluated by
Born's method which is applicable only to a lattice
with a center of symmetry. Chatterjee et al. ' have

developed a modification of Born's method by
which the lattice sums for unlike particles given in

Table II have been evaluated. The like particle sums

are given in Ref. 22.
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