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The structure of the atomic-type self-trapped exciton in solid Ne is studied using a hybrid method
in which the inner shells of an atom are represented by the ion-size parameters of Bartram, Stone-
ham, and Gash, while the two outermost s,p shells are treated exactly as in the extended-ion model.
The electronic wave function and the lattice relaxation are determined self-consistently by minimiza-
tion of the total energy of the system. The lattice is found to dilate around the excited Ne atom by
an amount corresponding to about five vacancies. The calculated absorption energy of the self-
trapped exciton for I';— s (atomic 3s —3p) transition is in good agreement with the experimental
data of Suemoto and Kanzaki. The impurity centers of rare-gas atoms in a Ne host are also studied
by the same method. The results show the existence of a small cavity around the impurity atoms,
and account satisfactorily for the changes in the optical transition energies from gas to solid.

I. INTRODUCTION

The electronic structure of rare-gas solids (RGS) has
been the subject of extensive investigations experimentally,
as well as theoretically.! Optical absorption, lumines-
cence, photoemission, and transport measurements have
been conducted on pure and doped RGS and yielded a
wealth of interesting results.

Recently, Suemoto and Kanzaki*3 have observed that
the atomic-type self-trapped excitons (a-STE) in solid Ne
are surrounded by cavities (which they called the STE
bubble) and that the size of the bubble grows as a function
of time during the lifetime (~560 usec) of the STE. A
similar phenomenon has also been observed for the
molecular-type STE.> The phenomenon of a bubble
around an excited electron is closely related to the earlier
observation of the electron bubble in liquid He (Ref. 4)
and liquid Ne.’ It is also intimately related to the ob-
served negative electron affinity in solid Ne.* The under-
lying principle is the following: The excited electron,
whether in the conduction band or in a localized defect
center such as the STE or an impurity rare-gas atom (e.g.,
Ar in Ne host), interacts with a large number of surround-
ing Ne atoms. There are two kinds of interaction. One is
the repulsive interaction between the excited electron and
the core electrons of the Ne atom due to the requirement
of the wave-function orthogonalization. The other is the
polarization of the core atoms which always leads to an
attractive interaction. For the lighter rare-gas atoms (He,
Ne, and marginally also Ar), the repulsive interaction is
more important than the effect of the polarization. This
explains qualitatively why an excited electron pushes away
nearby atoms, thereby creating locally a ‘“vacuum,” or
why a conduction-band electron (at the bottom of the
band) has energy higher than the vacuum level. In the
case of the STE in Ne, it has been shown by Song and
Leung’ that the lowering of the electronic energy by re-
moving a nearest-neighbor atom is larger than the vacancy
formation energy, so that it is energetically favorable for
bubble to exist in Ne.

In an earlier work,® a hybrid method was employed to
study the Rydberg series of alkali and rare-gas atoms, giv-
ing very good results. The method can readily be applied
to study defects in insulators. This method consists of di-
viding the electrons of a lattice atom into two groups: the
compact deep-core electrons and the more extended outer
shell electrons. The deep core is approximated by the
ion-size parameters of Bartram, Stoneham, and Gash,’
while the interaction terms of the defect electron with the
outer shell electrons are calculated exactly. In addition,
floating 1s Gaussian basis functions are employed, which
allow a very efficient calculation of the various terms.

In this paper, we investigate the properties of the a-STE
in solid Ne using the hybrid method described above.
Also studied are the rare-gas impurities (Ar, Kr, and Xe)
in solid Ne which exhibit interesting effects of the lattice
similar to the STE bubble of Ne. As the electron-lattice
interaction is comparable (or larger) to the lattice defor-
mation energy, we have to minimize the total energy of
the system with respect to the electronic wave function
and the lattice configuration simultaneously. The details
of the method and calculation for the a-STE in Ne are
presented in Sec. II. The same method also applies to the
study of impurity centers in Ne. In Sec. III we present the
results of our calculation for the a-STE in Ne. It is shown
that the lattice expands immediately after the excited elec-
tron becomes bound to the localized hole; the size of this
original cavity corresponds to about five vacancies. The
transition energy between the s-like and the p-like states of
the STE bubble is in very good agreement with the ob-
served value of Suemoto and Kanzaki.? Subsequently, the
size of the bubble grows by capturing vacancies from the
bulk of the crystal. The number of the attracted vacancy
at equilibrium is estimated from the rate theory point of
view, and is in reasonable agreement with the proposed
value of Ref. 3. In Sec. IV we present the results of a
similar study of the rare-gas impurity atom (Ar, Kr, and
Xe) in solid Ne. The energy shifts observed in the absorp-
tion (and luminescence) between the free atomic state and
in solid Ne are calculated. These compare satisfactorily
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with the experimental data. The size of the cavity around
the excited impurity atom is found to be comparable to
that of the STE bubble in Ne. Finally, in Sec. V, we dis-
cuss several other possible applications of the method em-
ployed in this work.

II. METHOD OF CALCULATION
FOR THE a-STE IN Ne

As it has been pointed out earlier,’ the electron-lattice
interaction energy is quite large in comparison with the
lattice deformation energy. We therefore evaluate the
thermodynamic free energy of the whole system at 0 K.
The sum of the energy of the electron in the field of the
central Net ion, its interaction energy with a large num-
ber of the surrounding Ne atoms, and the lattice deforma-
tion energy is minimized with regard to the electron wave
function and the atomic displacements of the Ne atoms.
The contribution of the zero-point energy of the lattice is
also examined in some cases as described below. The total
Hamiltonian is

H=H,(T,{R))+H({R}}),
H,=K +Vp;+Vsc+ Vex »

(1)

Here H, is the Hamiltonian for the electron, which de-
pends on the lattice configuration {ﬁ, }, and H; is the lat-
tice deformation energy. K, Vp;, Vsc, and Vgx are the ki-
netic energy, the point-ion potential, the screened
Coulomb potential, and the exchange interaction, respec-
tively. The electron wave function is taken as a linear
combination of three 1s Gaussians whose coefficients are
treated as variational parameters, determined by solving
the secular determinant. The lattice positions {ﬁ,} are
varied in a discrete way assuming radial displacements up
to the 13th shell. (A continuum correction for the
remainder of the lattice was found to contribute a negligi-
ble term to the energy, and was subsequently dropped.)
The minimization is carried out by searching the
minimum of the total energy for the various configura-
tions {ﬁ,} In the following, we give the details for H,
and H, L

A. Electronic energy

We have used a hybrid version of the one-electron
Hartree-Fock method, which is also called the extended-
ion model in the study of color centers in ionic crystals.
In this method, the occupied core states of the lattice
atoms are assumed not to change in any substantial way
from those of the free atoms (ions). The Hartree-Fock
equation for the defect electron is solved by variational
method. This approximation is generally a reasonable one
for large band-gap insulators, such as the alkali halides
and rare-gas solids. As was discussed in an earlier paper,®
the deep cores are very compact and can be adequately
represented by the first few orders of the ion-size parame-
ters first introduced by Bartram, Stoneham, and Gash.’
However, it was found that the electrons of the outermost
shells (2s and 2p of Ne for example) have quite extended
charge density and these have to be treated separately.
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The overlap integrals, the screened Coulomb, and the non-
local exchange terms are evaluated exactly for the outer-
most shells in accordance with the extended-ion model.

The pseudo-wave function ¢ is represented by a set of
floating 1s-like Gaussian basis functions. There is no need
for using Gaussian functions of higher-order spherical
harmonics, since states of different symmetries can be ob-
tained by using a set of 1s Gaussians centered at suitable
positions around the defect center. After the outer-shell
electron wave functions are expressed in terms of Gauss-
ian functions, all the required integrals can be evaluated in
closed analytic form.!° The use of 1s Gaussian basis func-
tions also proves to be particularly convenient in another
respect. In fact after some experience, it is found that
these various terms can be fitted quite accurately by sim-
ple interpolation formulas over a range of the Gaussian
damping factors and the distance between the Gaussian
pseudofunction and the ion. A brief description of the in-
terpolation scheme is given in the Appendix. This simpli-
fies substantially the task of evaluating the various terms
for the outer shells, while retaining the required accuracy.
To determine the equilibrium state of the self-trapped ex-
citon at its lowest bound state (corresponding to the 3s
atomic state of Ne*), we have employed three s-like
Gaussians centered at the excited atom (damping factors:
a=0.020, 0.045, and 0.090 in a.u.). The eigenvector varies
with the lattice configuration. The Gaussian damping
factors a were determined from a preliminary work with
single Gaussians. The number of atoms summed can easi-
ly be extended, because of the fast interpolation scheme.
We have found it sufficient to sum over the first six shells
for the Iy state and somewhat larger for the I' ;5 state.

The matrix elements of the secular determinant
| H;; —ES;; | =0 between a pair of Gaussians ¢; and ¢,
after orthogonalizing to the occupied core states X, of
the atoms are as follows:

Vi=di— 2 2 Xim i | Xim) ,
I m

H,'j—_-(tpi |He |¢1>
=(¢: | (K +Vp| ;)
+ 3 (i [ [VscD+Vex(D]] 6;)
1

_22E1m<¢i |X1m><XIm |¢]> , (2)
I m
Sij=<¢i |¢j>
=<¢i|¢j>—;2(¢i|)(1m>()(1m|¢j). (3)

Here the core energy E;, and wave function X, refer to
the mth core state of the ion at site R;. Ej, is related to

the free-atom core energy Ejo by
0
Elm = I(m)+AVI ’

where AV is the point ion potential at l_i,.
The core wave functions X, and the corresponding en-
ergies ESY for Ne* and Ne are taken from Clementi and



3476

Roetti.!! Separating the deep core from the outmost s and
p shells (SP), and treating them in terms of the zeroth-
order ion-size parameters 4 and B, Egs. (2) and (3) are
rewritten as

Hij={¢; [(K+Vp1)| ;)
+ 3 (4, —B/AV))$} (R))¢;(R))
1

+ ; (6 | [VSS D+ VR (D]g;)

- ;%SP)E’"'M‘ | Xim Y X | 6;) 2)
Sy={¢i|¢;)— }l‘,B,¢‘,.‘(R,)¢,~(§,)

- ;%‘SP’% | Xim Y Xim | 85 - (3')

The third and fourth terms of Eq. (2') and the third term
of Eq. (3') are evaluated as explained above. The ion-size
parameters A and B of Ne* and Ne are given in Ref. 8.

After the equilibrium lattice configuration correspond-
ing to the STE in the I'; state is obtained, we calculate the
electronic energy of the I'5 state assuming the Franck-
Condon approximation. Two pairs of s-like Gaussians
(a;=0.06 and a;=0.03) centered along a cubic axis across
the defect center were used. The energy is not very sensi-
tive to the distance of these Gaussians from the center.
We found that d;=0.84 and d,=3.00 (in a.u.) nearly op-
timal. If we require other excited states belonging to dif-
ferent irreducible representations of the system, we simply
would place more 1s-like Gaussians along various axes
around the defect center and diagonalize a larger secular
determinant.

The electronic polarization energy is included using the
method of Mott and Littleton, in which the dipole mo-
ments of the first 13 shells are determined by iteration. It
is found that the effect of electronic polarization is quite
negligible, especially when there is large lattice expansion
around the STE. Similar results were reported earlier for
the case of an undistorted lattice.” The smallness of the
electronic polarization energy for the STE in Ne is due
primarily to the fact that the system is electrically neutral.
It is also due to the relative compactness of the charge
density of the excited electron. In the ground state, about
95% of the electron charge resides inside the bubble. We
note that in a similar system, the F center in alkali halides,
Gourary and Adrian'? have also shown that the electronic
polarization energy is also quite negligible. By contrast,
for the electron bubble in solid Ne, which we have also
studied the electronic polarization energy is substantial. It
is more important than the lattice elastic energy in deter-
mining the equilibrium size of the bubble. (It represents
about one-third of the total energy of the electron bubble.)

B. Lattice energy

For the rare-gas solids, there is extensive work on the
interatomic potentials. In this work, we have used two
different interatomic potentials for the Ne-Ne pair interac-
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tion in the solid. One is the potential proposed by Aziz,'3
which is determined to correctly account for a large num-
ber of properties of the gas. The other is the (6-12)-type
potential presented in Kittel.'* It turns out that the final
results do not depend on the choice of the potential in any
substantial way.

We will discuss in some detail the choice of these intera-
tomic potentials at the end of next section. Aziz’s poten-
tial is as follows:

6
n—=6

(r*)="—

U(r*)=e

with
r*=r/rm
and
n=134+y(r*-1),

where r is the pair distance and the constants have been
determined as

7’:5 ’
rm=3.0739 A ,
€=41.1863 K .

We have also examined the effect of zero-point energy
using a simple approximation. The zero-point energy is
given by (3)k®) according to the Debye model. Here
®) is the Debye temperature. With the use of such exper-
imental data as the sublimation energy, the lattice con-
stant, and the compressibility, the Debye temperature ®
can be expanded in a power series of the local volume
change Av/v. The change in the local zero-point energy
can be represented in such a way as when the total energy
of the system is minimized in determining the equilibrium
state of the STE bubble. Using this approximation, we
have estimated that the inclusion of the zero-point energy
leads to at most about 10% increase in the first shell dis-
placement As for the energies, there is less than 1%
change when the zero-point energy is included. A more
accurate treatment should include the effect of possible lo-
cal modes of different frequencies in the immediate neigh-
borhood of the excited atom of which we know little at
this time. The results reported below are obtained without
the zero-point energy correction. This amounts to assum-
ing that the zero-point energy does not vary during the
lattice relaxation and that the local modes are neglected.

The second interatomic potential used is of Lennard-
Jones type and the parameters for all RGS are given in
Kittel.'* Reliable interatomic potential between Ne* and
Ne is not readily available. However, because of the large
repulsive interaction between the excited electron and the
nearby atoms, the radial displacements depend only slight-
ly on this interatomic potential. We have examined two
approximations. In the first we used exactly the same po-
tential as that for Ne-Ne. In the other, the Ne*-Ne poten-
tial was obtained by scaling the two parameters of the
Ne-Ne potential by constant factors (0.6866 for the attrac-
tive part and 0.5474 for the repulsive part), as was done by
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Druger and Knox' in their study of the self-trapped hole
in rare-gas solids. The result is that it introduces a small
difference in the first-shell radial displacement (2.01 and
2.00 a.u., respectively, for the cases with and without the
scaling). Beyond the first shell, the effect is almost un-
recognizable. All the results reported here are obtained
with the use of the scaled form for the Net-Ne interac-
tion. The total energy is evaluated for each lattice config-
uration which undergoes a gradual stepwise relaxation. It
is important to consider a large enough cluster (in this
work 13 shells are included). The number of atoms
around each atom undergoing a relaxation which are
counted in the lattice sum is relatively less critical. We
found that the first seven shells of atoms (135 atoms) are
sufficient in this regard. The electron wave function is
optimized at each step by means of the three Gaussian
basis functions mentioned above. When the total energy
varied by less than 10™* hartree, the minimum is con-
sidered to be reached.

III. THE STE BUBBLE IN SOLID Ne

The most interesting result we obtained is that the lat-
tice expands by a considerable amount around the excited
atom. The first shell of atoms is displaced radially by
about 2 a.u., corresponding to a cavity of volume
equivalent to about five vacancies. This means that there
is an initial bubble equivalent to about five vacancies im-
mediately after the atom is excited. The dilatation extends
over many atomic shells. Important displacements are ex-
perienced by those shells which are directionally coupled
to the first shell along the (110) axis. Those are the first,
the fourth, and ninth, etc., shells. The last shell (the 13th)
included in our work experiences about 0.11 a.u. outward
shift. A continuum correction to represent the remainder
of the lattice represents about 3% of the total deformation
energy, and is therefore neglected in the subsequent calcu-
lations.

Results obtained with the two sets of Ne-Ne potential
are listed in Table I which includes the total energy, the
first-shell radial displacement SR, with the electron in the
s-like (T",) state and the electronic energies for the I'; and
T';s states at the T'; state lattice configuration. Also listed
are the I'; and T's state energies with the lattice held in its
perfect configuration. By assuming that the hole state en-
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ergy (in the 2p shell of Ne) does not vary in the solid from
its value in the gas state, we can evaluate the change in en-
ergy for the absorption 2p—3s and for the emission
35s—2p between the gas and solid phases. We find that
the absorption energy is larger in solid by 1.22 eV, while
the emission energy is larger in the solid by 0.18 eV than
in the gas. The experimental values'®!” are, respectively,
0.79 and 0.07 eV (after taking the weighted average to take
account of the spin degeneracy). If the hole energy before
the absorption in the solid is raised somewhat, the agree-
ment improves further.

The different behavior of the I'; and I'}5 states is large-
ly due to the difference in the spatial extension of the
wave functions. For the more compact I'; state, the wave
function approaches that in the gas state after the lattice
has dilated. However, the I'js state is still substantially
higher than that in the gas state. Consequently, the
I')—T's transition energy is slightly larger in the solid
than in the gas, in agreement with the experiment of
Suemoto and Kanzaki.?

Before we compare the absorption energy calculated
here with the experimental data we should note that the
presence of a hole in Ne* introduces the spin-orbit in-
teraction as well as the exchange interaction between the
hole and the electron. In the present work we have not
considered the spin-orbit interaction, although the ex-
change effect was represented. From the atomic spectra
tables'® we have determined the centers of gravity of those
states which converge to J =+ state in the ionizing limit
for both (2p°3s) and (2p33p) configurations. The weight
taken was (2J +1). As was reported in Ref. 7, this gave
an excellent overall agreement between the calculated
Rydberg energies and the experimental values for the
alkali-metal atoms and rare-gas atoms.

In their experimental work on the STE bubble in Ne,
Suemoto and Kanzaki® have monitored the energy of one
particular transition 3s,,—3p,;, which is isolated from
the others. This line is lower than the center of gravity
defined above by 0.17 €V in the gas. In the solid, we have
therefore estimated the position of the centers of gravity
from that of 3s,,—3pg, by the same shift. These estimat-
ed energies of the center of gravity are compared with our
calculated values for the free atom and the solid in various
lattice configurations. The experiment followed the evolu-

TABLE 1. Size of the bubble and the electronic energies of I'; and I';s states. The bubble size with
the electron in the I'; state is indicated by the radial displacment SR, of the first-shell atoms. The total
energy Er of the system with the electron in the I'; state is also given. (All are in atomic units.)

Gas Solid (a=8.43a(): theory Dilation + 122
Theor. Expt. Rigid lattice Dilated lattice® vacancies
E(I'y) —0.1755 —0.1798 —0.1306 —0.1688 —0.1741
—0.1670 —0.1733
E(Tys) —0.1069 —0.1088 —0.0252 —0.0877 —0.1013
—0.0840 —0.1005
SR, 2.01
1.82
Er(T')) —0.1634
—0.1607

The first is for the Aziz (Ref. 13) potential and the second for the (6-12) potential (Ref. 14).



3478

C. H. LEUNG, L. EMERY, AND K. S. SONG 28

TABLE II. Transient absorption energy for (3s)—(3p) of the STE in solid Ne. { ) indicates the
center of gravity of the multiplet (see the text for details). The two interatomic potentials used for Ne-
Ne give slightly different results. The first is for the Aziz potential (Ref. 13) and the second for the (6-

12) potential (Ref. 14). (All in electron volts).

Gas Solid: theory Dilation + 12 Expt.®
Theor. Expt.? Rigid lattice Dilated lattice vacancies Initial Final
1.87 1.93 2.87 2.21 1.98 2.13 2.07
2.26 1.98

*Reference 18.
PReference 3.

tion of the transition energy 3s;,—3po; as a function of
the delay time between the electron pulse (excitation of the
Ne atoms) and the subsequent laser light pulse, which
varied between 5 and 160 usec. The shift of the absorp-
tion energy is toward the longer wavelength, thereby ap-
proaching the free atomic value. The authors have inter-
preted their data in terms of the bubble formation around
the excited Ne* atom. Our calculated absorption energy in
the presence of the lattice dilatation should therefore be
compared with the experimental absorption energy corre-
sponding to the shortest time delay (5 usec). As can be
seen in Table II, the agreement with experiment is very
good. Similar good agreement exists also for the case of
the free atom (Table II).

After the initial lattice dilatation which is believed to
follow the electron localization very fast (within about one
period of the lattice vibration), the total energy of the sys-
tem can still be lowered by capturing the free vacancies in
the lattice. The rate and the growth of the bubble is there-
fore diffusion controlled and shows strong temperature
dependence as was observed by Suemoto and Kanzaki.’
The red shift of the absorption energy per additional va-
cancy to the first shell is found to be about 0.02 eV from
our work. The experiment shows that the 3s,, —3p,, ab-
sorption energy varies from 1.957 to 1.902 eV during the
growth of the bubble independent of the temperature (be-
tween the observed interval of 18 and 28 K). This red
shift of about 0.055 eV corresponds therefore to about
three extra vacancies attracted to the bubble before the
growth stops. This number is in agreement with the re-
sults of the analysis given by Suemoto and Kanzaki (who
concluded that their data is consistent with the vacancy
number between three and seven). They have not realized,
however, that the lattice undergoes the large initial dilata-
tion which we have found.

An interesting question is why the bubble stops grow-
ing. According to our calculation, the system energy
lowers by about 0.02 eV for each additional vacancy cap-
tured in the first shell. Thus it is energetically possible for
the STE to capture at least 12 vacancies. In fact, the
number of vacancies captured in equilibrium depends also
on the kinetics of vacancy diffusion. We have made a
crude estimate following the usual theory of vacancy clus-
ter formation. By matching the rate of a vacancy jumping
into the first shell with that of a vacancy jumping out, we
have found that the number of vacancies at equilibrium
would be small, somewhere between one and two. This is
therefore in qualitative agreement with the analysis
presented above.

Another interesting result of the experiment® is that the
absorption line is relatively sharper at the two ends of the
delay time. Suemoto and Kanzaki have argued that dur-
ing the growth of the bubble there is a statistical distribu-
tion in the bubble size and this introduces extra broaden-
ing of the absorption line.”” This seems to be a correct
reasoning. The other factor to consider is the crystal-field
splitting of the I';5 state in the presence of a small number
of vacancies in the first shell. We have estimated that this
effect leads to a splitting of about 0.1 eV among the T's
states. This is about twice as large as the maximum
linewidth. We do not understand why this effect on the
I'|5 state is not observable. It could be that the first-shell
atoms undergo substantial rearrangement when vacancies
jump in, so that the new arrangement largely cancels the
anisotropy.

In an earlier work, Song and Leung’ have used the pseu-
dopotential theory of Bartram, Stoneham, and Gash’® to
study the a-STE in Ne. In this work, the outermost s and
p electron shells were not represented separately, but were
included in the total ion-size effect together with the con-
tributions from the deeper cores. The ion-size parameter
A was scaled by a factor of 0.53 as in the studies of F
centers in alkali halides. Although the important point
about the large electron energy gain per atom removed
was made in that work, the possibility of the lattice dilata-
tion was not investigated then. A mention should be made
of a little-known work by Sribnaya et al.?° in which the
interaction of the excited electron with the lattice atoms is
studied for solid Ne. They have used a simple wave func-
tion which was orthogonalized to the first-shell atoms.
They found the lattice dilatation which is somewhat larger
than our value (3.0 vs 2.0 a.u. in our work). They have not
studied the other excited states, and the method used was
a direct orthogonalization scheme organized for one
specific example.

Another interesting work was done by Kunsch and
Coletti?! who exploited the existence of the potential of
Ne; from an ab initio calculation of Cohen and Schneid-
er?2 By extracting out the interatomic potential for
Ne-Ne and Ne*-Ne, they obtained the dilatation field
around the excited Ne* atom, and also the change in the
emission energy 3s —2p in solid from the free-atom value.
This energy change is in very good agreement with the ex-
periment and the lattice dilatation result is very close to
ours (2.22 a.u. for the first shell, which is very close to our
2.01 a.u. with the Aziz potential).

In view of the very large lattice dilatation which we
found around the excited atom, one may question the va-
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lidity of the interatomic potential used. These potentials
are determined from a set of lattice properties'® or gas
properties over a wide range of temperature.'* In particu-
lar, the Aziz potential used here was fitted from data in-
cluding the low-temperature gas diffusion data, which is
important in determining the slope of the repulsive poten-
tial wall. This portion of the interatomic potential is of
particular importance in this work, as the lattice is
compressed in the neighborhood of the bubble. The large
outward displacement of atoms in the first shell is deter-
mined primarily by the interaction between the excited
electron and the core electrons of the surrounding atoms.
We found that the size of the bubble is practically insensi-
tive to the treatment we made to the Ne*-Ne interaction,
as we reported above. We believe that the uncertainty of

the potential for large lattice distortion would have only a
small effect on the formation of the large bubble around
the STE in Ne.

IV. RARE-GAS IMPURITIES IN SOLID Ne

The influence of an inert host matrix on the properties
of various atomic and molecular systems has been the sub-
ject of considerable interest.! The case of low-
concentration rare-gas impurities (Ar, Kr, and Xe) in solid
Ne (Refs. 23 and 24) is very similar to the a-STE in Ne
just studied. These systems have been studied by optical
absorption and luminescence between the various electron-
ic states and the results were compared with the corre-
sponding free-atom data. There are rather large Stokes’s
shifts, as well as subtle differences between the solid and
the gas data. These point to the presence of “bubbles”
around the excited impurity atoms. While in the case of
the a-STE in Ne, the absorption and emission are between
a pair of excited states (3s and 3p of the central Ne atom),
the optical transitions for the impurity centers are between
the hole state (in the compact closed shell) and the first ex-
cited s-like state of the impurity atom (e.g., between 3p
and 4s states of Ar in Ne).

We have studied these impurity centers using the
method of Sec. II. Before presenting the results of our
work, the following points can be made.

(1) The hole state is from the last closed shell (p state)
of the neutral impurity atom. This being a relatively com-
pact state, the influence of the inert-gas lattice is believed
to be relatively small on the hole state, as was assumed in
the preceding section.

(2) Even with the electron in the compact hole state (i.e.,
when the dopant atom is unexcited), there is a non-
negligible lattice relaxation around the dopant atom, be-
cause of the difference in the atomic radii between the
dopant and the host atoms. As the electronic energy is
very sensitively dependent on the surrounding lattice con-
figuration when the electron is excited to the s state, we
should determine this relaxation first. This relaxation is
much smaller than the large dilatation expected to take
place once the electron is in the excited s-like state.

(3) According to the Franck-Condon principle, the opti-
cal absorption takes place while the lattice is frozen in the
initial-state configuration. It is therefore expected that the
energy of the optical absorption (e.g., 3p—4s in Ar-Ne)
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will be considerably larger than that of the corresponding
transition for the free atom.

(4) For luminescence back to the ground state (e.g.,
4s—3p in Ar-Ne), the electron is initially in a diffuse ex-
cited state. Since the lifetime of the excited state is in gen-
eral long compared with the lattice relaxation time, the
lattice expands around the impurity atom leading to the
formation of a cavity, in the same way as the case of the
STE studied above. The luminescence energy in the solid
is therefore very close to that of the free atom, but slightly
larger reflecting the residual effect of the lattice on the re-
laxed excited electron state.

For the study of impurities in solid Ne, we have fol-
lowed the same approach as for the a-STE in Sec. III.
The ion-size parameter 4 is 27.70, 38.55, and 61.28,
respectively, for Art, Kr* and Xe*t. The values of B are
2.52, 4.43, and 10.06 for the three ions. (All are in a.u.)
In choosing the interatomic potential, however, we limited
ourselves to the (6-12) potentials for the sake of uniformi-
ty. The pair potential between the impurity atom and a
host atom was also taken as a (6-12) potential, determined
along the line proposed by Prigogine?>: The energy pa-
rameter is taken as the geometric average of those for the
impurity atom and the host atom, and the radius parame-
ter is taken as the corresponding arithmetic average. This
determined the interaction for the pairs Ar-Ne, Kr-Ne,
and Xe-Ne. When the electron is excited, the interactions
to consider are between the impurity ions (e.g., Ar*) and
the neutral Ne atom. This was treated by scaling the con-
stants in the same way as in the STE work of Sec. IIIL.
Again in this case the scaling has only a small effect on
the size of the bubble because of the strong electron-lattice
interaction.

As the compact hole state is not accessible by the
present method, we have calculated the excited s-like
states under various lattice configurations. We first evalu-
ate the small relaxation of the lattice around the dopant
atom with the electron in the ground state. Then a second
calculation minimizes the total energy of the system (using
three Gaussians for the excited electron) with the electron
in the first excited s-like state. This part is similar to the
STE work of Sec. 111, and determines the size of the “bub-
ble.”

For comparison’s purpose, the following s-like excited
state energies are obtained using a single optimized ls
Gaussian function centered on the impurity atom: (1) E,,
the final-state energy in the absorption for the relaxed lat-
tice (no bubble); (2) Eg, the initial-state energy in the
luminescence for the solid (i.e., the energy of the excited
state in the bubble); (3) Eg, the initial-state energy in the
luminescence for the free atom. These energies are assem-
bled in Table III, which also gives the first-shell radial dis-
placements 8RY and 8R1, respectively, with the electron in
the ground and the relaxed excited states.

Assuming the hole-state energy is the same for the solid
and the free atom, (E, —Eg) is the difference in the ab-
sorption energies in the solid and in the free-atom state,
and (Ez —Eg) is the difference in the luminescence ener-
gy. The calculated values (E; —Eg), (Eg—Eg), and the
Stokes’s shift (E, —Eg) are listed in Table IV, and com-
pared with the experimental data of Hahn and
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TABLE III. First-shell radial displacement with the impurity atom in the ground state (8R?) and in
the excited state (3RY). [In Ne-Ne, the result for the (6-12) potential is listed.] The electron energies
and the corresponding optimized Gaussian functions (the damping factors @) of the first excited state
for the gas state (Eg), the unrelaxed state reached by optical absorption (E,) in the solid, and the re-
laxed excited state prior to the emission in the solid (Eg). (Allin a.u.)

Ne-Ne Ar-Ne Kr-Ne Xe-Ne
SR$ 0 0.371 0.576 0.860
S8RY 1.82 2.239 2.287 2.572
Egl(a) —0.1755 —0.1483(0.028) —0.1400(0.024) —0.1333(0.020)
E () —0.1306 —0.0908(0.042) —0.0779(0.035) —0.0623(0.026)
Eg(a) —0.1670 —0.1352(0.036) —0.1222(0.031) —0.1112(0.026)

Schwenter.?* The atomic values are taken from the stan-
dard source.'® For comparison’s sake, we have included in
this table the corresponding values for the Ne “impurity”
in solid Ne, obtained in Sec. III.

The comparison between theory and experiment shows
that there is an overall satisfactory agreement. The im-
portant facts of a large Stokes’s shift and a slightly larger
luminescence energy in the solid are well confirmed by our
calculation. It is also interesting to compare how the wave
function (single optimized Gaussian) varies from atom to
atom and from gas to solid (see Table III). The most un-
certain quantity is. the relaxation of the lattice with the
electron in the ground state. The energy of the excited
state reached by absorption depends quite sensitively on
the ground-state lattice configuration and even slight un-
certainties would shift E, by a substantial amount. The
assumption that the hole-state energy is the same for the
solid and gas also contributes to the discrepancy between
theory and experiment. Since the hole-state energy is
slightly higher in the solid (particularly for the heavier im-
purity atoms), we have probably overestimated the change
in the absorption energy (E, — E;) somewhat.

V. CONCLUSION

We have studied the electronic structure of the a-STE
and rare-gas impurities in solid Ne using a hybrid version
of the extended-ion model and obtained quite interesting
results. The most important result obtained is the ex-
istence of a microcavity around the excited atom in solid
Ne, similar to the well-known electron-bubble in liquid
Ne.’ Qualitatively speaking this is the effect of the repul-
sive pseudopotential of the Ne atom. The gain of electron
energy when a nearest-neighbor Ne atom is pushed away
is large enough to compensate the expense of energy to de-
form the lattice locally. The change in the spectroscopy

between the states of the free atom and those in the solid
Ne lattice are also correctly reproduced in the present
theory as they are observed experimentally.

In the hybrid scheme used in this work, the deep-core
electrons are treated by the ion-size theory of Bartram
et al.® of the lowest order, and the two outermost shells (s
and p) are treated exactly within the framework of the
one-electron Hartree-Fock method. The exclusive use of
the floating basis 1s Gaussian functions allows an efficient
and accurate evaluation of the many and various terms of
the Schrodinger equation. Further applications of the
present approach to other interesting defect systems in
rare-gas solids, such as the impurity alkali metals in solid
Ne and Ar are now under way. When applied to the study
of the conduction bands of solid Ne and Ar (Ref. 26) we
have obtained very encouraging results which compare
well with other Hartree-Fock band calculations.?’
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APPENDIX A: INTERPOLATION SCHEME

We present here a brief description of the interpolation
scheme for the various integrals of Egs. (2’) and (3) which
we found very efficient and accurate. First, we convert
the Slater orbitals of the outer shell wave functions in
terms of linear combinations of Gaussian orbitals by
least-squares fit (the number is usually 12). Then the
overlap integral, the screened Coulomb, and the nonlocal
exchange terms are evaluated exactly by using the analyti-

TABLE IV. The changes in the optical transition energies of the impurity atoms in the free state and in solid Ne: (E,—Eg) for
the absorption, (Eg — E¢) for the emission, and (E, — Er) the Stokes’s shift (in eV).

Ne-Ne Ar-Ne Kr-Ne Xe-Ne
Theor. Expt.? Theor. Expt.® Theory. Expt.® Theor. Expt.®
(E4—Eg) 1.22 0.79 1.56 0.89 1.69 0.53 1.93 0.62
(Eg—Eg) 0.23 0.07 0.36 0.08 0.48 0.07 0.60 0.17
(E4—Eg) 0.99 0.72 1.21 0.81 1.21 0.50 1.33 0.45

*Reference 16.
YReference 24.
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cal expressions which are available.!® A set of these exact
values are then fitted to simple interpolation forms over a
range of the Gaussian damping factor and the distance be-
tween the atomic core and the ls Gaussian pseudo-wave-
function. The range of the damping factor employed is
guided by a preliminary study of the wave functions for a
variety of excited states. These include the conduction-
band electron, the STE, and the electron bubble in the case
of Ne. For most cases we studied, the optimal range of
the Gaussian damping factor is about 0.002 to 0.140 (in
a.u.) The distance between the atomic core and the ls
Gaussian ranges from 0 to about 15 a.u.

In the following we give merely the form of the interpo-
lation formulas.

A. Screened Coulomb energy

We found the following form of the screened Coulomb
energy very satisfactory. Here G(R,) and G (R,) are the
1s Gaussian pseudo-wave-functions centered on R; and
R,, and A4 and 3 are the parameters fitted

[GR

_ g2
e B

rG(R,)dr=A4 [ G(R;) G(Ry)dr

3481

B. Exact exchange energy

We have examined various forms of interpolation in-
cluding the ones for the exact exchange energy with an s-
or p-type Gaussian core. We found the following form
very accurate and convenient:

J6ur

VEx (1 2)G2(R2 )dT]de

=4' [ G(R)e~P7G(Ry)dr,

where A’ and 3’ are the parameters of fit.

C. Overlap integrals

The overlap integrals between a 1s Gaussian G (R ;) and
an s- or p-core Gaussian orbital are straightforward. The
fit can be accomplished by means of one- or two-core
Gaussians as follows

[ G(R X dr=N, [ G(R))e~"dr,

[ GR

X, d7=N, [ G(R))e~*""zdr .
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