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The electronic structure of solid methane, including the virtual levels, is studied in a self-
consistent Hartree-Pock model as a function of the lattice constant. It is found that the band gap is
a sensitive function of pressure. It is also found that the resulting accuracy of the conduction bands
depends heavily upon the quality of the virtual orbitals, a fact not appreciated in previous studies on
solid CH4. It is found essential to include correlations explicitly in order to facilitate a comparison
to experiment. This is done by means of perturbation theory. The inclusion of Coulomb correlations
causing the formation of excitons in the excited spectra is accomplished by means of degenerate per-
turbation theory in the continuum. Results are compared to experiment.

I. INTRODUCTION

Theoretical studies on three-dimensional solids have
largely excluded the category of molecular solids. Of the
existing studies on such systems almost all have been for
sohd rare gases or solid H2. In the case of H2 much in-
terest is stimulated, not so much by any intrinsic interest
in solid H2, but rather by interest in the
insulator —to—monatomic-metal transition, and the possi-
ble presence of stable metal phases exhibiting high-
temperature BCS-type superconductivity. ' Much recent
theoretical interest in the properties of the solid rare gases
is also related to questions of metallization pressures as
well.

More complicated molecular solids, those which have
more than two atoms in a molecular unit or those with
more than one type of molecule in a unit cell are limited
primarily to one-dimensional systems such as polymers
and solid methane (CH4). There are probably many
reasons for the neglect of this technologically interesting
class of solids. Several of the reasons are likely related to
the complicated and at times ill-defined crystal structure
of such systems and the associated difficulties in con-
structing adequate theoretical models. A second and
perhaps more serious problem relates to the question of
which approach one might use to determine the electrical
structure. The spectrum of solid CH4 has been deter-
rnined over an energy range of 8 to about 35 eV. The fun-

damental spectral region of from threshold ( &8.5 eV) to
about 14 eV shows marked similarity in both solid and gas
phases. It is generally conceded that the gas-phase spectra
in this energy region is dominated by transitions from the
bonding to antibonding bound-state orbitals or to
Rydberg-series-type transitions. ' It seems reasonable to
expect that the crystalline spectrum is likely to be similar-

ly dominated by transitions to bound rather than free final
states. That is why we do not expect the contributions
from energy-band theory to play a major role in the low-

lying excitations of solid CH4. On the other hand, the
spectral region above 14 or so eV may well be dominated

by band-to-band transitions and this may account for the
apparent differences between the high-lying spectrum of

gas-phase CH4 and solid CH4.
The available theoretical study on solid methane lends

credibility to this argument, as the calculation of Piela,
Pietronero, and Resta finds a band gap in excess of 27.2
eV for solid methane. It is not likely that this result is
quantitatively accurate as these authors used a very abbre-
viated basis set in their calculation and found the conduc-
tion results to be highly sensitive to the virtual basis set.
A further source or error in this early study is the use of
the Hartree-Pock approximation uncorrected for any
correlation corrections. Similar studies by Mickish and
Kunz on the somewhat similar solid rare gases have found
that the Hartree-Pock method consistently overestimates
the band gap of these systems by about 4 or 5 eV. Thus
the author believes that the results of Piela et al. are indi-
cative of the solid methane band structure but not quanti-
tatively accurate. If one is to base one's judgments on the
solid rare gases, the local-density method, at least in the
Xa variant, is also not likely to provide quantitatively use-
ful band-theoretical results for this system either. Furth-
ermore, all such band methods are inaccurate in that all
neglect the formation of local excited states called exci-
tons.

Thus, the author believes that a totally new approach is
needed if one is to truly interpret the electronic structure
of such systems as solid methane. This paper is an at-
tempt to begin the formulation of such a method. Recent
theoretical results of Kunz and Flynn have demonstrated
that it is possible to include the effect of electron-hole in-
teraction and exciton formation in calculations of the opti-
cal properties of such divergent solids as I.iF and Mg or
Ca. This is accomplished by means of a complete
configuration-interaction (CI) calculation using the K-
conserved one-body valence- to conduction-band excita-
tions as a basis. This complete CI is sufficient to describe
both %annier and Frenkel excitons in a single calculation.
Furthermore, this modd exphritly includes the proper
periodic symmetry of the lattice and thus avoids compli-
cations induced by the use of finite-cluster models to
describe the local excitations. The formulation of the
problem in this way by Kunz and Flynn causes one to
wisll to bcgill with Harti'cc-Fock dcscrlptlolls of thc solid
since a well-defined many-body wave function is needed.
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This causes other problems to appear. The Hartree-Fock
model neglects all correlations and the limited CI used to
describe excitonic effects does not describe properly the re-

laxation or polarization properties of the system. In this

paper, the correlation effects are incorporated by means of
a simple many-body perturbation-theory model (MBPT).
The necessary theoretical methods are described in Sec. II.
The numerical calculations are described in Sec. III, and
conclusions are given in the final section.

II. THEORETICAL METHODS

The basic initial step in these calculations was the
choice of the Hartree-Fock approach. The choices here

were largely determined by the need to perform extensive
correlation calculations in addition to the basic band-

theoretic ones, and therefore to have done the fundamental
calculations in as convenient a way as possible. In the
present case this dictated that the basic method should be
a variant on the familiar linear combination of atoinic or-

bitals method (LCAO). Ultimately the goal of this project
is to be able to obtain energy-band structures for rather
complex molecular solids so the simple use of LCAO was

not considered appropriate, This is because as one has
unit cells of ever increasing size and complexity an ade-

quate description in terms of atomic orbitals (AO's) yields

very large secular determinants. There is a useful alterna-
tive, this being the linear combination of molecular orbi-
tals scheme (LCMO). This was introduced by Piela et al.
for their work on solid methane. In even such a simple
case the occupied basis size reduces from nine orbitals to
five. Furthermore, the molecular orbitals (MO's) may
contain polarization functions in them and yield much
greater accuracy than a small number of AO's.

The essential features of the LCMO method are these.
The unit cell of the solid system is divided into basic units
termed molecules. These units need not be true molecules,
but such is often convenient. A basis set, the MO's are
then devised to represent the molecule. In this calculation,
the MO's are in turn expressed as a linear combination of
Gaussian type orbitals (GTO's). These Gaussian orbitals
are of the form

1;(r—R;)=exp[ —Z;(r —R;)']&i (8,$) .

In this expression the F~ are the normal spherical har-

monics, combined into real Cartesian-type functions. R,
is the origin about which these functions are placed. This
origin need not be an actual nuclear site, but rather may be
variationally chosen, just as are the ZJ, the orbital ex-

ponents. The MO is then simply a linear combination of
these orbitals in the form,

PJ(r R~)=pa/x;(r R—;) . —

Prom these MO's one forms Bloch symmetry orbitals to
span the entire crystal. These Bloch orbitals are of the
form

This then is the basis set chosen to represent the energy
bands in our rather general form of the LCMO method.

The basic method is Hartree-Fock and one need achieve
self-consistency. This may be accomplished in one of two

ways. The first is to iterate the basic crystalline Hartree-
Fock equation at a Anite number of points in reciprocal
space using this basis set. The other is to iterate the MO
basis to self-consistency via the method of local orbi-
tals. ' In this study both were attempted with negligible

differences in accuracy. It was found for this case that the
method of local orbitals enjoyed substantial speed advan-

tages, and therefore allowed one to use better basis sets
and to more carefully optimize them as well. This is more

fully discussed in the next section.
The essential physics of a Hartree-Fock band structure

is in the meaning of the energy bands. In this approxima-
tion, the occupied bands are the negative of the ionization

energy for that band for the state of wave vector k. The
virtual bands are similar representations for the electron
affinities. In this event one is assuming the use of the
Hartree-Fock eigenvalue and also of Koopman's theorem

as is usually done. It is essential to observe that the phys-
ics here refers to ionization properties, not to excitation
properties of the n-electron system. The modifications
needed to incorporate excitation properties will be dis-

cussed subsequently.
In order to improve upon the Hartree-Fock results one

must include correlation corrections. In doing this, the
author will maintain the same physical definition for the

energy bands as in the Koopman's case. That is, the
bands now become quasiparticle bands in which the ener-

gy of an occupied level is the negative of the energy need-

ed to create it, and the energy of the virtual states are the
negative of the energy recovered in created it. This is in

keeping with the earlier usage of the electron polaron
model and its extensions as discussed by Pantelides
e~ aI.""

In performing the correlation one must exercise care
from the outset since the correlation energy of an infinite
solid is itself infinite. Thus one need construct models
which obtain only the changes in correlation energy as one
changes state. This is most simply done by using many-

body perturbation theory (MBPT). An early attempt at
this is the electronic polaron and the author will follow
this basic philosophy here. '

It is useful to work in a Wannier representation here.
This is appropriate since CH& is a filled-shell system. For
notational simplicity, we designate the Wannier function

W;iv (r) as the ith Wannier function about site Riv. In this
instance, we form a complete set of Wannier orbitals as
appropriate for the ground state of the neutral, E-electron
solid in the Hartree-Fock limit. We will use those to gen-
erate the ion states as well. For a system of X electrons
the Hamiltonian is

Pi(k, r)= ge 'QJ(r —R;) . (3)
The electronic mass is m, its charge is e, and Z; is the
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atomic number of the nucleus at site I. The ith electron

has coordinate r; and the Ith nucleus has coordinate Rl.
Here we let

E"+i=E~+ &w- IF(N)
I w» &,

and the off-diagonal elements are

Dx~ii = &wbs IF{»I w~ & . (12)

In terms of our Wannier functions, in the Hartree-Fock
limit the energy of the system is

(N) g2 Z
Ew=X %1 — ~ -X wgl

Wg, W) J

The analogous Bloch projection to Eq. (9) yields for the
virtual state

y'."+"(k)=y '
~ "IX+I;a,~&.

tH

There is one point of difficulty here. For the infinite
sohd, Ez ——00. This is no real problem since one is in-
terested in energy changes and we may arbitrarily renor-
malize such that EN ——0. If we do this let us then simply
designate the diagonal matrix elements in Eqs. (2) and (11)

DPr "i= &~;s IF(» I w,a &

The symbol (» on the summation implies sums over all
states in the occupied N-electron space. In maintaining
the physics describing the energy bands described earlier
we need to look at the {1—1)- and (1+1)-electron sys-
tems next.

Let the ground state of the N-electron Hartree-Fock
system be designated as

I
N ) and let uzi, uzi create or des-

troy a Wannier function at site I with other quantum
numbers p, respectively. Here we adopt the notation that
quantum numbers i,j,k, etc., refer to occupied orbitals,
a,b,c to virtual orbitals, and o,p, q to either or both. A
Slater determined of the {N—1)-body system is

(6)

This wil) be symmetry adapted later. The energy expecta-
tion value of this state is simply

At this point we are ready to correlate our band problem.
In order to proceed in a reasonable finite (from the com-

putational standpoint) way it is necessary to make some
simphfying and perhaps avoidable {in the future) approxi-
mations. These include that we choose to correlate the
unprojected (N —1)-body and (5+I)-body wave func-
tions [Eqs. (6) and (10)]. The second is that we use
second-order Rayleigh-Schrodinger perturbation theory
(RSPT) to accomplish this. Note that the N-body wave
function here has proper Bloch symmetry if we consider
closed-band systems. By using a proper choice of A in the
Adams-Gilbert local-orbital formulation called A~ one
may obtain Wannier orbitals. The actual choice of A is
not important, only that such exist. Then,

E&' i=E~ &wj'-IF{»
I

—w&s) (F+pA p)w;l ——e;lw;I . (14)

The first-order Fock-Dirac density matrix is p. From this
one constructs a zero-ordel' Hallllltonian. Fol a system of
M electrons, Ho is defined as

N
Ho g[F( r; )+p;A——; p; ], (15)

Here F(N) is simply the S-electron ground-state Hartree-
Fock operator. Similarly one may obtain the off-diagonal
matrix elements between two states

I
ill 1;i,A) and—

I
N 1;j,8 ). These —are simply

DN"i =&wjs IF{»I+A & (8)

Thus one may form Bloch symmetry projections on the
state

I
N —l,j8) to form a proper translational-invariant

Bloch function, 1(J '{k):

and then the perturbation, V, becomes

V—=0—Ho, (16)

H is given by Eq. (4). Since our interest is in the N-
electron ground state and also the (X+1)- and (N —1)-
electron ions one must proceed with some care. Consider
first the N-electron ground state. In this case the Wannier
orbitals of the occupied state, span exactly the X-electron
Bloch space as well, and Brillouin's theorem remains
valid. Therefore, to second-order RSPT one has

(X) y aAb8

E(N) =E~+ g g . (17)
i,I &j,J a,A & b g Ei'I +EjJ —E~ Ebg

I
X+I;i,a)=ab', IX),

and then the energy expectation value of this state is

(10)

"(k)=g e 'IN —1j B) . (9)
s m

In terms of Eqs. (5)—(9) one may construct a band struc-
ture in terms of Wannier functions and the Slater deter-
minate for the occupied orbitals. These are yet uncorrelat-
cd.

One may proceed in like manner for the {%+1)-body
states. That is, let

Here the summation (» indicates all Wannier orbitals in
the N-electron state. The matrix element is simply
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2
z~aAbB
vlIJJ = WIIswjJ waAswbB

12

~ ~

2

WiI, WjJ WbB, WaA
T12

(18)

In this computation, the N-body orbitals are used to
describe the (N —1)- and (N+1)-body states so that
Brillouin's theorem is no longer valid for these ion states.
In the local representation used here, this is simple to ac-
count for. Let us consider first the (N —1)-body problem.
Assume that Wannier orbital w;B has been deleted from
the N-body ground state. Then to second-order RSPT one
finds that

I
F(N —1;i,B)j'I"

IE(N I;i,B)—=E~ D~', —+
&) I —

&aA

(N —1) VaAbc 2

k K&j,J aA &bC ~kK+~jJ ~aA ~bC

In Eq. (19) the V is still as defined in Eq. (18) and
F(N —1;i,B) is obtained be deleting terms referring to or-
bital w;s from F(N). Therefore,

F(N —I;i,B)JI = (wJI I
F(N 1;i,B)

I
w,—z ) (20)

One proceeds in like fashion for the (N + 1)-electron case.
Here one adds orbital w,B to the ¹lectron state and has

~&+»
I
F(N+ l,cB)JJ

IE (N + 1;c,B)=E~+D~+ i +
EJ'J —

CaAj,J a, A

jJkK(N+1)
I

v~dDI'

j J&kKaA&dD jJ+ kK aA dD

(21)

I
F(N 1'i,B)J'J"—

~iB DN —i g XjJ aA jJ aA

(N)
I

V~'cI'
iBjJ

j,J~i,B a, A &c,C FiB+ 6&J
—

GaA EcC

jJkK

J' J)k K~i B a A 6&J +GkK —6]B—CaA
(22)

Likewise the electron affinity terms are obtained by letting
b,cs E(N + 1;CB) E(N). Th——en—

In Eq. (21) V remains as in Eq. (18}and F(N+1;c,B) is

obtained by adding terms referring to orbital W,B to the
¹lectron Fock operator.

It is now possible to obtain the physical-energy differ-
ences by taking differences of these energy expressions.
The ionization potentials are defined by
E(N) E(N 1;i,B) —This —differe. nce called here b,;s is

given as

~&+i~ IF(N+l, cB)JJ
I

~ca =Dxii+
jJ a A ~jJ ~aA

i,I a, A &d, D&c,B ~iI+6CB—
CaA ~dD

(&+1)
I

viIjJ

i I&jJ aA&cB CiI+~J cB ~aA
(23}

It is these formulas we will use in this study. The choice
of RSPT was made for several reasons. The first is that it
is one of several methods which avoids problems of size
consistency. ' The second is that it is computationally
tractable. The final reason is it has been seen capable of
substantial levels of accuracy for studies of atoms, large or
small molecules, and solid systems. ' ' In the case of the
CH4 molecule simple second-order RSPT is able to predict
a correlation energy in excess of about 0.2 hartree which is
80% of experiment. ' Further examination of this result
indicates most of the error is in underestimating the corre-
lation of the C 1s pair of electrons which are in any event
not relevant to the optical transitions considered in this ar-
ticle.

There is one final piece needed to complete this theory.
This is to include the actual effect of electron-hole interac-
tion upon excitation. An accurate method of doing this
for both tightly bound or loosely bound excitations has
been recently given by Kunz and Flynn, and it is this
method used here. The essential point is to use the solid
Hartree-Fock bands as a basis set after incorporation of
correlation corrections into the band energies. The Fock
ground state

I
N) is then used to describe schematically

the process. Let a„(k) annihilate a valence electron of
wave vector k and let a, (k) create a conduction electron

of wave vector k. Consider the state then:

IN, k&=a, (k)a„(k)
I

N& . (24)

It is only states like this which can be reached from the
ground state via optical processes. Furthermore all such

states
I
N, k) correspond to the same total crystal wave

vector, that of the ground state. The most general excited
state that one may access is then

I
N, E ), where

I N, E)=pa-„ I
N, k) . (25)

k

In this sum, the ground state
I
N), is excluded because

one reaches this final state by optical excitation and one
changes parity. If one can determine the a- and evaluate

k

(N, E
I

H
I
N, E) one may determine the spectrum of the

solid including electron-hole interaction. This is achieved

by means of a CI calculation among the states IN, k).
The formation of such exciton states is not an extensive
property and size consistency is not a problem as demon-
strated by Kunz and Flynn. Exact implementation of
such a CI is of course impossible and we use a finite num-
ber of states to do so, in this case some 270 configurations.
A second approximation is made as well. This is to trun-
cate the Coulomb interaction at the boundary of a unit
cell. This is not unreasonable for tightly bound excited
systems as in the case of CH4 particularly since the large
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lattice constant (11.14 a.u. ) encloses a substantial volume
in a unit cell. Kunz and Flynn tested this for LiF and
found this a very good approximation. The dominant
consequence of this is to allow the formation of only a sin-

gle bound exciton, not an entire Rydberg series below the
bands. However, when the coefficients a- are used to

k

evaluate the optical response one finds substantial adjust-
ment over the Hartree-Fock results. These changes are
due to the redistribution of oscillator strength to the bot-
tom of the conduction band due to the inclusion of
electron-hole interaction. For further details on how such
a computation is performed the interested reader is re-
ferred to Ref. 7.

It is instructive to compare the current method with the
earlier methods employed by the author based upon
separate relaxation and correlation inclusions. ' ' In
those methods the relaxation term was imposed, whereas
here it occurs naturally as the second term on the right-
hand side of Eqs. (22) and (23). This term arises because
the (N+1)- and (N —1)-body wave functions are not
self-consistent due to the use of the N body W-annier func-
tions and Brillouin's theorem is not obeyed. Thus these
terms are nonzero by lack of self-consistency and are
properly termed relaxation corrections. The remaining
third and fourth terms on the right-hand side of Eqs. (22)
and (23) are correlation terms. These are computed in a
way which differs radically from the earlier electronic po-
laron methods &&, &2, i3, &8 Here the matrix elements are ac-
tually computed, not estimated, from polarizabilities and
sum rules as before and also we retain the third term of
Eq. (22) and the fourth term of Eq. (23) which were ig-
nored in the electron polaron model.

III. RESULTS OF THE CALCULATION

A Gaussian basis set was developed for the CH4 mole-
cule in free space and then reoptimized in the crystal to al-
low accurate description of the Hartree-Fock energy
bands, both occupied and virtual. In doing this it was
found that it was quite easy to obtain accurate valence
bands, but that the conduction bands were quite sensitive
to the choice of outer orbital. Since the variational princi-
pal applies to the solution of the one particle energies in a
LCMO formalism, the selection of the preferred basis is
quite easy. In practice, the conduction bands are found to
be stable against small changes in basis set. The Gaussian
basis set employed is shown in Table I. The valence struc-
ture here agrees well with that obtained after corrections
to formalism by Piela et al. ' ' The conduction bands
are in very poor agreement, however. This is due to the
far too restrictive basis set employed in the Piela et al.
calculation of the virtual bands. One may be confident of
this assessment, since Piela et al. acknowledge that such
might be the case and since the current results are varia-
tionally preferable. In performing this calculation, some
idealizations are needed. A lattice constant of 11.14 a.u. ,
in agreement with Piela et al. , is used and the C sublattice
is fixed as a fcc one as per experiment. The four H's form
in tetrahedra about the C in a unit cell. In the real world,
the tetrahedra do not align from one cell to another but
have orientational disorder. The author, as does Piela

TABLE I. The Gaussian basis set used in the band-structure

calculation is given. The basis is of the form g;(r —R;)
=exp[ —Z;( r —RI )']yP(8, $).

1

2
3
4
5

6
7
8

9,14,19
10,15,20
11,16,21
12,17,22

13,18,23
24,26,28,23
25,27,29,31

Zl

1050.0
167.9
40.75
11.76
3.65
0.566
0.154
0.110
9.689
2.053
0.558
0.154
0.095
1.95
0.34

R;

C
C
C
C
C
C
C
C
C
C
C
C
C
H
H

0
0
0
0
0
0
0
0
0,+1
0,+1
0,+1
0,+1
0,+1
0
0

CHyL
Hartree - Fock

(a)

Xg'

Xi

~x, 0.0
5

(b)
Xs'

0.0—
- (c)

Xs

Xg'
I'Is

Xs'

Xg'
I'Is

(000)
k

Xl~ Il
-2.0

(Ioo) (ooo)

Xl
-2.0

(loo) (000)
k

Xl

(I00)

FIG. 1. Hartree-Fock band structure for solid CH4 is shown

for the direction I —X in the first Brillouin zone for (a) a =11.14
a.u. , (b) a =10.50 a.u. , and (c) a =10.00 a.u.

et al. fixes the H's in an ordered fcc lattice as well. The
current calculation uses the same geometry as does Piela
et al. The C-H distance is obtained computationally from
Beck ' and for a lattice constant of 11.14 a.u. , the equili-

brium constant is essentially the same C-H distance as in
the free molecule. To assess the sensitivity of the bands to
hydrostatic pressure, the calculation is repeated for lattice
constants of 10.5 and 10.0 a.u. The C-H distances predict-
ed by Beck are used here and are only trivially smaller
than the free-molecule C-H distance. The most interesting
Hartree-Fock band features are along the line I'—X in the
first Brillouin zone and are seen for all three lattice pa-
rameters in Fig. 1.

The Hartrce-Fock band-structure results overestimate

any reasonable band gap; they do reduce the Piela gap by
about 13.6 eV, however, and one need add correlation
along the lines suggested in Sec. II. In performing the
correlation-correction computations, the author deviates
from the ideals expressed in the preceding section to the
extent that instead of solving for a set of rather complicat-
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TABLE II. Contributions to the ionization potential and electron affinity of solid CH4 are shown as
a function of lattice parameter. Results are given for the correlation correction and the relaxation
correction.

Valence correlation (eV)
Valence relaxation (eV)
Conduction correlation (eV)
Conduction relaxation (eV)
Net gap change (eV)

a=11.14 a.u.

0.1

1.2
—0.7
-0.0
—2.0

a =10.50 a.u.

0.2
1.2

—0.8
-0.0
—2.2

a =10.00 a.u.

04
1.2

—0.9
-0.0
—2.5

ed, orthogonal Wannier functions as implied by the
derivations, one approximates these by a set of local orbi-
tals. The local orbitals obtained for the occupied states
have a maximum overlap of 0.03 compared to unity. One
may simply recover Wannier orbitals from these local or-
bitals by symmetric orthogonalization. In practice this is
a cumbersome and difficult process. Nonetheless, for sys-
tems of small overlap the exact inverse of the overlap ma-
trix may be obtained expanding this inverse in a power
series in terms of elements of the overlap matrix. This is
done in the present case and correction terms to first order
are retained. The neglected quadratic term is of the order
of 10 . The effect of this neglect is estimated on the
basis of some large-cluster calculations to be less than 0.1

eV for the net change in correlation energy in the case of
solid CH4. The unit on which localization occurs is the
CH4 molecule, with the appropriate multicenter localiza-
tion. ' These orbitals are truly local, the valence-valence
overlaps being 0.03 or less here. Of course due to the pro-
cedure adopted, all orders of overlap in the large intra-
molecular overlaps are included exactly due to the use of
molecular orbitals for a basis set. The inclusion of these
corrections is essential if one wishes to achieve quantita-
tive accuracy. In evaluating the perturbation sums, d orbi-
tals on the C atom and p orbitals on the H atoms were
added to the basis set shown in Table I, which was used
for the energy bands. The effect of the several contribu-
tions to Eqs. (22) and (23) are given in Table II. In this we
call the second term on the right-hand side of Eqs. (22)
and (23) the relaxation and the sum of the second and
third term come from two-electron virtual excitations, and

clearly represent correlation terms. The second term
stems from single-electron virtual excitation and is
nonzero because N-body Wannier functions are not exact
eigenstates of the (N —1)- or (N + 1)-body Fock operator.

The energy bands for CH& including correlation are
shown in Figs. 2, 3, and 4, for lattice constants 11.14,
10.50, and 10.00 a.u. , respectively. The density of electron
states is also seen in these figures. As is clear from these
figures, the band gap is indirect and from I is„ to X'5, .
The direct gap is at the X point and is X'5, to X'5, . The
gaps with and without correlation are given in Table III as
a function of lattice parameter. It is clear that the band
gap is a very sensitive function of lattice constant or pres-
sure.

Finally, one computes the position of the exciton levels
in CH4. This is accomplished using the method given in
Sec. II and more fully described in Ref. 7. In performing
the calculation the Coulomb interactive is treated as a
screened one-molecule interaction. The effective electron-
hole interaction is here computed to be 5.4 eV. This is the
value of the Vo discussed in Ref. 5. Using this value, the
exciton is found to be at 10.9 eV. The optical spectrum of
Koch and Skibowski does find a spectral peak at 11.0 eV
and this may well be our exciton. A more quantitative
analysis is not possible for us at this time because the
highest valence and lower conduction bands are of like
symmetry and the techniques developed in Ref. 5 and
currently available do not permit a calculation of the opti-
cal response for the case in which the band-to-band transi-
tions are dipole forbidden. Therefore, the author reluc-

tantly contents himself with using only the k-conserved
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FIG. 2. Correlated band structure of solid CH4 and density of
states is shown for a lattice parameter of 11.14 a.u.

FIG. 3. Correlated band structure and density of states for
solid CH4 is given. The lattice parameter is 10.50 a.u.
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FIG. 4. Correlated band structure and density of states of
solid CH4 for a lattice parameter of 10.00 a.u. are given.
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joint density of states in comparison with the measured re-
fiectance spectrum shown in Fig. 5. As is clear from
this figure, even if one were to include the exciton at 11.0
eV, a fair degree of discrepancy remains. This is largely at
low energy. This discrepancy is expected. A similar re-
sult is seen in the free CH& molecule and is due to the mo-

bility of the H nuclei and their large zero-point motion.
The excited CH4, molecule can lower its energy by about
1.6 eV by relaxing from ideal TD geometry to D2i,
geometry. Owing to large zero-point motion it may be
possible to excite from the ground-state TD geometry
directly into the relaxed, distorted D2~ geometry directly.
This certainly appears to be the case in the free molecule
and a discussion of this is being prepared by Beck and
Kunz. ' If one assumes that the same type of Jahn-Teller
distortion is present in the solid, a distorted exciton line
mould then appear at about 9.3 eV. This is shown as a
dotted line in Fig. 5. Since the first experimental peak in
solid CH4 lies at 9.6 eV, this inclusion greatly enhances
the comparison of theory and experiment. In addition the
low-energy continuous spectrum between about 12 and 14
eV would be enhanced in strength by the redistribution of
oscillator strength due to exciton formation as was seen in
LiF. It is hoped to enhance the available techniques to
include computation of dipole-forbidden spectral regions
in the future.

As stated earlier in this article, the basis set for the indi-
vidual CH4 unit was chosen for its ability to represent
solid-state effects. Thus the CH4 basis need not be useful
for isolated molecular studies. The chief differences lie in
the fact that solid-state effects such as bandwidths are
largely determined by the long-range part of the wave

FIG. 5. Optical joint density of states is shown for solid CH4
along with the Tq geometry exciton position and probable D2q
geometry exciton. The optical reflectivity of Ref. 22 is also
shown.

function, whereas for the isolated molecule, total-energy
accuracy is a property of the wave function near the nu-
clei. Therefore, the present basis set places far heavier em-
phasis on the diffuse basis-set members than would be the
case in an equivalent-size basis set for an isolated molecu-
lar study. These is a second constraint imposed on the
basis set by the nature of a solid. In a free atom or mole-
cule, the wave function of bound states far from the nu-
cleus must decay exponentially with distance. In the case
of a solid with periodic boundary conditions this is no
longer so. Therefore, the basis set on a molecule in such a
solid neixl only span the physical space to the midpoint of
a nearest-neighbor distance, since past this point the basis
set on the neighbor takes over. Thus the diffuse part of a
solid basis set need often be less diffuse than the basis set
for an isolated atom or molecule and have greater varia-
tional freedom in the diffuse region.

The present basis set was chosen by solid-state criteria
and need not provide an excellent description of the isolat-
ed CH4 molecule. Calculations on the ground states of
CH4 were performed using the basis set shown in Table I.
These results are compared there mith the results of vari-
ous available molecular CH4 studies. As is seen from
Table IV, the results with the solid-state basis set for total
energy are in fair agreement with the best available molec-
ular studies, and in quite good agreement with respect to
the one-electron energy parameters. This latter point is

TABLE III. The Hartree-Fock and correlated direct and indirect band gaps for solid CHq are given
as a function of lattice constant.

H-F direct gap (eV)
H-F indirect gap (eV)
Correlated direct gap (eV)
Correlated indirect gap (eV)

a =11.14 a.u.

15.3
15.0
13.3
13.0

a =10.50 a.u.

14.3
13.0
12.1
10.8

a =10.00 a, u.

14.9
13.1
12.4
10.6
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TABLE IV. The total energy of the isolated CH4 molecu!e and the one-electron energy parameters
are shown. The present study is obtained using the basis set of Table I, and the unrestricted Hartree-
Fock (atomic structure) codes written by the author. The comparative other results are cited in Ref. 23 ~

The term OCE refers to a one-center expansion calculation, LGTO to a calculation employing Gaussian
lobe basis functions, and GTO to a Gaussian spherical harmonic type basis set. All energies are in har-

tree (1 hartree =27.2 eV).

Calculation

Present
Moccia
Deutsch and Kunz
Deutsch and Kunz
Bagus et al.
Meyer
Krauss

Basis set

GTO
OCE

LGTO
OCE
GTO
GTO
GTO

—40.13
—39.87
—40.15
—39.52
—40.21
—40.21
—40.17

&&a
1

—11.21

—11.21
—11.10
—11.20

—0.94

—0.93
—0.88
—0.94

E]f

—0.54

—0.53
—0.44
—0.55

most essential, in that the energy bands are largely a prop-
erty of these one-electron energies.

IV. CONCLUSIONS

The essential conclusions are few and simple. These
are: One can construct a satisfactory, self-consistent
Hartree-Fock band structure for molecular solids, includ-

ing the conduction bands, if one carefully optimizes the
basis set. If one wishes to obtain quantitative comparisons
with experiment, the inclusion of correlation corrections is
essential. Furthermore, in describing the ion states in
terms of the neutral system, orbital corrections termed re-
laxation corrections are needed. It is seen here, using a
Wannier basis, how such arise and may be included. It is
also seen that inclusion of electron-hole interaction is
needed if one is to quantitatively study the optical spec-

trum. In addition, due to the light mass of H one need also
be prepared to include Jahn-Teller distortion if one is to be
fully quantitative. Finally, one sees that the band struc-
ture of such a weakly bonded molecular system is a sensi-
tive function of lattice parameter.
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