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Lattice dynamics of thin ionic slabs. III. Application to GaAs slabs
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The lattice vibrations of thin slabs (up to 25 layers) of GaAs are calculated for zero wave

vector, oil tllc basis of a rigid-Ion Illodcl flttcd on tllc pllolloll dlspclslon cllI'vcs of thc lllfl-

nite crystal. It is shown that all the modes, except the surface ones, fall on the branches of
the dispersion curves of the infinite crystal, while the surface modes seem to be combina-
tions of those missing near the zone-edge modes. Comparison is made with former calcula-
tions and the influence of the short-range interaction near the surfaces and that of possible
macroscopic fields is discussed.

I. INTRODUCTION

Normal modes of vibrations of thin ionic slabs
have been investigated theoretically by many au-
thors, ' 9 mainly on the basis of a rigid-ion model,
and the existence of surface modes have been well
established. Jones and Fuchs calculated the unre-
tarded modes of a thin NaC1 slab; they developed a
theory for the infrared optical properties of ionic
slabs and discussed previously published results on
surface modes. Since most of the work mentioned
above has been done on NaC1 slabs a more substan-
tial comparison is possible between their results.
Benedek calculated surface dispersion curves and
phonon densities for thin ionic slabs on the basis of
a breathing shell model using Green's-function for-
malism. This approach suitably extended proves to
give very good results compared to those from direct
calculations on thin slabs.

A very general approach to the effect of surfaces
on the vibrational modes of crystalline solids is
given by Feuchtwang' based on the assumption of
finite-range interaction. Although in ionic crystals
long-range electrostatic interaction is important,
infinite-range forces arise only in the presence of a
macroscopic field. Hence his results must be, in
general, valid. Different features may appear to ap-

ply only to modes depending strongly on forces due
to such fields. The influence of a macroscopic field
on the vibrational modes of a slab will be discussed
briefly in the last paragraph of Sec. IV.

Dispersion relations for surface modes are given

by Fuchs and Kliewer' who found all long-
wavelength optical modes of an ionic slab to have ei-
ther TO or LQ frequencies. Tong and Maradudin
treated in detail the case of a NaC1 slab parallel to

the (100) plane and pointed out the importance of
some approximations made in the former work.
Further comments on this point are given by Jones
and Fuchs. We also found the proper description
of the short-range interaction between atoms near
the surface to be of fundamental importance in cal-
culating the correct frequencies of the surface
niodcs.

Among the considerable experimental works on
infrared absorption or Raman scattering on thin
films and powders, which show vibrational states ei-
ther between the TO and LO frequencies of the in-
finite crystal or below the TO frequency, we men-
tion the infrared transmission and reflection mea-
surements on thin (up to 68 pm) films on GaAS by
Cochran et al. " and Fray et al. ' They observed in
a 25 pm thin film, lattice absorption on the TO and
LO frequencies and also two other strong peaks on
frequencies lying between these two. Each of those
peaks seems to consist of three or four fine-structure
peaks. These features are attributed to the size,
shape, and orientation of the specimens used.

Raman spectra on laser-annealed GaAs (Ref. 13)
show a gradual transition from the amorphous spec-
trum to the crystalline one involving a continuous
variation of degree of order versus the annealing
density energy. The above experimental results and
also analogous results on other materials reveal the
need for a complete calculation of infrared and Ra-
man spectra of small crystallites in order to justify
the hypothesis of size effects.

In the present paper we report on calculations of
vibrational modes of thin GaAs slabs parallel to
(111)planes, on the basis of a rigid-ion model. This
model has been used by Kunc' to fit measured pho-
non dispersion curves, hence our results are directly
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comparable to the ones of an infinite crystal. The
long-range interaction has been calculated in a form-
er paper' referred to as paper II.

In the next section we briefiy review the equations
of motion and the resulting dynamical matrix to be
solved. In the third section we describe in shart the
rigid-ion model used for the calculation and the pro-
cedure applied ta calculate the short-range interac-
tion of atoms lying near the surfaces. Finally, in the
last section we describe the results obtained and we
discuss them in comparison with other results.

II. EQUATIONS OF MOTION
AND DYNAMICAL MATRIX

We consider a crystal slab of zinc-blende structure
(particularly GaAs) parallel to the (111) plane.
Choosing a Cartesian coordinate system Ox&x2x3,
whose axes are parallel to the edges of the cubic fcc
unit cell and its origin on an ion site (for instance, a
Ga site), the primitive translation vectors are

r

Xp)i 011
a

a =—1O
2

1 1

Xp2

Xp3.a3.

where a is the lattice constant. Vectors a i and a2 lie
on the plane (111)while a3 lies out of it.

The equations of motion for a lattice are'

m„u, (I,K)= —g gP p(I, K;I', K')up(l', K'),
1',~' P

(2)

where y is a two-dimensional wave vector. Equa-
tian (2) becomes

co u (I, ,K)= g gD p(I, ,K;13K'
~

y)up(13K ),

where m„ is the mass of the Kth kind of ion, u (I,K)

is the ath Cartesian component of the displacement
from the equilibrium position, p,p(I, K;I', K') are the
atomic force constants, and I =(li, 12, li) labels the
unit cells.

Applying cyclic boundary conditions along the
directions ai and a2 [on the infinite (111)plane] we

put

u, ( &,K)
u~(I, K)=

i&2 exp[ itot+2ir—iy x(I,K)],
m„'

(3)

P p(I, K;I',K')
D p(13,K-, li, K'

~

y)= g (m„m„')'
1~ 2

r

Xp)

X p2

X p3

o

1 1 2

v2 v2 —v2
I

Xp)

Xp2 (6)

whose Ox'i and Ox 2 axes are coplanar with the slab,
while axis Ox& is perpendicular to it. Since it is al-

ways possible ta find such a coordinate system,
whatever the orientation of the slab might be, let us
denote the corresponding transformation matrix by
H [in the present case H is the 3 X 3 unitary matrix
used in Eq. (6)].

With the use of transformation H and the repre-
sentation of the space group G of the three-
dimensional structure with respect to the old coordi-
nate system, one can construct a new space group G'

appropriate far the two-dimensional structure of the
slab, by transforming the representation of G to the
new coordinate system and by picking up those ele-
ments which act anly parallel to the plane of the
slab.

Group G' can then be used to provide the form of
the force-constant matrices and the relations be-
tween the elements of the dynamical matrix. In the
present case and far wave vector y =0, we find that
the interaction between the plane lattices assumes
the general form

D(13,a-, 13,K') = 8 A —8
—B —B A

in the old coordinate system Oxix2x3, while in the
system Ox'ix2x 3 it takes the form

X exp[2m i y. x(I,K;I'K')]

(5)

are the elements of the 6NX6N dynamical matrix
(N is the number of layers in the slab). Since no
periodic boundary conditian is used along the finite
dimensian, any further reduction of the dynamical
matrix will be likely possible anly from symmetry
considerations.

It has been shown' that for the above chosen
orientation of the slab one can use a new coordinate
system Ox'ixzx3, related to the old one associated
with the crystallographic unit cell, by the transfor-
mation

where

D'(13,K, 13,K') =
A B—0 0

A —B 0
0 A+2B



3408 G. KANELLIS, J. P. MORHANGE, AND M. BALKANSKI

+Dc(13,it, l'3, ~) . (10)

The form of the interaction matrices between the
plane lattices of the slab for zero wave vector, is
given in the Appendix.

The Coulomb part can be expressed in terms of
the Q coefficients calculated in paper II [Eqs. (10)
and (14)], and for the general wave vector it assumes
the form

D p(l tr;I'~'i y)=5, , 5,„
Plg

)& g g„-Q~p(l3, a', 13'tt"
~

0)

Q p(l3, A;l3, A'i y),
(m„m„)'~

where g„ is the charge fraction attributed to ion a.
Values of the Q coefficients for zero wave vector are
also given in the Appendix (Table I).

through the transformation

D'(l3, tr;13'') =H D(l3, tt;13,tt')H

The form of Eq. (8) implies that for the so-chosen
orientation of the slab, the solutions of Eq. (4) fall
into two groups, one doubly degenerate consisting of
the in-plane solutions (x-y modes) and one nonde-

generate consisting of the out-of-plane solutions (z
mades).

The matrix whose elements are defined by Eq. (5)
expresses the interaction between plane lattices and
has to be calculated on the basis of some model. In
the next section we give a brief description of the
applied rigid-ion model. Since both short- and

long-range forces are taken into account, it is cus-
tomary to consider the dynamical matrix as consist-
ing of two parts, the short-range (sr) and the
Coulomb parts;

D(l3, a.;l'3,a') =D"(I,,A, I'3,a )

TABLE I. Values of the Coulomb coefficient P [in
units of {Ze}'/up].

—5.591 35
—0.143 41
—0.03349

1.437 62
—0.14341
—0.00040

0.000 18
—0.00175
—0.00040

III. THE MODEI.

In the present case we use the rigid-ion model
(RIM) developed and applied to several binary com-
pounds of the zinc-blende structure by Kunc. '~

Apart from the effective charge q* the model
parameters are ten tensorial force constants, A and B
for first-neighbor central and noncentral interaction,
Ci, Di, Zi, Fi, C2, D2, F2, and F2, for second-
neighbor central and noncentral interaction, for the
two different kinds of ions.

All of the above parameters have been fitted to
experimentally known phonon dispersion curves, the
elastic constants, and the piezoelectric constant. In
order to use the above model in the case of a slab the
following adaptations have to be made:

(a) Long-range forces have to be recalculated on
the basis of new suitable formulas as already men-
tioned.

(b) Short-range interaction of the near-the-surface
atoms has to be modified, so as to take the missing
iona into account. For the short-range part of the
dynamical matrix the following procedure has been
followed. From the ten fitted tensorial force con-
stants, the values of a set of ten valence force field
(VFF) force constants are deduced, namely the g, A,,
p, p, o, v, ks, ks, k„„and k„'„according to the fol-
lowing model for the potential energy:

@'=rot $ «rj+ —$ (~r;, )'+rip $ «k+
2 $ («ik)'+rior $ «J&+ $(hr~t)—

Ga-AS Ga-AS Ga-Ga Ga-Ga As-As As-As

kern kgrog (ae,,)'+ g (ae,j.)'+ '" g ~r,,~;,+
As-Ga-As Ga-As-Ga As-Ga-As Ga-As-Ga

where ro and ri are the first- and second-nearest-
neighbor distances, respectively.

The interaction of the near-the-surface ions is cal-
culated on the basis of the above VFF model. It

should be noted that the ten VFF parameters are not
independent, but have to fulfill the equilibrium con-
dition. For the given values of the tensorial force
constants this condition does not hold. Hence we
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FIG. 1. Variation of the frequencies of six modes vs

the thickness of the slab.

IV. RESULTS AND DISCUSSION

We have calculated the frequencies and the eigen-
vectors for thin slabs of GaAs oriented parallel to
the (111) plane with thicknesses from 2 up to 2S
cells (10—130 A thick) for zero (twa-dimensional)
wave vector.

The main feature displayed by the solutions is
that, by increasing the number of layers af the slab
(i.e., its thickness) all of the solutions tend rapidly to
certain limits, while the new solutians appearing in

decompose the tensorial force constants into the
VFF parameters disregarding this condition.

By so doing, only the interaction af atoms lying
near the surfaces may be influenced. Since the
correct description of the above interaction is of
critical importance in calculating the surface mode
frequencies, one needs a faithful VFF model in or-
der to obtain unambiguous results for these modes.
In the next section we comment on the results based
on the above consideration and on those obtained
when the short-range interaction of surface atoms is
considered to be the same as for atoms in the interi-
or of the slab.

where 1 denotes the Ga atom, 2 the As atom, l3
numbers the layers of the slab, and M is the mass.
Accordingly, for the acoustic modes, we construct
the sum of the same quantities.

u (13 1
~

m ) u ( l3,2 m )
"(l3)= (14)

In Fig. 2 we plot f~~(13) and f~ (l3) vs z =I3,ai,

each thicker slab are interpolated between the solu-
tions of the thinner one. For a slab 20 layers thick
all the frequencies are within 1%o of their limits.

In Fig. 1 we show the variation of the frequencies
of six modes versus the thickness of the slabs: the
highest-frequency z mode (first LO), the highest-
frequency x-y mode (first TO), and four surface
modes, i.e., two surface x-y modes (TS1 and TS2)
and two surface z modes (LS1 and LS2). We see
that the surface modes TS 1 and TS2 have practical-
ly constant frequency for any slab as thin as three
layers, while the frequencies of the rest of the modes
tend very rapidly to their limiting values.

The two-dimensional Brillouin zone correspond-
ing to the slab structure is a section through the
center of the three-dimensional zone of the fcc lat-
tice, perpendicular to the A direction ( —g, —(, g).
Comparing the frequencies of the above modes with
the frequencies of the modes belonging to the disper-
sion branches of the A direction of the infinite crys-
tal, we find that the first LO and first TO modes
tend to have frequencies equal to those of the LO
and TO modes of the I point of the infinite struc-
ture, respectively. The surface mode TS1 has a fre-
quency almost equal to the TO mode at the L point,
while modes TS2, LS1, and LS2 have frequencies
which fall into the gap at the L point of the infinite
crystal.

Before making any further comments on the sur-
face modes and on the rest of the modes, we will
turn our attention to the eigenvectors. For a GaAS
slab N layers thick, there are 2N x-y modes, which
are doubly degenerate (the transverse modes), and
2N z modes (the longitudinal ones). From the 2N
modes in each configuration, N are optical and the
remaining N are acoustic. Among the N optical
modes in each case there are two whose amplitudes
decay exponentially along the finite dimension of
the slab, from the one surface to the other, and are
therefore called surface modes. For wave vectors
different from zero the so-called Rayleigh waves'

appear, among the acoustic modes. For each optic
mode m we construct the difference of the reduced
displacements,

u (13,1
~

m) u (13,2
~

m)

QMi QM2
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FIG. 2. For a slab of ten layers: (a) Relative reduced
ionic displacements for some x-y optic modes. Number-
ing starts with the mode of highest frequency. (b) Sum of
reduced ionic displacements for some x-y acoustic modes.
Numbering starts with the zero-frequency mode.

layer

FIG. 3. For a slab of ten layers: (a) Relative reduced
ionic displacements for some z optic modes. Numbering
starts with the mode of highest frequency. (b) Some of re-
duced ionic displacements for some z acoustic modes.
Numbering starts with the zero-frequency mode.

the coordinate along the finite dimension of the slab,
for some x-y modes (transverse modes), and in Fig. 3
we plot the same functions for some z modes (longi-
tudinal). It is evident from these figures that all the
optic modes, except the surface ones, can almost be
described (neglecting the sign) as

2 . Pl 1TZ

where L is the thickness of the slab, while the acous-
tic modes can be described as

f (2')= cosac 2 (m —1)~&

L

(m =1,2, . . . , N, numbers the optic modes starting
from the highest-frequency one and the acoustjc
Inodes starting fi'om the zero-frequency one).

We note that the above simple trigonometric ex-
pressions do not describe exactly the functions of the
displacement defined by Eqs. (13) and (12), but rath-
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FIG. 4. Phonon dispersion curves of GaAs along the A

direction (solid lines). x-y modes (solid circles) and z
modes (open circles) for a slab of 20 layers thick. Broken
lines show the position of surface modes. The positions of
TO and LD missing modes near and on the zone boun-

dary are shown by arrows.

er, give a good picture of what these functions look
like. Moreover, although the functions sketched in
Figs. 2 and 3 refer to a slab ten layers thick, the pic-
ture is the same for slabs of any thickness.

From Eqs. (15) and (16) we see that there is an
implicit dependence of the modes on a wave vector
along the finite dimension of the slab, although such
an assumption has not been made. All the modes,
except the surface ones, on which we will comment
later on, seem to be characterized by the values of a
eave vector

(17)

There is no optic mode with n =0, i.e., there is no
mode of infinite wavelength. Since the surface

modes cannot be described by the same function f'~,
only N —2 optic modes could be attributed to the
wave vectors of Eq. (17). On the other hand, all the
N acoustic modes can be regarded as corresponding
to some wave vector y, . We should note that the
solution of zero frequency for y, =0 has been im-

posed by using relation (A5) when calculating the
self-terms of the dynamical matrix.

According to the above observations, we plot in

Fig. 4 the dispersion curves of GaAs along the A

direction, as they have been calculated by Kunc' on
the basis of the same model and we put on the same

graph the solutions for a slab 20 layers thick. We
have chosen this thickness where each solution has
reached its limit within less than 1%. Acoustic
modes start from zero wave vector, while optic
modes start from wave vector equal to 0.5/20. We
see that all the modes, except the surface ones, fall
on the corresponding branches: x-y modes on the
transverse branches and z modes on the longitudinal
ones. There are four optic modes missing. Instead
there are four surface modes shown by dotted lines

on the graph along the zonewidth, although they
seem to belong to a value of the wave vector very
close to the zone boundary. Hence we conclude that
the surface modes could be regarded as superposi-
tions of the missing optical modes, and perhaps the
corresponding acoustic modes of the zone edge, in
each configuration (transverse or longitudinal). The
longitudinal surface modes (z modes), considered as
being superpositions of modes of higher frequency,
appear to have lower frequencies than the transverse
ones. They also show considerably less decay along
the finite dimension of the slab. Both of these
features could be explained, qualitatively at the mo-

ment, by the weaker short-range forces near the sur-

faces and by the assumption that these modes are
strongly damped by the long-range forces. We
should note at this point that the slowest conver-

gence of the frequencies to their limiting values,
with increasing thickness of the slab, is observed for
the longitudinal modes of shorter wavelength (wave
vector near the zone edge). Indeed, the frequencies
of the surface modes depend very strongly on the
short-range forces assumed for the surface layers. If
we restore on these layers the same short-range
forces as for the rest of the slab, then all the modes,
except the surface ones, tend faster to the same lim-

iting frequencies. The surface modes have higher
limits as follows: The TS1 mode, 253.3 cm ' (in-
stead of 252.5 cm '), the TS2 mode, 247.3 cm
(instead of 235 cm '), the LS1 mode, 250.7 cm
(instead of 230.7 cm '), and the LS2 mode, 249.6
em ' (instead of 210.5 cm '). We see that the long-
itudinal surface modes have a much stronger depen-
dence on the short-range forces assumed for the sur-
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face layers, but still at least one of them should have
higher frequency than the transverse modes if no
damping due to long-range forces was existing.
Hence the correct description of the short-range
forces near the surfaces is of critical importance in
calculating the surface mode frequencies. Of course,
the eigenvectors are also influenced by the change of
the forces near the surface, in particular the eigen-
vectors of the longitudinal modes, but they retain
their main features. Stronger forces between the
surface layers result in deeper penetration of those
modes in the slab.

On the basis of the above observations it is clear
that the continuum of frequencies for "bulk" modes
obtained by several authors when ealeulating solu-
tions for different wave vectors on the plane of a
slab, is the projection of the dispersion surfaces of
the infinite crystal on the two-dimensional Brillouin
zone appropriate for the slab. Comparing our re-
sults with those of Tong and Maradudin, who cal-
culated the solutions for a slab of NaC1 parallel to
(001) plane, we could note the following: The fre-
quency of the transverse surface mode in NaC1, ly-

ing just below the lower limit of the "bulk" optical
modes, is in agreement with our results. The near
degeneracy of both pairs of surface modes they
found can be explained by the fact that the two sur-
faces of the NaC1 slab in the above orientation are
completely equivalent. Moreover, the thickness of
this slab is an integer multiple of the lattice con-
stant, while in our case it is not. This feature may
be of importance when superimposing plane waves,
due to the phase difference it may introduce. As far
as it concerns the higher-frequency surface modes
for zero wave vector in the case of the NaC1 slab,
they can be considered as unlocalized surface modes
whose wave vector perpendicular to the plane of the
slab can assume values either at the center or at the
zone boundary' in the present case. The corre-
sponding modes in our case are of the same type as
those found by Wallis. ' This difference may be due
to the fact that the NaC1 slab consists of identical
"neutral" planes.

Fuchs and Kliewer' treated the case of long-wave
optical vibrations in a slab in the electrostatic ap-
proximation. Apart from the influence on their re-
sults due to approximations concerning the short-
range forces near the surfaces and the replacement
of infinite sums by integrals, which have been dis-

cussed by Tong and Maradudin, we would like to
note that their results for "bulk" modes concern
those modes which lie on the corresponding
branches but very near to the I point. Hence for a
thick slab there are many modes which have the
zone-center TO and LO frequencies with small wave
vectors mirlL. For optic modes we have found
only the sine dependence of the displacements with
odd and even values of m. Their point, that this
dependence is such that there are exactly m half
waves across the thickness of the slab, is correct
even for very thin slabs and for the acoustic modes
also. The quantization of the wave vector along the
finite dimension is of course the same for all disper-
sion branches.

The surface modes found by these authors reduce,
for zero wave vector on the plane of the slab, in un-
loealized surface modes, corresponding to zone-
center modes of the infinite crystal. It has been
shown by Feuchtwang' that these modes are a spe-
cial case of bulk modes. Since the above authors
treated the case of long waves, these modes may be
the only ones which, for finite wave vectors (&0) on
the plane of the slab, became surface modes. Lucas~
and Jones and Fuchs attribute the above behavior
of these modes to the neglect of the changes of the
forces acting on atoms near the surfaces. The re-
sults of the latter author at y = 0 are in agreement
to those of Lucas, and Tong and Maradudin, as to
the number and type of surface modes.

A final remark concerns the possible influence of
macroscopic fields. We have shown in paper II that
vibrations involving ionic displacements perpendicu-
lar to the plane of the slab give rise to a potential
difference between its two surfaces. This potential
does not influence the vibrations of a free slab, ex-
cept if it results in additional surface charges, or if
the slab is considered in some polarizable environ-
ment. In such cases, assuming complete compensa-
tion of the above potential, all the frequencies of the
z modes tend slower to the same limits, while an ad-
ditional phase difference is introduced in the dis-
placements of atoms in neighboring cells. This
phase difference moves all the optic modes one step
toward the zone boundary. Hence for a slab thicker
than ten layers, the relative displacements show the
same pattern as described by Eq. (15), but now
modes with m =0, m =1, and m =N —1 are miss-
ing.

APPENDIX

The form of force-constant matrices (interaction between individual ions) for the zinc-blende structure is the
following:
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ABB A 8 —8
4(1,1;1,2}= 8 A 8, 4(1,2;1', 1)= 8 A 8—

BBA 8——8 A (A 1)

C2 D2 E2

4(l, 1;1',1)= DI C) E), 4(1,2;I', 2) = D2 C2 E2
—EI —EI FI E2— E2—F2

where 1 = (l ~, 12,13) and 1'=(ll, lz, 13+1).
For the surface layers lp ——(1~,12, 1) and l~ ——(1&, 12,N) the force-constant matrices in the present case take the

OMl

A3 83 84

4(lp 1 lp2) = BI A ] 8], 4(l~ 11~2)= 83 A 3 84 (A2)

B2 B2 A2 83 83 A5

The decomposition of the tensorial force constants into parameters of the VFF model used can be found in
Ref. 14 for all interactions, except the ones between ions in the surface layers, which are listed below:

A) ——A —k„, /6, A2 ——A+4kg/3+k~/6, A3 ——A k„'„/6,—A4 4kg/3—+—k~ /6,

8, =8 k„„/6, —82 8 —2ke——/3+k /6, 83 8 —k,'„——/6, 84 8 2k'e——/3+—k' /6.
(A3)

The interaction matrices for plane lattices for zero wave vector (submatrices of the dynamical matrix) as-
sume the following forms (with 13 —13+1):

3A 88— A B —B
D(13, 1;13,2)- 83A 8— , D(13,2;131)- 8 A —8

8 8 3A 8 BA— —
(A4a)

D(13, I;13,1)—
2C) +F)

Di—
D)

2Ci +FiDi—D), D(—13,2;13,2)—
2C)+F)

2C2+F2

DgDp—
D2 D2-

2C2+ F2 D2-
D2 2C2 +F2

Self terms, for zero wave vector, are calculated on the basis of the equation'

g4 p(la;1'a')=0 .

(A4b)

The corresponding interaction matrices for planes of the surface layers (13——1 and 13 N) take the fo——rm

D(1, 1;1,2)-
2A I+Ay82—82—82

2A I +A 2 82, D(N, 1;N,2)-
82 2A I+Ap

2A3+A4
—84

84

84

2A3+A4 84

84 2A3+A4

(A6)

All the Coulomb interaction matrices assume for zero wave vector the form

0 P P-
Q(0, a-, 1',Ir') = P 0 —P

p p.——
(A7)

The values of p are given in Table I for 1'=0, 1, and 2. All more distant interactions are less than 10 [in
units of (Ze} /U ].
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