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The dynamic structure factors of crystals with sublattices which are mutually incom-
mensurate are examined. The sublattices may be individually ordered, but incommensurate,
or only one may be ordered with an interpenetrating fluid of the second atomic species. At
high frequencies there are two propagating longitudinal-acoustic modes arising from the
separate subsystems but in the long-wavelength limit there is only one propagating
longitudinal-acoustic mode. The form of the crossover from high- to low-frequency
behavior and also the detailed form of the low-frequency-mode structure depends on the rel-

ative importance of impurities and the intrinsic processes which relax the relative linear
momentum of the two subsystems.

I. INTRODUCTION

In an incommensurate system there are new nor-
mal modes due to the relative motion of the subsys-
tems. A particular class of such systems consists of
two interpenetrating sets of atoms which are mutu-
ally incommensurate. In this case, due to their in-
commensurability, the subsystems can slide past
each other and these new degrees of freedom allow
separate phonons in each atomic system. However,
in the true long-wavelength limit one expects the
system to have only one propagating set of acoustic
modes corresponding to the translational symmetry
of the system as a whole. Therefore, there should be
two dynamical regimes and a crossover from the un-
coupled phonons at high frequencies to the com-
bined motion at low frequencies. This crossover in
the dynamical behavior is the subject of this paper.

Our interest in this problem was stimulated by a
comprehensive neutron scattering examination of
the properties of the compound Hg3 sAsF6 by
Pouget et al. ' and Heilmann et al. The latter
group found that there are two sets of longitudinal-
acoustic (LA) phonons whose motion is polarized
along the Hg chains. In this compound the Hg
atoms are arranged on two sets of chains with an
average spacing which is incommensurate with the
lattice of AsF6 ions. At room temperature the Hg
chains are found to be one-dimensional liquids with
only short-range order though with a large coher-
ence length. At such temperatures Heilmann et al.
found that the two LA modes remained uncoupled
and propagating down to the lowest frequencies they
could study. At lower temperatures there is a tran-

sition in which the two perpendicular sets of Hg
chains order with each other while remaining in-
commensurate with the AsF6 lattice. An elegant
theory of this transition has been given by Emery
and Axe.

Recently Axe and Bak have analyzed the unusual
elastic properties of the low-temperature phase.
They show that even in the ordered low-temperature
phase there can be a low-frequency mode involving
relative motion of the Hg and AsF6 lattices with a
correlated motion of the two sets of Hg chains. In a
recent Letter we discussed the crossover in the
dynamics of the LA modes in the high-temperature
phase of Hg3 5 ASF6. We showed that due to the
exchange of phonons at points in k space where the
phonons of two subsystems are degenerate in energy,
there is an intrinsic coupling between the long-
wavelength LA phonons of the two subsystems.
This coupling leads to a crossover between two
propagating LA modes at high frequency and one
propagating combined LA mode and a diffusive ex-
citation due to particle motion at low frequency.
The crossover is estimated to occur on a frequency
scale =1 MHz.

In this paper we give a more detailed account of
our work and extend it in several ways. First, we
consider the case of two interpenetrating incom-
mensurate lattices. In this case also there is a simi-
lar intrinsic coupling mechanism between the very-
long-wavelength LA modes. Second, we consider
the extrinsic coupling mechanism in the presence of
impurities. We analyze the case of weak pinning
following Fukuyama and Lee and show that in this
case the low-frequency diffusive mode is raised to a
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finite-frequency pinning mode. We also discuss the
combined effects of intrinsic and extrinsic coupling.

Independently of our work Brand and Bak have
considered the hydrodynamic equations of
Hg3 sAsF6 and related systems. They also pro-
posed that relative momentum density of the Hg
and AsF6 systems in the high-temperature phase is
not conserved but has a characteristic relaxation
time and this leads to the same conclusion, as we ob-
tained from our microscopic approach, for the
modes in the long-wavelength limit. Our results
presented here show that a similar crossover will
occur in a mode involving relative motion of the two
incommensurate lattices. We therefore conclude
that there are no new propagating long-wavelength
modes in the low-temperature phase of Hg3 sAsF6.

Zeyher and Finger recently have shown that this
overdamped character of the Croldstone modes asso-
ciated with incommensurability is general in such
systems. They show that while selective motion
may be a symmetry of the thermodynamic state of
the system, the corresponding relative momentum
does not commute with the Hamiltonian and so is
not a conserved density in the hydrodynamic re-
gime, leading to overdamped Cxoldstone modes.

The organization of the paper is as follows. Sec-
tion II is an introductory section in which we
describe the formalism and the basic approxima-
tions. In Sec. III we discuss incommensurate inter-
penetrating lattices and the intrinsic mechanisms
which couple LA modes at long wavelengths. This
is followed, in Sec. IV, by a consideration of impuri-
ty effects and a discussion of the extrinsic coupling
mechanisms that they cause. In Sec. V we consider
the case where one of the subsystems does not have
long-range order and apply the results to the room-
temperature phase of Hg3 sAsF&. Our conclusions
are in Sec. VI.

II. SOUND-WAVE PROPAGATION
IN AN INCOMMENSURATE CRYSTAL

We consider two interpenetrating three-
dimensional (3D) lattices (R„Rb)which have the
same lattice constants in the (y, z) planes but are in-
commensurate in the x direction. For the sake of
simplicity the ions of each subsystem are assumed to
be in one-to-one correspondence to the respective
lattice points. The equilibrium positions x& (i ),
p =a,b, of the ions minimize the total free energy of
the composite system. They will not, in general,
coincide with R„Rbbecause of the interactions be-
tween the subsystems. Thermal agitation gives rise
to fluctuating displacement fields uz(i), or,
equivalently,

u„(q)=gu„(i)exp[ —iqR„(i)]. (2.1)

Xq [ImX„~(k,k', co)lro]

Xq~F„(q,k') . (2.2)

The sum also includes summation over p, v=a, b, as
well as a,P=x,y, z, and

F„(q,k) =gtexp —i[qx„(i)—kR„(i)]j IX„.
(2.3)

X„denotes the number of ions in the pth subsys-
tem. The form factor F&(q, k) accounts for the
difference in the phase of plane waves at the equili-
brium positions x„(i)and the lattice points Rz(i);
see Eq. (2.1). It is nondiagonal in the wave vectors
due to the modulation in x~(i) In the lim. it q~o,
however, the difference in phase at positions x&(i)
and R&(i) is negligible and F(q, k) becomes diagonal
in q and k. The result is a simpler expression for
S(q,co):

S(q, co)=2k& Tg gq [ImX„~(q,q, co)/ro]qp .
p, va, P

(2.4)

Within linear-response theory we can express
X(q, k, ~) as'

mX(q, k, co)N '= —[co 1—Q2 —coII(ro)] '(q, k),

with

m~ 0

0 mb
(2.6)

According to Eq. (2.5), the matrix Q2 is proportional
to the inverse of the static susceptibilities

It is the purpose of this paper to elucidate the low-

frequency dynamics of such crystals. To this end

we study the dynamic susceptibility X(q, k, co) of the
displacement fields. X(q, k, co) is a matrix with

respect to the fields of the two lattices, and, in gen-

eral, to their respective Cartesian components. Ow-

ing to the lack of discrete translational invariance in

the incommensurate phase, and also because of pos-
sible imperfections, X(q, k, co) is nondiagonal in the
wave vectors of the fields. X(q, k, co) is related to the
dynamic structure factor S(q, k, ro), which in the
long-wavelength limit takes the form

S (q, co )=2k~ TgF„(—q, —k)
k, k'
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X(q, k) =X(q, k, O),

Q'(q, k) =NX '(q, k)m (2.7)

X„~(q,k) =p{u„(—q)u ~(q) ), p

(2.8)

while II(q, k, co) denotes the self-energy matrix which
determines the damping of the phonon modes. m~
is the mass of the particles in subsystem p.

We can get an explicit expression for 0 (q, k) by
taking advantage of the fact that, in the high-
temperature limit, X(q, k) is related to a static dis-
placement correlation function, '0

J

The dominant contributions to this correlation func-
tion arise from the harmonic interaction potential of
the displacement fields. We can neglect the contri-
butions from the anharmonic part of the potentials
in the calculation of X(q, k), since it will give only a
small correction to the harmonic potentials, and ob-
tain

(Q') (q, k) =+V Vp{ V„{x,(i)—x, (j);i,j)(e' ' —e' ' ' )(e
' ' ' e

' " "')/2

+ V b{x (i)—xp(j);i j)exp[i (q —k)R, (j)]j /M, ,

(Q~)~b(q, k) = —gV' V'pV~~(x, (i) xbj() ij )e—xp[i [qR, (i) —kRo(j)] j/Mb .

(2.9)

(2.10)

The remaining matrix elements of Q are obtained by interchanging a and b. V&„(x;ij)denotes the pair poten-
tial of ions i and j belonging, respectively, to subsystems p and v, and V =8/Bx . M& is the total mass of
subsystem p.

The self-energy II{q,k, co) vanishes in the harmonic approximation and we must retain the nonlinear forces
between displacement fields to evaluate it. We restrict ourselves to contributions from third-order anharmonic
potentials. Further, we approximate the self-energy as a product of two-phonon Green's functions and obtain"

II „(q,k, co) =iX&Tg 'g P „'„(q,q&, q2)P '„(—k, —k~, —k2)
q&, q2 k, , k2

00
2&Zda) )G„„(q),k ),~, )G„„(q2,k2, co co))/nM„—, (2.11)

with phonon Green's functions

G (q, k, co) = [X(q,k) —X(q, k, co))/co, (2.12)

I

and

X(q, co)=g [0 (q, k)+coll(q, k, co)]

with (2.13)

co2(q) =0 (q, q) +X(q,O),

II(q, co) = II(q, q, co)+ [X(q,co) —X(q, O)]/co .

(2.14)

(2.15)

and third-order anharmonic coupling constants
P(q, k&, k2) whose explicit forms may be obtained by
an appropriate generalization of the expressions
given above for 0 (q, k), Eqs. (2.9) and (2.10).
Again, the sums in Eq. (2.11) include summations
over Cartesian and sublattice indices.

The last two equations, when combined with Eq.
(2.5) for X(q, k, co) constitute an infinite set of non-
linear integral equations for X(q, k, co). To make
progress further approximations are necessary. As
we wish to calculate X(q,q, co), which enters Eq.
(2.4), we first derive from Eq. (2.5) an exact expres-
sion for X(q, co) =X(q,q, co),

mX(q, co)N ' = —[co 1.—co2(q) —coII(q, co)]

k, k'

x [co —Q[Q +coll(co)]Q j '(k, k')

X [Q( 'k, q) +coII( k', qco)] . (2.16)

coz(q) =NX '(q)m (2.17)

is given explicitly by Eq. (2.14), while II(q, co), Eq.
(2.15), denotes the effective self-energy associated
with X(q, co). X(q, co) contributes to both co (q) and
II(q, co) because single Fourier components with
wave vector q do not diagonalize the harir|onic in-
teraction potential when the incommensurability of
the crystal and impurity scattering are included.
The resolvent

The quantities in Eq. (2.13) are still matrices with
respect to the Cartesian components of the displace-
ment fields and the subsystems. Equation (2.13) is a
very convenient expression for X(q,co). m~(q), which
is proportional to the inverse static susceptibility
X(q) =X(q,co=0), Eq. (2.13),
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=[Q +coll(co)](k, k'), (k, k')~q (2.18)

and vanish otherwise.
We now introduce further approximations. The

rationale is to neglect off-diagonal Green's functions
G (k, k', co) and propagators

[co —Q[Q +coII(co)]Q] ' (k, k'), k&k'

in Eqs. (2.11) and (2.16), respectively, where they
constitute only a minor correction. This is justified
in cases in which the interlattice potential V,b,
which is responsible for the off-diagonal terms, is
sufficiently weak. Further simplifications result
from the fact that we are mainly interested in low-
frequency dynamics. In this limit coII(q, k, co) can be
neglected in Eq. (2.16) for X(q, co) as compared to
Q (q, k).

However, the ealeulation of

[co —Q[Q +coII(co)]Q] '(k, k)

still requires inversion of a large matrix. This can
be achieved approximately by writing X(q, co), Eq.
(2.16), as the sum of two terms, X„(q,co ) and
X;(q,co), respectively,

X(q, co) =X„(q,co)+X;(q,co), (2.19)

where X„(q,co) comprises all contributions to X(q, co)
from umklapp processes for which k differs from q
by reciprocal-lattice vectors G„,p =cl, b, while
X;(q,co) summarizes contributions from random im-
purity scattering for which k is arbitrary. One has
to treat X„(q,co) and X;(q,co) differently.

In the calculation of X„(q,co) we restrict ourselves
to the special case in which only a few Gz yield ap-
preciable contributions and we neglect off-diagonal
elements in inverting co —Q[Q +coII(co)]Q. Intro-
ducing Pp(q, co), the susceptibility in the absence of

in Eq. (2.16) takes the dynamics of Fourier com-
ponents with wave vectors k&q into account. The
matrix elements of Q [Q +co11(co)]Qare defined as

Q[Q'+~II(~)]Q(k, k )

This expression is equivalent to treating umklapp
processes within second-order perturbation theory.
Qp(q) and II (q, co) are the values of Q and II de-
fined above for V,b ——0.

In the case of X;(q,co) a very large number of
wave vectors k contribute to the right-hand side
(rhs) of Eq. (2.16) and co —Q[Q +coII(co)]Q is a
huge matrix. Since the matrix is so large neglecting
the restriction imposed on the matrix by Q, Eq.
(2.18), which affects only the mode with wave vector
q, should have only a minor effect on its inverse.
We therefore replace

[co —Q[Q +coII(co)]Q] '(k, k)

which according to Eq. (2.5) is equal to
—m X(k,co)N ', i.e.,

X;(q,co) = —QQ2(q, k)m X(k,co)N 'Q2(k, q) .
k

(2.22)

Thus while X„(q,co) can be approximately calculated
from the susceptibility in the absence of interlattice
potentials, X;(q,co) requires a self-consistent calcula-
tion of X(q, co). The origin of this difference lies in
the fact that, for umklapp processes, coII(co) in Eq.
(2.16) can be safely neglected relative to Q as
(q, co)~0, which in these terms is the frequency
squared of a phonon with wave vector G. Such a
frequency is large and, therefore, not much affected
by a weak interlattice potential. In the case of
X;(q,co), however, long-wavelength fluctuations in
the potential of randomly distributed impurities give
rise to interniediate states with small wave vectors k
for which Q in Eq. (2.16) has the same order of
magnitude as coII(co). Thus X;(q,co) is strongly
dependent on the precise form of X(k,co).

III. IDEAL INCOMMENSURATE CRYSTAL

In this section we consider pure incommensurate
crystals. First, we calculate the equilibrium posi-
tions x& (i) by minimizing the potential energy Vz„,

m Jp(q, co)N '= —[co 3.—Qp(q) —coIIP(q, co)]

(2.20)

Vp„——g Q V„„(x„(i)x„(i);ij )/2—
P 2,J

+gv.b(x. (i) —xb(j)i,j) .

XN 'Q (G„+q,q) . (2.21)

which is diagonal in both wave vectors and sublat-
tices, one ends up with the approximate result

Xg(q, co)= g Q (q, Gp+q)mXp(Gp+q, co)
p, G

Writing x&(i) as

x~ =d~+Rp(l)+u~(l) (3.2)

then the relative position d& of the sublattices, the
lattice constants (which deternline [R&]), and the
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modulation u„(i)have to be thought of as variation-
al parameters. If uz(i) is sufficiently small com-
pared to the lattice constants we may minimize V~,
in two steps. In the first step we minimize with
respect to dz and R& not allowing for any modula-
tion, i.e., u& ——0. We then obtain for V~«

Vp« ——g V„„(G„)N„/2V„

these positions does not vanish. If, for instance,
F, (q) denotes the a component of the force on sub-
system a with wave vector q,

F, (q) =+exp[ —iqR, ( i) ]

X+V [V„(x,(i) x—,(j);ij )/2

+g V,b ( 6)exp [iG (d, —db )]N, Nb /V, + V,b(x, (i) xb(j—);i,j ] . (3.6)

with Fourier components V&„(Q),
Insertion of x&(i) from Eq. (3.5) yields a nonzero re-
sult,

Ve,(())=fd'x exp( —igx) V„„(x). (3.4) F, (q)= —gU (Gbi)h~(q —Gbi)/V, (3.7)

xp(i) =dp+Rp(i), (3.5)

do not represent the ground-state configuration of
, : The force acting on the particles occupying

I

Vz is the unit-cell volume of sublattice p, while V
denotes the total volume of the system. G is a
reciprocal-lattice vector common to both subsys-
tems. As the crystal has been assumed to be incom-
mensurate along the x direction but commensurate
in the y, z planes, the only reciprocal-lattice vectors
common to both subsystems lie in the y, z plane of
reciprocal space with G =0. This implies that V~„,
Eq. (3.3), does not depend on the relative position
(d, —db)" of the sublattices along the direction of
incommensurability. This invariance of V„„against
any change in (d, —db )" which holds true even after
allowing a modulation, '

u@&0, is the essential
reason for the peculiar dynamical properties of an
ideal incommensurate crystal.

The positions found by minimizing V~«under the
condition u =0,

with the general element

U 'r(k)=pi(k+G) . i(k+G)rV, (k+G)
G

X exp[i (k +G)(d, db )] . — (3.8)

U 0 .
r(k) &k UP r(k) (3.9)

follows immediately from the definition. Substitut-
ing for V,b(k+G) in Eq. (3.8), its definition [Eq.
(3.4)], the summation over G can be performed to
give

Here h&(k) denotes the Kronecker 5 function of
sublattice p, which is 1 for k =G„and zero other-
wise. G&& in Eq. (3.7) is a reciprocal-lattice vector
of subsystem )M along the direction of incommen-
surability. The general element defined in Eq. (3.8)
is symmetrical in the Cartesian components
a, . . . , y. If one of these components refers to the x
direction, then, as G =0, the relation

—ik "x
U

''' (k)= V~ fdx, e 'g(e Pe(V e+xd—de —&~)e,
R~

(3.10)

with Ri a lattice vector in the y, z plane, and Vi the
area of the unit cell in this plane. Thus the quantity
defined in Eq. (3.8) denotes the Fourier component
of the a . . y derivative of the potential generated
along an a chain by the regular array of b particles
located on a single plane perpendicular to the direc-
tion of incommensurability. It is this potential
which determines the coupling of the subsystems.
Its Fourier components with wave vector Gbi deter-
mine, according to Eq. (3.7), the force on equidistant
a particles.

When distortions are allowed this force gives rise
to a modulation of the equilibrium positions. Pro-
vided the force is sufficiently small, linear-response
theory may be used to calculate u, (q) to lowest or-

der m V,b, and

u, (q) =QXO~(q)F, (q),
P

(3.11)

Xexp[iGbi R( )i] /NVb (3 12)

The expression for ub(i) can be derived in a similar
way. Equation (3.12) includes summation over p.

where Xo, (q) is the static susceptibility of subsystem
a in the absence of V,b [Eq. (2.20) with co=0].
Fourier transformation then gives the modulation
on each site,

u, (i ) = —QXog(Gb i ) U~( Gb i )

b1
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With the approximate knowledge of the atomic
positions we now proceed to calculate X(q, co), Eq.
(2.13). To start with, co (q) can be calculated, ac-
cording to Eqs. (2.14) and (2.21), from a knowledge
of 0 (q, k), Eqs. (2.9) and (2.10). As the modulation
u&(i) is assumed to be small compared to the lattice
constants, the distance x„(i) x—„(j) between ad-
jacent ions i and j on sublattice p differs only very
little from R&(i) R&—(j). We therefore neglect the
modulation in calculating

V»(x„(i) x—„(j);ij ) .

This approximation is equivalent to treating the in-
trasublattice potential V»(x) within the harmonic
approximation, in which the force constants
V'„V'„V(x)are independent of changes in the ions'

I

(~2) ~(q)=cg0, (q)+ U ~(0)/m, Vb

separations. However, due to the incommensurabili-
ty of the sublattices, the variation in the separation
x, (i) —xb(j ) of adjacent ions belonging to different
subsystems is of the order of the lattice constants
themselves. Thus the dependence of

V V'pV, q(x, (~) —xq(j);~,j)

on distance can no longer be neglected. We calcu-
late V,q(x, (j)) up to first order in uz(i). Within
this approximation the summations in Eqs. (2.9) and
(2.10) can be performed explicitly to yield Q (q, k) in
terixas of the Fourier components of the interaction
potential. Below we present the diagonal elements
of co (q), Eq. (2.14), to second order in V,b, and the
off-diagonal elements to first order:

—5 g[U (Gg, )XQ(Gg, )U ( —Gg, )+ U (Gg, )XQ(Gg, +q) U ( —G, )]/N, Vg

+ g[U ~(G, &)XQ(G. ~) U'( —G.~)+ U ~(G. ~+q)X(~(G. ~+q)

&& U~ ( —G, ) q)]/Nb V—, /m, Vb (3.13)

(~2),b(q)= —U ~( q)/~b V, —. (3.14)

5 ~ denotes the Kronecker 5 function and the sum-
mation over y, 5 is assumed in Eq. (3.13). The
remaining matrix elements are obtained by inter-
changing a and b.

The matrix (co2)0&(q) on the rhs of Eq. (3.13)
comprises the contributions from intralattice in-
teraction V». Diagonalization of this matrix yields
the phonon spectrum of sublattice p in the absence
of V,~. For q —+0 the excitations correspond to
sound waves, i.e., (A@2)0&(q) is proportional to q in
this limit. The phonon modes are plane waves with
wave vector q.

The remaining terms on the rhs of Eq. (3.13) arise
from intersystem interaction V,q. According to Eq.
(2.14) two kinds of such contributions can be dis-
tinguished: those originating from Q (q, q), the
second, third, and fifth terms, and those from X
(q, co=0), the fourth and sixth terms. The contribu-
tions arising from Q (q, q) account for the change in
frequency of plane-wave phonons of lattice a due to
the presence of the static potential generated by lat-
tice b. While the second term describes this effect
for the undistorted positions of the ions, the third
and the fifth terms account for modulation of the
equilibrium positions in the composite crystal. As

q~O these terrors yield a finite contribution to
co„(0).

In contrast to the terms deriving from 0 (q, q),
which arise in plane-wave phonons, the contribu-
tions due to X (q, co=0) account for the fact that,
for an incommensurate crystal, a single plane wave
with wave vector q does not diagonalize the harmon-
ic interaction potential. Instead plane waves with
wave vectors differing from q by reciprocal-lattice
vectors G& get mixed in. These admixtures, which
result in distortions from the single plane-wave pro-
file of phonon modes, change the excitation frequen-
cies. Their contribution to co (0) is finite. However,
as we shall see below, there is cancellation between
the terms arising from 0 (q, q) and X(q, co=0).

The off-diagonal element (co~),b(q), Eq. (3.14), is a
consequence of the coupling between phonons on
different sublattices. In the presence of long-range
Coulomb interaction (A@2),&(q), as well as (co~)»(q),
shows a term which is proportional to q q~/q .
Such terms are responsible for plasmonlike charge
fluctuations in the spectrum of longitudinal excita-
tions with a frequency gap at q =0 in both com-
mensurate and incommensurate systems. ' ' The
transverse excitations, however, are similar to those
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found in materials with short-range interactions
only. As we are mainly interested in the effects of
incommensurability on the excitation spectra we
consider in the following only the short-range part
of the Coulomb interaction, i.e., assume the long-
range part to be screened out by conduction elec-
trons, as is the case, for instance, in Hg3 ~AsF6.
The results also apply to transverse excitations in
ionic crystals.

We now discuss co~(q), Eqs. (3.13) and (3.14), in
the long-wavelength limit. We first consider
(co )z„(q) a submatrix of co~(q) which pertains to
motion along the direction of incommensurability.
As mentioned above coo(q) is proportional to q .
Since there is no common reciprocal-lattice vector
G&0 with component along the direction of incom-
mensurability, Eq. (3.9) for the interaction potential
can be used to derive the q dependence of the
remaining terms. From Eq. (3.13) it follows that,
for q =0, the change in excitation energy of a sub-
lattice phonon due to the potential generated by the
other sublattice is exactly compensated for by an ap-
propriate change in the form of the phonon mode.
The only terms surviving this cancellation are terms
of order q . Similarly, the off-diagonal element
(co ),q(q), Eq. (3.14), is proportional to q, i.e.,

2 2
Cg C~b

(~')„"",(q) = p p q',—Cba C
(3.15)

with the relation cb, c,~M~/—M—, .
The form of (co~)""(q) is in contrast to the form of

the submatrices (co )&„(q),a=y, z, which pertain to
motion perpendicular to the direction of incommen-
surability. As there are common reciprocal-lattice
vectors G with components in the y and z directions,
(co )&„(q)does not vanish for q =0, i.e., to first order
in V,b,

(co )q„(0)=
—M,
M U (0)/ryg ~b V,

ct=y, z . (3.16)

As regards the coupling between displacements
along different directions (co~)„"„(q)with & =y,z
turns out to be proportional to q"q and thus van-
ishes for q in x direction. For high enough symme-
try in the y, z plane and q in x direction, (cozen&'„(q) is
zero too. Thus for wave vectors in the direction of
incommensurability, motion along the principle axes
is uncoupled and the 6 X 6 matrix co~(q) decomposes
into three 2X2 matrices, Eqs. (3.15) and (3.16). A
similar analysis was given by Axe and Bak.

The dynamics of the displacements can be derived
from X(q, ro), Eq. (2.13). In the case of negligible
self-energy II(q, co) weakly damped excitations occur

at frequencies which are given by the square root of
the eigenvalues of co (q). Equation (3.16) for q =0
yields two zero-frequency modes corresponding to
the rigid translation of the total system in the y, z
plane. The two finite-frequency modes of Eq. (3.16)
pertain to optic excitations in which the sublattices
move out of phase in the y, z plane. The zero-
frequency modes are part of two acoustic-phonon
branches with excitation frequencies co-q, q —+0.
As the self-energy associated with a translation of
the total system is of the order q the damping of
these acoustic excitations is negligibly small as was
assumed above.

As regards motion along the direction of incom-
mensurability Eq. (3.15) yields two eigenfrequencies
with linear dispersion which are associated with the
separate motion of each sublattice. Thus one has a
total of four modes of the matrix co~(q) with linear
dispersion in this incommensurate system, instead of
three acoustic modes in the commensurate case. For
q =0 the two sublattice modes polarized in x direc-
tion become degenerate with zero excitation energy.
They can be recombined to yield two other modes of
zero energy: one mode corresponding to the rigid
translation of the system as a whole, the other one
related to an out-of-phase motion of both sublattices
along the direction of incommensurability. The re-
sult that these displacement modes have zero energy
is obvious for rigid displacements, and, for the out-
of-phase mode, it is a consequence of the invariance
of the free energy of incommensurate systems with
respect to changes in the relative positions of the
subsystems along the direction of incommensurabili-

12

However, for q =0, their self-energies differ sub-
stantially. This can be seen by noting that the self-
energy II(q, co) is the Fourier transform of the space-
and time-dependent correlation function of the
forces acting on the modes under consideration. '

Since rigid translations leave the Hamiltonian in-
variant there is no force acting on this mode and
II(0,co) is zero. The out-of-phase mode, however,
which shifts both subsystems relative to each other,
does not leave the Hamiltonian invariant and thus
generates a finite force acting on this type of
motion. Although this force has no consequence for
the free energy of incommensurate systems it has a
nonzero correlation function and, therefore, a finite
self-energy. Thus II(q, co) in Eq. (2.13) for X(q, co)
does not vanish in the long-wavelength limit al-
though co (q) does. Therefore, II(q, co) cannot be
neglected in the calculation of X(q, co) for motion
along the direction of incommensurability.

We now study X(q,co), Eq. (2.13), in the limit
q~0 for displacements in the direction of incom-
mensurability. We start by separating II(q, co) into
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its real and imaginary parts, II = II i+i Ilz. As
Ili(q, co) is proportional to co for co~0, coll i(q, pi) in
Eq. (2.13) gives rise, in the limit (q, co)~0, to a mass
renormalization:

(3.17)

As the difference between the effective mass tensor
m* and m is not essential to the discussion that fol-
lows we neglect it henceforth, and obtain from Eq.
(2.13) for X(q,p~) the expression

mX(q co)N '= [ro —& co (—q) icoI—I 2(q, pi)]

(3.18)

which only contains II 2( q, cp ). In the long-
wavelength limit II 2(q, co) can be further simplified
by noting that, for q =0, the total linear momentum
of the composite system is conserved,

p, (0)+pi, (0)=0 . (3.19)

(II 2)""(0,0)=— —Mb y/M, (3.20)

with M=M, +Mi, . In Eq. (3.20) we have put co to
zero. y denotes the relaxation rate of the relative
linear momentum of the sublattices. An explicit ex-
pression for y can be derived from the latter equa-
tion by taking advantage of Eq. (2.15) for II(q, co),
Eq. (2.21) for X„(q,co), and Eq. (2.10) for Q2(q, k),
which we have calculated to first order in the in-
teraction potential

As II&„(q,co) is related to a bilinear correlation func-
tion of p&(q) and p„(q), it follows that, for a two-
subsystem model, and given Cartesian components,
all matrix elements II&„(O,co) are proportional to
each other and can be determined from a single
quantity. This relation turns out to be

Mb —Mg

y = —( 112)„(0,0,0)M/Mb

g[U" (G, )(Xo,(G, )(112),(Gi, i, O)Xp, (G, )) U "(—G, ))/m N,'V
Gb&

+g[U"~(G„)(X (G, , )(II ) (G„,O)X (G„))~U "(—G, , )]/m, N V, M/V,
Gai

(3.21)

with the sums including summation over Cartesian
components y, 5.

The tei-iris of the rhs of Eq. (3.21) express the fact
that motion of one sublattice with respect to the oth-
er is damped by nonlinear forces between the parti-
cles. The first term describes this effect for a rigid
relative translation. For an incommensurate system
the harmonic interaction potential couples the q =0
plane waves of the subsystems to plane waves with
wave vectors equal to a reciprocal-lattice vector of
the subsystems. The damping of the latter modes

l

gives rise to additional contributions to the damping
of relative motion. They are summarized in the
second and third terms on the rhs of Eq. (3.21).

Explicit expressions for II2(q, q, O) in Eq. (3.21)
can be derived from Eq. (2.11), which relates the
self-energy to phonon Green's functions. For the
sake of simplicity we replace these functions by the
Green's functions in the absence of V~i, and, further-
more, neglect the damping of interinediate sublattice
phonons and obtain

(II )„(q,q, O)= mk&T g ~

P—, '„'(q,k, ,k )
~

N„N„/m„m„M,co (k, ,j&)5 co(„( kj )i—co (k2,j2)),
k), k2

(3.22)

assuming summation over sublattices p, v and pho-
non branches ji,j2. co„(k,j) denotes the frequency
of a phonon with wave vector k in branch j of the
phonon spectrum of sublattice p. The third-order
force constants with branch indices j which appear
in Eq. (3.22) are related to those in Cartesian coordi-
nates by appropriate linear combinations. Since the
intrasubsystem forces vanish for q =0 only the in-
teraction between the subsystems contributes to Eq.

l

(3.22) in the long-wavelength limit. Thus the first-
teirii on the rhs of expression (3.21) for y comprises
only contributions from V~i„while only intrasubsys-
tem forces contribute to the remaining self-energy
terms appearing in Eq. (3.21).

It is important to realize that y has a nonzero
value due to interactions between hariiionic pho-
nons. Such interactions are always present in real
systems even though for a strictly harmonic inodel y
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co, (q) =+c,q i yMb/2—M, q »y/c& (3.23)

and a corresponding form for cob(q). As far as the
real part of the excitation frequencies are concerned
they show the same q dependence as in the case of
two noninteracting lattices. However, the damping
of these modes, which in the noninteracting case is
proportional to q, turns out, to lowest order in q, to
be independent of wave vector. This is a conse-
quence of the fact that, in the case of interacting
sublattices, the linear momentum of each sublattice
is no longer conserved. By lowering q, a crossover
to a new dynamic regime occurs when the sublattice
phonon frequencies become comparable to the pho-
non damping. In this regime we have only one
sound-wave pole,

co, (q) =+c,q —y, q /2, q~0
with

(3.24)

c, =(M, c, +Mbcb)/M (3.25)

(3.26)

This mode corresponds to a rigid translation of the

vanishes identically. However, as we shall see
below, a nonvanishing y strongly affects the spec-
trum of excitations at low frequencies and, there-
fore, must be taken into account for incommensu-
rate systems. The third-order phonon process which
contributes to y according to Eq. (3.22) is a reso-
nance process in which a phonon of one sublattice is
converted into a phonon of the other sublattice
which has the same energy and momentum. Such
processes are allowed by momentum and energy
conservation and will take place provided, of course,
the phonons concerned are thermally occupied.

To get a qualitative description of the excitations
we examined the poles of X(q, co), Eq. (3.18), using
the form of Eqs. (3.15) and (3.20) for the matrices
co (q) and 112(q,co) as (q, co)—+0. To simplify the no-
tation we neglect in the following the off-diagonal
matrix elements in co (q). They change the quantita-
tive results only slightly. For q »y/c& we found
the poles associated with the sublattice sound waves,

entire crystal. c, denotes the sound velocity of the
composite system while the damping vanishes as q
for q~O. This kind of excitation is found in any
crystal in the true long-wavelength limit. However,
there is an excitation which is characteristic of an
incommensurate crystal. It gives rise to a diffusion
pole,

cod(q) = iDq—, q~0
with

(3.27)

D =c,cb/yc, , (3.28)

and is associated with a relative motion of the sub-
lattices which leaves the center of mass of the total
system fixed. There is an additional relaxational
pole in the spectrum of X(q, co),

coy(q) = i y, q ~0— (3.29)

associated with the relative linear momentum of the
subsystems. It stays finite as q~0 because the rela-
tive linear momentum is not conserved for interact-
ing subsystems.

The origin of the diffusion pole, Eq. (3.27), can be
traced back to the invariance of the free energy with
respect to changes in the relative positions of the
sublattices, and the fact the linear momentum asso-
ciated with this motion is not conserved: The sym-
metry one is dealing with is a symmetry of the free
energy only and not of the Hamiltonian. For
q &&y/c, the relaxation rate Dq of relative dis-
placements is much smaller than the relaxation rate
y of the associated linear momentum. In this re-
gime fluctuations in the relative positions of the sub-
lattices obey a diffusion law. However, as q in-
creases and Dq gets the same order of magnitude as
y a crossover to a regime with oscillatory sublattice
phonons occurs, Eq. (3.23). Such a behavior is not
restricted to systems composed of incommensurate
sublattices. A similar crossover from a diffusive to
an oscillatory regime has recently been predicted to
exist in the phason dynamics of incommensurably
modulated crystals.

In Fig. 1 we have plotted S(q, co) vs co for dif-
ferent values of q in the limit (q, co)—+0. In this limit
S(q, co), Eq. (2.4), takes the form

S(q,co)=2k~T(N, Nbyq /Mm, mb)[(mb —m, )co +(m, c, mbcb)q ]-
X [(co c,q ) (co c—bq ) +(cu —c, q ) (cg)y) ]— (3.30)

The plot shows the crossover from the high-
frequency regime with two propagating sublattice
sound waves to the low-frequency regime with only
one propagating sound mode. In passing through
the crossover the sublattice phonon, Eq. (3.23), with

the higher frequency joins continuously to the sound
wave of the composite crystal, Eq. (3.24). The max-
imum in S(q, co) due to the sublattice phonon with
the lower frequency disappears at a certain wave
vector. For still smaller q a central peak due to the
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diffusion pole [Eq. (3.27)], associated with the out-
of-phase motion of the sublattices, appears. The re-
laxational pole, Eq. (3.29), which is related to the
relative linear momentum, has only very little
weight in S(q, co).

So far we have studied the excitation spectra only
in the limit (q, co)~0. Owing to the incommensura-
bility of the crystal, however, the excitation spectra
will not be periodic in q space as in the case of com-
mensurate crystals. The low-frequency dynamics
near reciprocal-lattice vectors of incommensurate
crystals, for instance, will be different from the
low-frequency dynamics near q=O. To elucidate
this point further we have calculated S(q,co) in the
»mtt (q, ~)~(Gb ),0). In the absence « intersub»t-
tice forces the phonon spectrum of sublattice p will
be the same for q and G&+q. Thus in the nonin-

l

S(q, m) 2k' Tq ImXbb(k, co)/co, (3.31)

k =q —Gb ~. This equation relates the low-
frequency limit of S(q, co) near q =Gb

&
to the corre-

spondtng limit of Xbb(k, co) near k=0. It remains to
be true after switching on a small intersublattice po-
tential V,b. In the latter case Xbb(k, to) can be easily
deduced from Eq. (3.18) for X(k,co), (k,co)~Q:

teracting case, there are branches of excitations, the
acoustic phonons of sublattice b, whose frequencies
vanish as q +G—b ~, while, due to the incommensura-
bility along the direction of Gb„the phonons of sub-
lattice a attain finite frequencies for q~Gb&. This
has the consequence that, for q close to Gb& and
co~0, the dominant contributions to S(q, to) arise
from density fluctuations in the b lattice only. In
analogy to Eq. (2.4), S(q, cu) takes the form

S(q,~)=2k~T(M, MbyGb, /Mmb)(ru c,k ) [(~ c,k )'—(m cbk ) —+(co c, k ) —(~y)'] (3.32)

In Fig. 2 we have plotted S(q, co), Eq. (3.32), in the
limit (k,co)~0 assuming that the sound velocity of
lattice b is smaller than the sound velocity of lattice
a, i.e., we have cb &c, &c, . The peak seen in Fig. 2
for k )y/c, is due to the sound wave on lattice b.

I

The excitations of lattice a all have frequencies well
outside the frequency range of Fig. 2. In lowering k
a crossover with a broad structure in S(q, co) occurs
near k=y/c, . For still smaller k, k «y/c„ the

4.2

]

.3 2.1

k=1

I

0.5

q =0.5 0.6

0.3

q =0.3 y/Cs k =O.l q&C,

0.1

FIG. l. Calculated dynamic structure factor S(q, co) of
a pure crystal composed of two incommensurate sublat-

tices. For wave vectors q »y/c, the two sublattice pho-

nons are shown. The higher-frequency mode joins con-

tinuously to the sound wave (velocity c, ) of the composite

crystal, q &&y/c, . The central peak is due to the out-of-

phase motion of the subsystems. The crossover is deter-

mined by the relaxation rate y of the relative linear

momentum of the subsystems.

FIG. 2. S(q, co) calculated for a pure incommensurate
crystal in the limit (q, co)~(Gb,o), k =q —Gb, with Gb a
reciprocal-lattice vector of the lattice with the lower sub-
lattice sound velocity. This sublattice phonon, k &y/c„
joins continuously to the central peak due to the out-of-
phase motion of the sublattices, k «&y/c, . The propaga-
ting mode, k &&y/c„corresponds to the sound wave
(velocity c, ) of the composite crystal. y denotes the relax-
ation rate of the relative momentum of the subsystems.
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narrow peaks due to the diffusion mode and the
sound wave of the composite crystal can be clearly
distinguished at frequencies co =0 and co =c,k,
respectively. In passing through the crossover the
sublattice sound wave joins continuously to the cen-
tral peak associated with the out-of-phase motion of
the subsystem.

We have also analyzed S(q, co), Eq. (3.32), for
cb & c, & c, . Again we find a crossover near k=y/c,
below which the sound wave of sublattice b evolves
into the out-of-phase motion of the subsystems, with
a central peak in S(q, co) and the sound wave of the
composite crystal. In this case, however, the cross-
over is accompanied by a narrowing of the linewidth
of the sublattice sound wave which, in passing
through the crossover, joins continuously to the
sound wave of the composite system, contrary to the
case of cb & c, & c, considered above (see Fig. 2).

IV. INCOMMENSURATE CRYSTAL
WITH RANDOM-POTENTIAL FLUCTUATIONS

For a composite incommensurate crystal the free
energy does not depend on the relative position
(d, —db )" of the sublattices along the direction of
incommensurability. However, as we shall show
below, this property is changed by the presence of
random fluctuations in the interaction V,b induced
by impurities. The particles of the system adjust
their equilibrium positions to random potential fluc-
tuations in order to minimize the total potential en-
ergy including the impurity potential. According to
Fukuyama and I.ee two limiting cases are of impor-
tance. In the strong-pinning case the system is able
to respond to each individual impurity while in the
weak-pinning case the system responds to the aver-
age potential of a large but finite number of impuri-
ties. The weak-pinning limit is best described by an
"order parameter" (d, db )" which is—no longer spa-
tially constant throughout the sample as in the pure
case but varies over distances of order g (Ref. 14),
which are much larger than the mean separation of
impurities.

To demonstrate the effect of random potential
fluctuations on the dynamics of an incommensurate
system we study a simple model in which impurities
M; are randomly distributed on sublattice b. We as-
sume that the impurities have the same mass mb
and interaction potential Vb as all other particles of
sublattice b, but their interaction potential with par-
ticles of sublattice a is Vb+5V instead of V,b.
Furtheririore, we restrict ourselves to the weak-
pinning limit. The total potential energy has the

OITIl

Vp„——g g V„„(x„(i)X—„(j);ij )/2
P i,J

+ g [ V,b(x, (i) x—b(j );ij )

+5V(x, (i) xb—j();ij )5, M ] . (4.1)

Here the Kronecker 5 function is equal to 1 when
particle j is an impurity M; and zero otherwise. The
equilibrium positions of V~„may be written as

x„(i)=d„(i)+R„(i), (4.2)

where A, denotes a length of the order of a lattice
constant. The contributions of d&(x) to V~„,Eq.
(4.1), can be partitioned into two terms,

vp. , ——v, + v, . (4.4)

V, summarizes the contributions from the elastic
medium defined by the first three terms on the rhs
of Eq. (4.1),

V, =cg /2, (4.5)

with an elastic constant c which is related to the ma-
trix elements of co (q —&0), Eq. (3.15). For distor-
tions V'dz, Eq. (4.3), along the x direction c takes the
form

(4.6)

with c„Eq.(3.25), the sound-wave velocity of the
composite crystal. VI embodies the contribution to
V~„from 5V,

V;= g 5V(x, (i) xb(M;)) . — (4.7)

Introducing Fourier components 5V(q), as in Eq.
(3.4), V, can be written as

V; = g 5V(Q) g expIiQ[x, (i) —xb(M;)]I /V,

(4.8)

with N; the total number of impurities and x&(i)
given by Eq. (4.2). To proceed further we introduce
cells a of lateral dimension g such that d&(x) is ap-
proximately constant within each cell with value dz
varying from cell to cell. We are thus able to per-

where d&(i) comprises the periodic short-wavelength
modulations considered in the preceding section
arising from V,b, as well as long-wavelength Fourier
components due to 5V. These long-wavelength fluc-
tuations in dz(i) can be approximated as a continu-
ous displacement field d&(x) with a characteristic
rate of change V'd&..

{4.3)
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forint the sum over the phase factors in Eq. (4.8) for
each individual cell neglecting contributions from
different cells, which is appropriate for a short-
range potential 5V:

V; =5V(0)N, N; /V

For the equilibrium configuration d, d—b will be
such that f (G, ) &0 for all relevant G, so that the
contribution of the second term on the rhs of Eq.
(4.12) to V; is negative. Finally, we replace N; and
f ( G, ) by their respective cell averages N;,f( G, ):

+ g 5V(G, ) g exp[iG, (d, db—)]p; (G, )/V, , N; =P'N;/V, f(G, ) &0 (4.14)

with
(4.9)

with d =3 the space dimension. As the number of
cells is equal to V/g we arrive at the result

a
p; (G, ) = g exp[iG, X Rb(M—; )], (4.10)

M,

and X denoting the position of cell a. The sum in
the latter equation extends only over impurities of
cell a. As the impurities are randomly distributed

p;(G, )=(N; )'~ exp[i/ (G, )], (4.11)

where N; denotes the number of impurities in cell
a, and P (G, ) is an appropriate phase. Introducing
p(Gb) as the phase of 5V(Gb ) we obtain for V;,

V; =5V (0)N.N; /V

+g ~5V(G. )
~
g(N, )'"f (G. )/V. ,

(4.12)
with the phase factors included in f (G, ):

f (G, )=cos[p;(G~)+p~(G, )+Gg(dg —db)] .

(4.13)

V; =5V(0)N, N; /V
"~ (N;/V)'~ N, g ~

5V(G, )
~
f(G, ) .

(4.15)

From this equation and Eq. (4.5) it follows that, for
d & 4, V~„[Eq.(4.4)] is negative for large g but posi-
tive for small g. Thus V~„has its minimum value
at a finite coherence length given by

dN (N —/V)'

X g i
5V(G, ) i f(G, )/2c, A, M .

G

(4.16)

The impurity potential 5V(x) affects the propaga-
tion of sound. Its contribution M (q, k) to the ma-
trix 0 (q, k), Eqs. (2.9) and (2.10), is given as fol-
lows:

(5Q )«(q, k) = g V~V~5V(x, (i) xb(M;))e—xp[i(q k)R, (i)]/—M, , (4.17)

(5Q ),b(q, k) = —g V V~ 5V(x (i) xb(M; ))e—xpIi [qR, (i) kRb(M;)]I /—Mb,
i,M,

(4.18)

2
Ca

2
'—Cab

2
2 g

Cy

—M,
(~0')„„(q)= (4.19)co~ M + 2Mb Mo—

with the remaining matrix elements obtained by interchanging a and b. In the following we consider only
motion in the direction of incommensurability, a=P=x. 5Q&„(q,q) gives rise to a contribution to co (q), Eq.
(2.14), which is first order in 5V. Neglecting higher-order contributions due to X(q,co=0), Eqs. (2.14) and
(2.16), one gets for co (q), q~0,

r

with the pinning frequency co,
COP

—— x Xa l —Xb i a I,
i,M,

(4.20)

The last term on the rhs of Eq. (4.19) represents
the contribution from all forces other than 5V, Eq.
(3.15). This ternI is, to a good approximation, unaf-
fected by the long-wavelength fiuctuations in the
atomic positions induced by 5V. The first term on

I

the rhs of Eq. (4.19) is a consequence of 5V. To get
this fornax we neglect the q dependence in the off-
diagonal element Ml b (q, q), Eq. (4.18), which is a
good approximation when 5V(x) is a short-range
potential and q is much smaller than a reciprocal-
lattice vector G&. This is equivalent to assuming
that 5V has only a negligible contribution to the
sound-wave velocities. The pinning frequency co~
can be estimated from Eq. (4.20) in a way which is
completely analogous to the derivation of Eq. (4.15)
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for V;. Qne gets a finite value for uz,
'"(N-; /V )'"

&& g ~5V (6 )
~
f(G )MN /M Mb,

Thus co& is a direct measure of the coherence length
g. Defining a.

=co& /c, we obtain the result

K~2& —1 (4.23)

(4.21)
with /5V (6, )

/

=6, /5V(G, ) /. Assuming for
the sake of simplicity that only the smallest
recipmcal-lattice vectors,

~
G,

~

=2~/A, „contribute
to co~ the sum over 6, in the latter equation can be
related to g' using Eq. (4.16),

co =2(27TC, /g) (MA, /A, , )
~
dM, M =(27rc, /g)' .

(4.22)

This behavior of the eigenvalues of co&„(q)is quali-
tatively different from the case with x =0, which we
have studied before. In the latter case only the two-
sublattice phonon regime exists, i.e., Eq. (4.24) with
v=0.

Random potential fluctuations not only contribute
to co2(q) but also to the self-energy II(q, co), Eq.
(2.15). In our analysis we considered explicitly the
contribution of 5V to X;(q,co), Eq. (2.22), which ac-
counts for the scattering of plane-wave phonons by
random potential fluctuations, but neglected unhar-
monic effects due to 5V, which contribute to
11(q,q, co). 0 (q, k) on the rhs of Eq. (2.22) is given
by Eqs. (4.17) and (4.18) for 50 (q, k):

(5Q2)„„(q,k) =
M M h (q —k)/M,

b

q —k~0 (4.27)

The eigenvalues of co&„(q),Eq. (4.19), give two re-
gimes with different q dependence (see Fig. 3). For
q »a. the eigenvalues correspond to the sublattice
phonon frequencies,

h(q)= g V'„5V(x,(q) xb(M—;))

Xexp[i'. (i)]M/M. Mb . (4.28)

cop ( q ) =cp q, q » Ic (4.24)

whereas, for q « ir, one eigenmode is the sound
wave of the composite crystal,

co, (q) =c,q, q «v (4.25)

coo(q) =cd, q —+0 . (4.26)

while the second mode, the optical mode, attains a
finite frequency,

Equation (4.27) is correct provided
~ q —k

~

is much
smaller than a reciprocal-lattice vector. As charac-
teristic fluctuations in the particles' positions occur
only on a scale set by the coherence length g, h (q)
vanishes for q »g ', h (q)=.0. To estimate h (q) for
q «g ' we take advantage of a sum rule which fol-
lows immediately from the definition of h (q), Eq.
(4.28),

g h (q)h ( —q) =(M/M, Mb ) N,
q

x g gV„'5V
i M;

)& (x, (i) —xb(M;))

(4.29)

FIG. 3. Dispersion of the phonon frequencies in the
absence of damping for two incommensurate sublattices
with random impurities. The sublattice phonons, q ~~~,
join continuously to the sound wave of the composite
crystal and the pinned out-of-phase motion, q ~~a.
denotes the pinning frequency and a ' the finite coher-
ence length induced by the impurities.

Substituting this relation into Eq. (4.29) one gets the
simple result

g h (q)h ( —q)=co~ . (4.31)

The sum over impurities M; on the rhs of this rela-
tion can be estimated fmm Eq. (4.20) f« ~~ assum-
ing macroscopic homogeneity,

g V'„5V(x,(i ) xb(M; ))=copM,—Mb /MN, .
M,

(4.30)
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Assuming a Gaussian forum for It (q),

h (q) =A exp[ —(qg) /2],
Eq. (4.31) allows the determination of A,

2(2 g )d/2y —1/z —d/4

With these approximations we get for X;(q,co), Eq. (2.22),

(4.32)

(4.33)

X;(q,co)= —+exp( —
~ q —k

~ g )
b

mX(k, ro)X (A/M) (4.34)

of which II„(k,co) comprises the contributions of
forces other than 5V, Eqs. (2.15) and (2.11), whereas
II;(k,co) summarizes the impurity contributions,

II;(k,ro) = [X;(k,ro) —X;(k,O)]/co . (4.37)

Equations (4.34)—(4.37) allow a self-consistent cal-
culation of X(q, co). The result depends strongly on
the ratio of II„to II; in Eq. (4.36). In the case in
which the impurity damping dominates the intrinsic
one, II„«II;, we have carried out a self-consistent
calculation. Figure 4 shows S(q, co) in the limit
(q, co)~0. For co&&co& the sublattice phonons, Eq.
(4.24), can be clearly distinguished. With decreasing
co the linewidth of these phonons increases as well as
the relative spectral weight of the sublattice phonon
with the lower frequency. At the crossover co=co&,
the self-energy II;(q, co), which gives rise to the pho-
non damping, attains its maximum value, which
turns out to be of order co&. Thus the conditionII„«II; is equivalent to

~

11„(k,co)
~

&&co~.
For co«co~, S(q, co) clearly shows the contribu-

tion due to weakly damped sound wave of the com-
posite crystal, Eq. (4.25). It joins continuously to
the lower-frequency sublat tice phonon. This
behavior differs from the pure case, co~ =0 (Fig. 1),
in which the sound wave of the composite crystal
joins continuously to the higher-frequency sublattice
phonon. It is a consequence of the different
behavior of co (q~O) in the respective cases, Eqs.
(3.15) and (4.19). For co~&0 the higher-frequency
sublattice phonon joins continuously to the strongly
damped optical mode, Eq. (4.26), which, however,
has only little spectral weight in S(q, co) for q ~0.

We have also studied the opposite limit, II„&II;,
in which the intrinsic damping is much larger than

which relates X;(q, ro) to mX(k, co)N ', Eq. (2.13),

mX(k, ro)N ' = —[co X —co2(k) —coII(k, co)]

(4.35)

co (k) is given by Eq. (4.19) while 11(k,co), Eqs.
(2.15) and (2.19), separates into two terms,

(4.36)

I

the impurity damping. This is equivalent to assum-
ing

~

II„(k,ro)
~

& co&. In this case the self-consistent
character of Eqs. (4.34)—(4.37), which comes into
play through II;(k,co), is negligible. As in the pure
case we replace in the limit (q, co)—+0, II(q, co) by
iII2(0,0), with the latter quantity given by Eq. (3.20).
With these approximations we get for X(q, co),

mg(q, ro)X '= —[co 1—ro (q) —iroII p(q, ro)]

(4.38)

which looks the same as the corresponding expres-
sion, Eq. (3.18), in the absence of impurities. How-
ever, in the present case co (q) is given by Eq. (4.19)
which, through co&&0, reflects the pinning by im-

I

2.5

0.9

FIG. 4. S (q, co) calculated for an incommensurate
two-sublattice model with random impurities when im-
purity scattering dominates intrinsic mechanisms of
momentum relaxation. The sublattice phonon,
q &&~~/e„with the lower frequency joins continuously to
the sound wave (velocity c, ) of the composite crystal,
q (&m~/e, . The pinned out-of-phase mode of the subsys-
tems with pinning frequency co~ has no spectral weight in
S(q, co) for q~0.
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purities. For q=O, the poles of mX(q, cu)N ' are as
follows:

co, (0)=0,
cod {0)= in—iq/y,

~r(0) = i—(y ~—~/y) .

(4.39)

(4.40)

(4.41)

The corresponding poles in the pure case are given
by Eqs. (3.24), (3.27), and (3.29). The zero-
frequency mode pertains to the sound wave of the
composite crystal. Impurity pinning of the sublat-
tices leads to a relaxational pole, Eq. (4.40), for the

relative motion of the sublattices which, in contrast
to the pure case, Eq. (3.27), attains a finite value in
the limit q —+0. Thus for incommensurate crystals,
the relative motion of the sublattices is strongly in-
fluenced by random interaction potential fluctua-
tions. Equation (4.41) is related to the relaxation of
relative linear momentum.

The pinning of relative sublattice motion, howev-
er, is only effective for q &co&/c, . This can be seen
by studying S (q, ro). The same approximations
which lead to Eq. (3.30) for S(q, co) in the pure case
now give the expression

S(q, co) =2k&T(N, Nbyq /Mm, mb)[(mb —m )co +(m, c mbc—b)q']

X [ [(co'—c.'q')(co' —cbq') —(co' —c,'q')co~ ]'+ (co' —c,'q')'(coy)') (4.42)

which differs from Eq. (3.30) only by the term pro-
portional to co& in the denominator. For q &&co&/c,
the consequences of co& on S(q, co) are negligibly
small. As for co~=0 we observe the crossover at
q=y/c, from the sublattice phonon regime to the
regime with the sound wave of the composite crystal
as the only propagating mode.

In Fig. 5 we have plotted S (q, co) vs co for
q & y/c, . For intermediate values of q,
roz «c,q «y, the central peak and contributions
from the sound wave of the composite crystal are
shown. Lowering q the maximum of the central
peak increases while its width decreases as in the
pure case. However, due to co&&0, the central peak
attains a finite maximum for q=roz/c, and, instead
of increasing further, decreases for still smaller wave
vectors. For q «co&/c, the only contributions to
S(q, co) arise from the sound wave of the composite
crystal.

A strong narrowing of the sound-wave linewidth
occurs for q «co&/c, . In the interinediate regime,
co~ &&c,q &&y, the damping of sound waves of the
coinposite system takes the foiiri y, q with y, given
by Eq. (3.26). The damping has the same order of
magnitude as the relaxation rate Dq of relative dis-
placements, Eq. (3.28). In the intermediate dynami-
cal regime, y, [Eq. (3.26)] is determined by y, the
self-energy at zero wave vector, Eq. (3.20). There
are minor corrections to this forint of sound-wave
damping arising from the wave-vector dependence
of the self-energies. But these contributions are
negligible for co& «c,q «y. For q=coz/c„howev-
er, the analysis of X(q, co), Eq. (4.38), shows that,
with the relative displacement mode attaining a fin-
ite relaxation rate, the contribution to sound-wave
damping from the self-energy at zero wave vector
decreases. Finally, for q~O, the q-dependent parts
of the self-energy, which we have neglected so far,

take over the sound-wave damping. For q «co~/c,
the damping takes the form y, q with

y, =i lim [M, (II,, (q, O)+Ilb", (q, O))
q~O

+~b {IIbb {q, o ) + II".b {q, o ) )]/~q ' .

(4.43)

Note that the self-energy at zero wave vector, Eq.
(3.20), which we considered so far, does not contri-
bute to y, in Eq. (4.43). Thus to get a nonzero value
for y, in the dynamical regime q «ro& /c, one has to
keep track of the q terms in II(q, ro).

V. SOUND PROPAGATION
IN A SOLID-LIQUID SYSTEM

The results obtained in the previous sections refer
to systems composed of two incommensurate sublat-
tices. However, there are substances in which one of
the subsystems has a fluidlike character.
Hg3 5AsF6 above 120 K is such a system. It con-
sists of a body-centered-tetragonal lattice of AsFb
ions and two nonintersecting sets of Hg chains run-
ning in the a and b directions, respectively. At room
temperature the Hg chains act as one-dimensional
{1D)fluids.

To elucidate sound-wave propagation in such sys-
tems we have studied in detail a model consisting of
a 3D lattice b and a periodic array a of chains along
the x direction. The a particles are assumed to
behave as a fluid along the chains. There is a close
analogy of this model and the system composed of
two incommensurate sublattices in the absence of
impurity pinning. In both cases the free energy is
invariant with respect to arbitrary changes in the
relative position of the subsystems along a direction
defined either by the direction of incommensurabili-
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S(q, co) =2k~ T Im Q X„(q,co) /co, (5.1)

3
C7

cA

m& -0 Q]y

q= 07 1

q =0.5

where X(q, co) denotes the matrix of dynamic suscep-
tibilities associated with the set of variables at hand.
The corresponding expression for the case of two
solid subsystems was given in Eq. (2.4). A con-
venient expression for X(q, co) is

mX(q, co)N '= —q [co 1 —co (q) —coLI(q, cu)]

l

0.2

l

0.5

q= 0.2

(5 2)

with the matrices m and N ' given in Eq. (2.6).
This form for X(q, co) replaces Eq. (2.13). The ma-
trix A@2(q) is related by Eq. (5.2) to the inverse static
susceptibility X '(q),

co (q)=q NX '(q)m (5.3)

I

0.0&

q =0.04

0.01

q= O.o& qlC,

FICx. 5. S (q, co) calculated for an incommensurate crys-
tal with random impurities, and q & y/c„when the relax-
ation rate y of the relative linear momentum exceeds the
pinning frequency co~. The propagating mode corre-
sponds to the sound wave of the composite crystal (sound
velocity c, ). The central peak due to the out-of-phase
motion of the sublattices has maximal intensity for
q=co~/c„and loses its spectral weight in S(q, co), q~O,
because of impurity pinning.

ty or the direction of the 1D fluids. Furthermore,
for both systems this symmetry of the free energy is
not a symmetry of the Hamiltonian. It is, therefore,
not surprising that sound-wave propagation turns
out to be very similar in both systems.

In the liquid-solid model under consideration the
dynamical variables relevant for sound propagation
are the particle density p (q) of the liquidlike sub-
system and the displacement field ub(q) of the 3D
lattice. As we restrict ourselves to longitudinal
sound waves propagating in chain direction, a con-
venient set of variables consists of p~ (q) and

iqub(q) with q =—q„.The latter dynamical variable
is, to lowest order in the displacements, proportional
to density fluctuations pb(q) in the 3D lattice.

The quantity of interest is the dynamical structure
factor S(q, co) of the composite system. To lowest
order in the displacement field S(q, c0) takes the

As X '(q) is given by a second-order derivative of
an appropriate free-energy functional, its asymptotic
form in the long-wavelength limit can be deduced
from the behavior of the free energy. In the ab-

sence of intersubsystem interaction and long-range
Coulomb forces, X '(q=O) attains a finite value re-
lated to the subsystem compressibilities. As for the
composite system the fluidlike character of one sub-

system still guarantees invariance of the free energy
with respect to changes in the relative position of
the subsystems along the direction of the 1D fluids.
This invariance of the free energy gives rise to a fin-
ite matrix X '(q=O) even for the composite system.
The derivation of this result is closely analogous to
the derivation given by Zeyher and Finger for in-
commensurably modulated crystals. Thus in the
large-wavelength limit, the matrix co (q), Eq. (5.3), is
proportional to q and takes the forra of Eq. (3.15).

As regards the self-energy II(q, co) in Eq. (5.2)
conservation of total linear momentum of the sys-

tem, Eq. (3.19), ensures validity of Eq. (3.20) for the

(q, co)~0 limit of II(q, co) with a nonzero value of y
due to the relaxation of relative linear momentum.
Thus Eq. (5.2) for X(q, cu) reduces to the form ap-
propriate for incommensurate sublattices, Eq. (3.18).
As in the latter systems we expect two dynamic re-

gimes for sound propagation in solid-liquid systems:
a high-frequency regime with propagating subsys-
tem sound waves, and a low-frequency regime with

only one propagating sound mode associated with
in-phase motion of the subsystems and a diffusive
out-of-phase motion of the subsystems (see Fig. 1).

y separates the frequency regimes.
In examining the processes which contribute to y

we restrict ourselves to contributions from particle
motion along the direction of the chains. The
analysis given below can be easily extended to in-

clude contributions from motion perpendicular to



356 W. FINGER AND T. M. RICE

the chains. The force acting on the liquid subsys-
tem, p, (0)= —pb(0), can be expressed as

The second term on the rhs of Eq. (5.4) gives rise
to y2,

+ g U (k)p, ( —k)ub(k)+
k

(5.4)

with Gb &
a reciprocal-lattice vector of the solid sub-

system along the chain direction, and U(k) defined
in Eq. (3.8). The first term on the rhs of this equa-
tion denotes the force on the liquid generated by the
particles of the 3D lattice at their equilibrium posi-
tions, while the second term accounts for thermal
fluctuations about the equilibrium positions. The
dots in Eq. (5.4) indicate contributions of higher or-
der in the displacement field.

In lowest-order perturbation theory each term on
the rhs of Eq. (5.4) gives rise to a corresponding
term in the self-energy associated with p, (0), i.e. , we
have y= y&+ y2+ . . y~ has its origins in the
first term on the rhs of Eq. (5.4),

y&
= X I

U"( Gb & )
I S,( Gb i 0 )M /2M, Mb V

(5.5)

with S, (q, co) the dynamic structure factor of the
liquid in the absence of V,b. This contribution is
due to the fact that the static potential generated by
the 3D lattice induces in the liquid a coupling be-
tween density fluctuations whose wave vectors differ
by reciprocal-lattice vectors Gb& of the 3D lattice.
The damping of density fluctuations thus is coupled
to the q=0 mode and gives rise to y&. This follows
immediately by relating S,(q, co) in Eq. (5.5) to the
self-energy II, (q, co) of density fluctuations,

yi= —g I
U(Gbl) I'112.«bi 0)

X [Xo,(Gb ))] M/mbN, Nb Vb, (5.6)

where Xo, (q) is proportional to the static structure
factor So(q) of the liquid, +0, (q) =S,(q)/k~ T. This
form of y shows a close analogy to the second term
on the rhs of Eq. (3.21) for y in the case of incom-
mensurate lattices. The origin of the latter term is
the same as that of y&. The third term of Eq. (3.21),
however, has no analogy in liquid-solid systems
since, due to the lack of equilibrium positions along
the chains, there are no reciprocal-lattice vectors G, &

of the liquid subsystem along the chain direction
and the static potential set up by the liquid has only
zero wave vector (modulo Gb ).

den G, (k, co)

XGb( k, c—o)M/16' M Mb V,

(5.7)

with G„(q,co) the Careen's functions associated with

p, (q), @=a, and iq—ub(q), p=b, in the absence of
V,b. They are defined in terms of susceptibilities by
Eq. (2.12). To progress further we neglect effects of
damping on G~(k, co) and obtain

y, =k„Tf d'k
(

U (k) ('m '(k)

X &(~b(k) —co, (k) )M/(4am, mb )

(5.8)

Here ~b(k) denotes a phonon frequency of the 3D
lattice while co, (k) is the frequency of a density fluc-
tuation in the liquid. Comparison of this result with
Eq. (3.22) shows that yz corresponds to the first
term on the rhs of Eq. (3.21) for y in the case of in-
commensurate sublattices.

The contributions to yz arise from subsystem exci-
tations which, for V,b

——0, have the same momen-
tum and energy. Coupling of these degenerate
modes by V,b leads to exchange of energy and
momentum and thus contributes to sound-wave
damping in the subsystems. Though some recon-
struction of the excitation spectrum takes place near
points of degeneracies this does not change the argu-
ment above since the coupling between sound waves
and reconstructed modes still exists. The applica-
tion of the above results to Hg& bAsFb at T& 120 K
requires some modifications of the model because of
the more complex structure of this substance which
consists of two different sets of 1D liquids rather
than one set as assumed in the model. However, if
we restrict ourselves to longitudinal sound waves po-
larized in the direction of one set of Hg chains, the a
chains for instance, the AsF& lattice and the Hg
chains in b direction are commensurate as far as dis-
placements in the a direction are concerned. Thus
the out-of-phase motion of the latter systems attains
a finite excitation frequency in the long-wavelength
limit and only the in-phase motion corresponding to
sound waves in the subsystem, composed of an AsF&
lattice and b chains, are effective in coupling to
sound waves along the a chains. The dynamic sus-
ceptibility of these two sound modes has the form of
Eq. (5.2) with the matrices m and N ' given in Eq.
(2.6). m, denotes the mass of a Hg ion while mb is
an effective mass associated with the in-phase
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motion of the b chains and the AsH6 lattice,

mb ——(m, M +m, M)/Mb .

m, is the mass of an AsFb ion and M, denotes the
total mass of the AsF6 system, while M, is the mass
of the b chains, i.e., half the total Hg mass of
Hg3 bAsF6, and Mb ——M, +M, N„in Eq. (2.6) is
given by Mzm„'.

With these modifications the results of the two-
subsystem model studied above can be applied to
Hg3 &AsF6 at T) 120 K. The subsystem sound
waves have been measured by inelastic neutron
scattering. At room temperature the respective
sound velocities turn out to be c, =23.8 meV A and
cb ——14.0 meVA. For the long-wavelength limit the
theory predicts the existence of sound waves of the
composite crystal with a longitudinal sound velocity
c, =18.3 meVA, Eq. (3.25), and a diffusion mode
due to out-of-phase motion of the a chains and the
system composed of b chains and an AsF6 lattice.

The sound waves of the composite crystal exist
only below a frequency deterixiined by the damping
y of motion along the a chains, Eqs. (5.5) and (5.8).
Numerical estimates of y, Eq. (5.5), for Hg3 bAsF6
show that umklapp process contributing to yi are
less efficient in coupling the subsystem motion than
dynamic resonance processes which contribute to y2,
Eq. (5.8). y& turns out to be an order of magnitude
smaller than yz.

In the dynamic resonance processes, which give
rise to damping on the a chains, all modes of the b
chains and AsF6 lattice may take part, such as, for
instance, in-phase motion of the b chains and an
AsF6 lattice along the direction of a chains, as well
as density fluctuations on the b chains. The contri-
butions of these modes to yz is given by Eq. (5.8)
with U "(k) replaced by an appropriate form. We
made a numerical estimate of y2 using the experi-
mental excitation spectra of Hg3 bAsF6, and as-
suming the short-range interaction between Hg and
AsF6 ions to be Coulombic with charges
e(Hg) = + (3 —5) 'e and e(AsF6) = —e, respectively.
The estimate we obtained for y2 at T= 300 K. was of
the order of 1 MHz. This is a small frequency as
far as neutron scattering experiments are concerned
but well within the range of ultrasonic measure-
ments. A more precise estimate of y has to include
the exact form of the screening of the Coulomb in-

teraction in Hg3 bAsF6 by the conduction electrons.
The precise form of the screening, however, is not
known.

Contrary to the case of incommensurate lattices,
random fluctuations in the interaction between a
fluid and a lattice turn out to be ineffective in pin-
ning the relative motion of the subsystems. The
random potential is generally believed to be averaged
out by thein|al motion of the fluid. This requires a
thermal coherence length gT of the 1D fluids,
which is much smaller than the characteristic length
g; of changes in the fluid's density due to random
potentials. At low temperatures, however, with in-
creasing coherence in the particles' positions, g'T

may exceed g;. The system is then best described as
a disordered solid and impurity pinning is anticipat-
e .

VI. CONCLUSIONS

In this work we started from a microscopic Ham-
iltonian and derived the form of the coupling be-
tween the long-wavelength acoustic modes of a sys-
tem with two incommensurate atomic subsystems.
There are both intrinsic and extrinsic mechanisms
which are important at very long wavelengths.
These lead to only one propagating LA mode in this
limit corresponding to the combined motion of the
system. The characteristic frequency which governs
the crossover to high-frequency behavior, with two
uncoupled propagating modes in the subsystems,
can be quite low, e.g., we estimate it as 1 MHz in
Hg3 QAsF6 for the intrinsic coupling mechanisms.
Our results are an example of the general
phenomenon of the overdamping of the phase
modes, or relative motion modes in incommensurate
systems, in the long-wavelength limit discussed by
Zeyher and Finger.
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