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1 iN expansion for the degenerate Anderson model in the mixed-valence regime
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The 1/N expansion method for the degenerate Anderson model is formulated. X is the degenera-
cy factor of one of the f-electron configurations. Various ground-state properties are calculated.
Excellent agreement with the result of Bethe ansatz for %=6 is shown. The rate of convergence of
the series is analyzed. The merit and inadequacy of the method are discussed. At zero temperature
the ratio of the magnetic susceptibility and the specific-heat linear coefficient is shown to lie within a
range of 1 and 1+(,1V —1)

I. INTRODUCTION

Recently, the intermediate valence problem has aroused
the interest of many physicists. Materials containing di-
lute or concentrated rare-earth ions show similar
anomalous properties. Because of the mathematical diffi-
culty of treating the system with concentrated rare-earth
ions, most theories have concentrated on understanding
systems with dilute rare-earth impurities. It is generally
believed that the degenerate Anderson Hamiltonian,
which modifies the original Anderson Hamiltonian to in-
clude the orbital degeneracy of the f electrons, is a good
zeroth-order model for understanding the systems with di-
lute mixed-valence impurities.

Exact results of the model have been obtained by using
nonperturbative methods such as Bethe ansatz and nu-
merical renormalization-group methods. Because of the
difficulties of extending the above two methods to study
systems with concentrated impurities, we are forced to go
back to the usual diagrammatic perturbative approach.
Fortunately, more than ten years ago Keiter and Kim-
ball' prescribed the diagrammatic method for systems
with dilute impurities. Recently, Grewe and Keiter" have
generalized the method to treat the concentrated case.

A number of different ways to sum diagrams have been
proposed. ' ' ' Recently, Ramakrishnan' pointed out
that due to the large value of the orbital degeneracy N of
the f electrons, a more systematic and efficient way of
summing diagrams is possible. This is emphasized by An-
derson' as the 1/N expansion.

Several applications"' ' of this proposed method are
already published. But there is not yet a complete formu-
lation of the 1/N expansion. A careful investigation of
the merit and inadequacies of this method is required.

In this paper we present a systematic method of carry-
ing out the 1/N expansion for the degenerate Anderson
model. In Sec. II a brief introduction to the degenerate
Anderson model and to the main results of the diagram-
matic approach of Keiter and Kimball' are given. The
formulation of the 1/N expansion for the partition func-
tion is given in Sec. III. In Sec. IV low-temperature prop-
erties such as ground-state energy, average f-electron oc-
cupation, magnetic susceptibility, and the ratio of the
magnetic susceptibility and the linear specific coefficient
are calculated. Excellent agreement between results of the

1/N expansion method and Bethe ansatz are achieved for
the case of N =6. Dependence of the rate of convergence
on the values of parameters, especially the energy level of
the f electron, is analyzed. The ratio R is found to have
values between 1 and 1+(X—1) '. Conclusion and sum-
mary are given in Sec. V.

II. THE DEGENERATE ANDERSON MODEL
AND PERTURBATION METHODS

The degenerate Anderson model ' for a single rare-
earth impurity is given by the Hamiltonian

H =g ek~Cg~Ck~+g eF~X~rn
k, cr APT

+ g Vk Ct, X +H.c. , (1)
k, o., m

which describes one-electron transition between a local
configuration of the rare-earth impurity and the
conduction-band states which are described by the annihi-
lation operators Ck . eF is the energy separation between
the configuration

~
m) [with n —1 4f electrons in states

with quantum number (J,m)] and the configuration
~

0)
(with n 4f electrons in state J =0). The projection opera-
tor X =

~

0)(m
~

changes the rare-earth impurity from
configurations

~

m ) to
~
0), and the operator X

=X X = ~m)(m ~.
For the case of J= —,, this Hamiltonian is exactly the

same as the conventional Anderson Hamiltonian in the
limit of an infinitely large Coulomb interaction U.
Crystal-field effects are neglected in this model, as they
are extremely small. ' Therefore, there are N =2J+ 1 de-
generate configurations

~

m ).
A perturbative diagrammatic approach of treating the

Hamiltonian has been devised by Keiter and Kimball. '

Below we shall only give a very brief description of the
major result of the diagrammatic method.

The hybridization interaction in Eq. (1) is treated as a
perturbation, i.e., H =Ho+ H', and

H'= g Vk Ck X +H.c. (2)
k, a, m

Because the operators X and X do not satisfy the usual
anticommutation relation, one is forced to use Goldstone
diagrams instead of Feynrnan diagrams. In general, one
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FIG. 1. Lowest-order irreducible diagrams related to energy

Eo (a) and energy E (b).

FIG. 2. Irreducible diagrams for function 5 [Eq. (9)] in the
1/N series. The shaded block represents the lowest-order self-
energy So [Fig. l(a)].

has

P' » J+=& &m+&~~&oo (3)

Detailed discussion of the operator X can be found in
Appendix I of Ref. (10)~

Keiter and Kimball' show that the series of perturba-
tion diagrams can be summed up. The partition function
can be exactly written in the following form:

Z=(Zo), e '++exp[ P(E +op )—]

and

E,=S(E,) (5)

—T(E )

The self-energy functions S and T are determined from ir-
reducible diagrams. For example, Figs. 1(a) and 1(b) lead
to the following lowest-order equations:

Eo=XA J d~ f (e)
EO GI'm +

and

I f(e)—
Em +~F~ —~

where Eo and E are the real quasiparticle energies, and
(Zo), is the parition function for the conduction-band
states without hybridization.

The quasiparticle energies Eo and E are determined by
self-consistent Brillouin-Wigner equations

intermediate state consists of
~

m ) (wavy line) and a con-
duction hole (straight line). Since there are N =2J+1 de-
generate intermediate states for the process of Fig. 1(a)
and only one intermediate state for Fig. 1(b), Eo obtained
from Eq. (7) is about N times larger than E of Eq. (8).'

At T =0 K, if —Eo & —(E +eF ), the system has the
singlet ground state with energy Eo. Therefore, a large de-
generacy factor N could greatly enhance the importance of
the singlet state. This leads to the suggestion by Ramak-
rishnan' and Anderson' that the 1/N perturbative ex-
pansion may be a suitable method to treat the Hamiltoni-
an. Indeed a rigorous 1/N expansion can be carried out.

III. 1/N EXPANSION

All the reducible and irreducible diagrams can be classi-
fied according to their orders in 1/N. An easy way to do
it is to first set the energy scale NA = 1. Then the diagram
of Fig. 1(a) is of order 1 and Fig. 1(b) is of order 1/N.
The diagrams of the same order of 1/N can be summed
up.

A simpler method is to work on the irreducible dia-
grams only. These irreducible diagrams, which constitute
the self-energy functions S and T of Eqs. (5) and (6), can
themselves be expanded in 1/N orders. In Figs. 2 and 3
several leading-order irreducible diagrams are shown. The
block represents the sum of buckle diagrams shown in Fig.
2(a); it is given by the function So of Eq. (15).

Once the self-energy function S is expanded in a series
of 1/N,

S(z) =So(z)+N 'S1(z)+N S2(z)+. . .

We can also expand the energy Eo in 1/N orders,

In Eqs. (7) and (8) we have defined 6 to be E(0) +N —1E(1)+N —2E(2) + (10)

k, o.

In Fig. 1(a) the initial state is
~

0) (dotted line) and the
The energies Eo' can be determined by using the self-
consistent equation (5), and we obtain
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Ep ' ——Sp(Ep '),
E,"'=S,(E,'" )d, , (12)

E"'=d, S,(E~ l)+ ' E~»+ ' "as (1) 2

+ (plEp + Io) 2

I

(a)( )

where

as,
dp —— 1—aE"'0

(14)

The functions S; can be easily constructed, and they are
given by

FIG. 3. Irreducible diagrams for function T [Eq. (19)] in the
1/X series.

So(z) = f de f (e}(z+e EF)—
S,(z)= f deaf de'f(E)[1 —f(e')](z+E &F)—[z+«So(z+~ })

T

S2(z)= f deaf(g)(z+e eF) —f de'[1 —f(e')][z+&—&' —Sp(z+& &')1
2

(16)

+f de f dg'f(g)[1 f(p')](z+p —eF} [z+E e' So—(z+—e e')] —S)( +e e')+S—2(z) . (17)

~ (18)

The corresponding irreducible diagrams for S; are shown in Fig. 2. The function S2(z) in Eq. (17) represents the cross di-

agrams, the third figure in Fig. 2(c); it is given by

S2(z)= —f de~ f «2 f «3f (e't)f (~2}f(~3)[(z+et 'EF }(z+—&3 ~F }]
—1

X [(z +pl+ e2+e3 —EF )[z +E]+e2 So(z+ &[+ e)]2[ +zE +3E2 Sp(z +F3+ E2)] j

T(z)=N 'T&(z)+N T2(z)+. . .

E (z) =N-'E'"+N-'E"'+
(19)

(20)

and the self-consistent equation E =T(E ) becomes

E' '= T, (0), (21)

Em =T2(0)+Em
I

t}z

The functions T~ and T2 are of the form

(22)

Ti(z) =f de
1 f(e)—

Z +6Fm —6' —Sp (Z +CFm —6 )

(23)

[1—f(e)]S,(z+eF E)—
T2(z) = de

[z +eF~ —E—Sp (z + eFm —e )]

The diagrams of T] and Tq are shown in Figs. 3(a) and
3(b). Higher-order functions S3,S4 and T3, T4 can also be
written down straightforwardly. In fact, it is easy to see
that if all the cross diagrams such as S2 are neglected, the

Similarly, the self-energy function T and quasiparticle
energy E can be expanded in a series of 1/¹they are
given by

functions S and T are related through the integral equa-
tions' '

S(z)=f de f (F)
Z +6 —6Fm —T(Z +6 6Fm )

T( )=N-' f d
Z +CFm 6 S(Z +EFm

(24)

By substituting Eqs. (9) and (19) into Eq. (24) and making
the 1/N expansion we easily obtain functions S; and T;
(excluding the cross terms). Doing such an expansion, we
realize that the 1/N expansion can be valid only if

~
Ep ' —eF~

~
&

~

T
~

and the function T is of the order of
Em=N 'Ep '. Therefore, qualitatively speaking, as long
as

~

Ep —cp
~

&&N Ep I /N expansion can be carried
out.

In principle, if the cross terms are negligible (Appen-
dix), the integral equations of Eq. (24) would give a more
accurate result than the 1/N expansion method. In prac-
tice, a very complicated regularization procedure' is re-
quired to get rid of accidentally vanishing energy denomi-
nators in Eq. (24). Czycholl' et al. have recently dis-
cussed such a problem. In a separate paper' planned for
future publication, we will show that at zero temperature
the regularization problem can be surpassed and the
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ground-state energy can be calculated numerically. Be-
cause of the regularization problem, to solve Eq. (24) by
iteration becomes cumbersome and difficult. On the other
hand, the 1/N expansion method, which is in fact a sys-
tematic way of solving the integral equation, has a simple
regularization procedure. For N =6 the results of the two
methods are essentially identical. '

To evaluate the integrals of Eqs. (15)—(17) at zero tem-
perature, the simple requirement of taking the principle
value of the integrals is sufficient. We are restricted to the
regime Eo ' —e~ &0. To avoid unphysical divergence, the
second integral of Eq. (17) must be combined with the
second term of Eq. (13) and they must be evaluated to-
gether.

For the cases in which Eo, and not E +eF is the
ground-state energy [Eq. (4)], this I /N expansion method
is a very fast converging method for calculating all the
ground-state properties. Numerical results and compar-
ison with other calculations are discussed in the following
section. But for the cases in which eF is very much below
the Fermi energy, such that the ground-state energy is
E +ez, the advantage of having a large degeneracy fac-
tor N would be useful only for evaluating the ground-state
energy, but not the magnetic susceptibility. Since in low
temperatures the probability that the impurity is in the
configuration ~0) is very small, the spin-flip-like excita-
tion

~

m)~
~

m') would be dominant. It is well known
that any finite summation of the perturbation series will
always lead to divergent results for the magnetic suscepti-
bility and other quantities, once the Kondo spin-flip in-
teraction becomes important. Therefore, we can conclude
that the 1/N expansion is only partially useful to the sys-
tems which have Em+~Fm (Eo.

O. O
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FIG. 4. Ground-state energy (a) and the average f-electron
occupation {6),as a function of eF/D: D =32.9%6, X =6. The
curve is obtained from the solution of Bethe ansatz by
Schlottmann (Ref. 8). The dots are for ground states with ener-

gy Eo/D [Eq. (10)], the triangles are for (EF+E )/D [Eq. (20)].

IV. NUMERICAL RESULTS

In this paper we shall only report results calculated for
the ground-state properties. The numerical results for fin-
ite temperature will be presented somewhere else. Accu-
rate results for ground-state properties would guarantee
better results for finite temperature since we are doing a
rigorous perturbation expansion. Under the condition
—Eo &E —eF and at T =0 K, Eqs. (10)—(17) have been
used to calculate the following quantities: the ground-state
energy Eo, the average occupation number

~Eo
&nf) =

BEy

the magnetic susceptibility

c) Eo
BH H 0

and the coefficient of linear specific heat

8 Eo
BT

(25)

(26)

(27)

In the numerical calculations we have assumed constant
density of states. The Fermi level is at the center of the
band ( —D,D).

In Figs. 4(a) and 4(b) the ground-state energy and the
average f-electron occupation (nf ) are plotted as a func-
tion of FF /D for the case N =6 and the bandwidth

D =32.9NA. The solid line is the result obtained from
the solution of Bethe ansatz by Schlottmann. The results
of the 1/N expansion are shown in dots (Eo) and triangles
(ez+E ). Excellent agreement between the two results is
obtained. Eo (dots) is calculated to an order of N
F. +eF (triangles} is calculated to an order of N '. We
have also calculated the charge susceptibility

g, = —9 Eo/BeF, the result is again in good agreement
with Schlottmann.

In order to see the rate of convergence, in Table I we list
values of Eo ', N 'Eo", and N Eo ' for several values of
ez. The energy unit is NA. The contribution of the cross
diagram Eo, given by Eq. (18), is also listed. As shown in
the Appendix,

Ep —2N (Eo —eF —1)c 2 (0) —2

If the bandwidth is larger, the convergent rate would be
faster and the contribution of the cross term would be
smaller. The more negative the value ez is, the slower the
convergent rate will be. This agrees. with the comment
made at the end of the last section. As the value

~
Eo ' —e~

~

becomes smaller, the expansion of the denom-
inator of the function S in Eq. (24) becomes more and
more inaccurate. Many numbers of terms need to be cal-
culated.

In Table II the magnetic susceptibility g, calculated in
the 1/N series is listed. The susceptibility is expressed in
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TABLE I. Ciround-state energy Eo in the 1/N series [Eq. (11)]for N =6 and D/Nb, =32.9. The en-
ergy unit is Nb, . Eo/N is the contribution from the cross diagram given by S& of Eq. (18).

Z{,"/N ~{2)/N2 E'/N

2.0
0.0

—1.0
—2.5

—2.182
—2.610
—2.905
—3.512

—0.064
—0.105
—0.139
—0.217

—0.002
—0.004
—0.006
—0.005

—2.248
—2.719
—3.050
—3.734

0.002
0.004
0.006
0.013

units of p g J(J+1)/3%6. g,' is the contribution from
the cross diagram of Eq. (18). X, increases as eF de-
creases; this agrees with what has been observed by
Krishna-murthy et al. ' Compared to the ground-state en-
ergy listed in Table I, the magnetic susceptibility con-
verges a little more slowly. The first-order correction
S 'g,'" is always quite important. The spin-Aip-like in-
teraction starts in N ' order [Fig. 2(b)]. The convergent
rate becomes slower when the value of ez decreases.

We have also calculated the ground-state energy Eo and
the magnetic susceptibility X, for the case % =2. In gen-
eral, Eo converges to a few percent after N Ep is in-—2 (2)

eluded, but P, can be off by 40%%uo for a very negative value
of E'~.

The specific-heat coefficient also can be calculated
straightforwardly. But we shall only discuss the ratio
R =7, /y. y is in units of rr ks/31Vb. By using Eqs. (11),
(26), and (27), both X, and y may be expanded in a series
of 1/N. Therefore, we can write R in the form

(~(0)+N —lg(1)+. . . )/(y(0)+N —ly())+. . . ) (28)

It is easy to show that

y =~Eo —er; i ~Eo —eI; —1)(o) (0) (o) —1 (o) —1

Therefore, in the limit X~~, R =1. In the last column
of Table II we have listed the values of R. They all lie
within the range of 1.0 and 1.2 [= 1+1/2J = 1

+(N —1) ']. For the case of J= —,, Krishna-murthy
et al. have shown that in the mixed-valence regime, R
has values between 1 and 2. In the Kondo regime,
R =2=1+1/2J. Recently, by using Bethe ansatz, Tsvel-
ick and Wiegmann have shown that R = 1+1/2J for the
degenerate Kondo model. Therefore, we believe that for
our model, we must have 1 &R & 1+1/2J. Obviously, our
result indeed satisfies this condition. Lustfeld and
Bringer ' have calculated R by using certain Brillouin-
Wigner formulas. They have found that R & 1; this is cer-
tainly incorrect. Thus we have shown that the 1/X ex-
pansion method not only gives accurate results but also

has included magnetic and charge Auctuations correctly in
each order, such that R is always larger than 1.

V. CONCLUSION

We have presented a method to systematically expand
the partition function or the free energy of the degenerate
Anderson model in a 1/X series. By using the large value
of the degeneracy factor N for the f electrons, the series is
shown to be quickly converging. The ground-state energy
and the average f-electron occupation number (nf ) calcu-
lated by 1/X expansion are in excellent agreement with
the Bethe ansatz result. The advantages and inadequacies
of the method are carefully analyzed and summarized
below.

For the low-temperature properties, the 1/N expansion
method is very efficient and accurate only if the ground-
state energy is Eo and not E +ez. This corresponds to
the values of {nf) less than 0.6 or 0.7 depending on the
parameters. Therefore, it is applicable for most mixed-
valence compounds.

For N =6, in most cases the results of zeroth-order X
and first-order N ' expansion are accurate enough. It
should be emphasized that the first-order correction, espe-
cially for magnetic susceptibility, is always quite impor-
tant unless X is extremely large. Therefore, it is advisable
that the first-order correction should always be taken into
account.

At moderate temperatures, the method is applicable for
the whole range of parameter values. We expect a better
result than our low-temperature results.

Compared to other perturbative calculations' ' ' using
certain generalized Brillouin-Wigner formulas, this
method is more systematic and the error is easy to esti-
mate. We have shown that the ratio R of the magnetic
susceptibility and the linear specific-heat coefficient calcu-
lated by this method lies in the correct range, i.e., between
1 and 1+(X—1) '. Other calculations may produce in-
correct values of R & 1. '

The main deficiency of this method is that it cannot

TABLE II. Magnetic susceptibility P, in the 1/N series. The parameters are the same as in Table I.
g,'/N is the contribution from the cross diagram given by Sz of Eq. {18). The ratio R is defined in Eq.
(28).

eF /Nh g{0)
S X,"'/N X' '/N' X,'/N'

2.0
0.0

—1.0
—2.5

0.046
0.108
0.184
0.498

0.009
0.034
0.075
0.355

0.002
0.008
0.018
0.050

0.057
0.150
0.277
0.903

0.000
0.000

—0.001
—0.010

1.06
1.08
1.10
1.14
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treat low-temperature properties in the Kondo regime of
the Anderson model. This is a well-known difficulty for
all the perturbative approaches. Another advantage of
this method is that it can be easily generalized to treat the
case of many impurities and to calculate Green functions
and other dynamic quantities.
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S2 =f de) f de2[(z+. e))(z+e2)z]

X[(&~+e2) ' —(z+e, +e ) '] . (A3)

APPENDIX

X (&1+e'2)(e'3+ e2) ] (A1)

where z =ED ' —e~ [Eqs. (14) and (18)]. At zero tempera-
ture the integration is from —D to 0. The difference be-
tween S2 and S2 is the replacement of the quantity

The contribution of the cross diagram, the third dia-
gram of Fig. 2(c), to the ground-state energy is estimated
in this Appendix. Recently Keiter has solved the Ander-
son model in the zero-bandwidth limit. He has found very
important contributions from the cross diagrams. Below
we shall show that these contributions are negligible for a
very large bandwidth.

Instead of calculating the integral Sz(z) of Eq. (18), we
shall calculate the following integral:

S~ = —f de( f dez f de3f (e))f(e2)f(e3)

X [(z+e))(z+e3)]

X [(z+e~+e'2+e3)

S2 ——f de[In(e/D)(z+e) 'z —[1n(e/D)] z /2]

=2z -2.

By using Eqs. (14) and (15), we obtain

do=[1 —«o" &F) '1—

(A4)

(A5)

Substitution of Eqs. (A4) and (A5) into Eq. (A2) yields

(A6)

This result is in good agreement with the numerical result
listed in the last column of Table I. Since Eo ' varies as
lnD, the cross term becomes negligible for large band-
width.

At zero temperature regularization is not needed in
evaluating Eq. (A3}. The second term of Eq. (A3) is easily
shown to be of the order of 1/D. We shall always assume
the bandwidth D » 1 and D »z.

The first term of Eq. (A3) may be reduced to the fol-
lowing form:
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