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We study the electronic properties of a hydrogen-dressed silicon monovacancy as a model of H
centers in hydrogenated amorphous silicon (a-Si:H). Using the self-consistent Green’s-function tech-
nique, we obtain total and local densities of states for the defect, as well as the charge density of de-
fect eigenstates. The hydrogenated vacancy has no states in the band gap and reduces the Si host
density of states at both the valence- and conduction-band edge. The Si—H bonding character of the
defect eigenstates is greatest 4.5 eV below the valence-band edge; however, no sharp H-induced reso-
nance occurs anywhere in the valence or conduction bands. We discuss the importance of including
the self-consistent rearrangement of charge around the H atom in obtaining accurate results for the
hydrogenated vacancy. Within the context of a recently proposed quantum-well model, we relate the
results of our Green’s-function calculation to the properties of a-Si:H. Using several simple models
(percolation theory, the Anderson model, effective-mass theory), we obtain estimates for the valence-
and conduction-band mobility edges. We find that the valence band is much more strongly affected
than the conduction band by H disorder, and that H disorder is more important than dihedral-angle
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disorder in valence-band edge localization.

I. INTRODUCTION

In recent years there has been considerable interest in
the electronic properties of hydrogenated amorphous sil-
icon (a-Si:H),' in part because of its technological promise
and in part because it is a prototype semiconductor for the
study of the amorphous state. Of particular importance is
that a-Si:H can be doped by the same dopants used for
crystalline Si; further, its room-temperature photoconduc-
tivity and low-temperature photoluminescence are high,
its absorption coefficient is well matched to the solar spec-
trum in the visible, and junction devices have been suc-
cessfully formed with it. Hydrogen plays a fundamental,
but not thoroughly understood role in modifying the prop-
erties of pure amorphous Si (a-Si). The simplest chemical
model which accounts for the strength of the Si—H bond
gives a qualitative account of the reduction of band-gap
states due to dangling bonds, and of the increase in the
average band gap compared with a-Si. Many of the exper-
iments on a-Si:H, however, still lack quantitative explana-
tion. Photoemission, optical-absorption, and transport ex-
periments provide evidence for significant modifications
caused by hydrogen of both the valence- and conduction-
band states of the material. The understanding of these
observations requires as a start a detailed microscopic,
quantum-mechanical description of the electronic proper-
ties of Si—H bonds in a Si host environment.

The present work provides such a description.? We
have calculated in detail the electronic spectrum and the
physical charge configuration of a single isolated H-
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saturated monovacancy in crystal Si (x-Si). Since this
model simply consists of four Si-H units pointing into a
small void, it permits the study of H-induced disorder in
Si exclusive of other disordering effects in a-Si (e.g., bond
distortions, dihedral-angle variations, broken bonds, im-
purities, odd-membered rings, etc.). To the extent that the
four Si-H units within the vacancy in this model are
decoupled (our calculation indicates only a small cou-
pling), our work also gives information about the isolated
Si—H bond itself, which is known to be one of the constit-
uents of a-Si:H. The model defect’s high symmetry was
chosen so that a recently developed self-consistent
Green’s-function technique® could be applied to it. This
technique has been proven to give accurate results for the
bare vacancy in x-Si, as well as in a variety of other point
defects. Most important, the use of atomically derived
ionic pseudopotentials permits the detailed examination of
the charge density of the Si—H bond and surrounding
Si—Si bonds; these results are helpful in interpreting the
significance of changes in the electronic density of states
caused by H.

The results of our work are consistent with the view
that H is responsible for a local expansion of the band gap
in a-Si:H as compared with pure a-Si. State density is re-
duced at both the valence- and conduction-band edge, with
the greater effect on the valence band. No gap states are
induced by the presence of H. Detailed study of the
valence band shows that the charge density of states deep
in the valence band is increased on the Si—H bond, with
the largest enhancement about —4.5 eV below the band

3246 ©1983 The American Physical Society



28 LOCALIZED STATES AND THE ELECTRONIC PROPERTIES OF . . .

gap. However, there is no indication of a sharp H reso-
nance at this energy or at any other energy studied. Near
the valence-band edge, the presence of H is found to have
a large, long-ranged effect on the eigenstates with a signi-
ficant influence at least 4 A from the defect; this effect is
not seen at any other energy in the valence band. For
states at the conduction-band edge, the defect causes a
somewhat more complicated disturbance. Eigenstate am-
plitudes are reduced near the removed Si site and in-
creased near the added Si—H bonds; this could be the ana-
log of the H resonance seen in other calculations®> near
the conduction-band edge. However, the present calcula-
tion indicates that this conduction-band disturbance is not
a genuine resonance, and the total density of states is actu-
ally slightly reduced at the band edge by the defect.

The details of the modification of band-edge states take
on particular importance within the context of a
quantum-well model which has recently been proposed® to
explain a wide range of optical-absorption and electrical-
transport data on a-Si:H. The quantum-well model makes
certain assumptions about the electronic properties of the
Si—H bond which we test in the present work. The key
conjecture of the model is that regions of potential
emanating from Si—H bonds form barriers that confine
low-energy electrons and holes to islands of pure Si simply
because of the presence of bonded H. The model assumes
that the energies of both the local conduction- and
valence-band edges in the Si-H region are, respectively,
larger and smaller than the delimiting conduction- and
valence-band energies of the pure-Si band gap. The zero-
point energy of confinement of carriers in these “quantum
wells” accounts for the increased energies of photo-
luminescence and optical absorption with respect to the
gap of crystal Si, while the residual height of the Si-H bar-
riers (after allowance for interwell tunnelling) determines
the activation energy for conduction, and provides the
aperiodic disturbances that help to induce the extra
strength of the optical-absorption edge. The model re-
quires that the sum of the band-edge shifts in the H-rich
regions be several eV, and that these enlarged local gaps
extend away from the Si-H regions into the Si islands by
about one bond length. The results of the present calcula-
tion lend qualitative, and to some extent quantitative, sup-
port to these assumptions and requirements of the
quantum-well model. In addition to these correspon-
dences, the present work used percolation theory, the An-
derson localization model, and a simplified effective-mass
theory to note some connections between H disorder in a-
Si:H and localized band-edge states.

As intensive study in recent years has shown, a-Si:H is a
complex material whose properties have not yet been ex-
plained simply from any single point of view. This is re-
flected by the large number of different theoretical ap-
proaches which have been used to describe it. Most akin
to the present work is that of Papaconstantopoulos and
Economou* who studied the properties of the same model
hydrogenated vacancy. With the use of a simpler tight-
binding Hamiltonian, a coherent potential approximation
permitted them to consider the average electronic struc-
ture of the H-disordered material. A companion work by
Picket® examined the electronic structure of hydrogenated
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defects in a periodic supercell. Another approach to the
Si-H defect has been taken by Allan and Joannopoulos’
who have obtained the electronic spectrum and total ener-
gy of a number of different hydrogen sites (Si-H, Si-H,,
H-Si-Si-H, etc.) within a Bethe-lattice model. The work of
Johnson et al.® and by Ching et al.’ has studied finite-
cluster models of different Si-H configurations.

This paper is organized as follows: Sec. II describes the
physical Si-H configuration to be studied, Sec. III outlines
the self-consistent Green’s-function formalism, Sec. IV
presents the results of the Green’s-function calculation,
Sec. V relates the results of the defect calculation to the
properties of a-Si:H, and Sec. VI gives our conclusions.

II. MODEL

As Fig. 1 shows, our model defect is formed by remov-
ing a single Si atom from the perfect Si crystal and replac-
ing it by four H atoms placed 1.48 A from each of the
four nearest-neighbor Si atoms. Although no direct mea-
surement of the bond length in a-Si:H exists, the similarity
of the Si-H distance in several different chemical environ-
ments' argues for the transferability of this length. Nei-
ther relaxation of the Si—H bond nor of the surrounding
Si—Si bonds will be considered here. The results of our
calculation suggest that if any relaxation actually occurs,
it is small. Because there are no gap states, none of the
Jahn-Teller effects seen in nonhydrogenated vacancies are
predicted. Therefore, the covalent bonding for atoms
neighboring the defect site is rather undisturbed. In the
geometry considered here, H atoms are separated by 1.4 A.
Although this means that the H-H distance in this config-
uration is smaller than the Si-H distance, the H’s are
separated by twice their molecular bond length, 0.7 A.
The present calculation indicates that an H-H interaction
exists in this model, but that it is much smaller than other
interactions in the problem.

We have modeled both the Si and H atoms with local
pseudopotentials. The Si pseudopotential is identical to
that used in a previous calculation of the electronic struc-
ture of the bare Si monovacancy.® The H ionic pseudopo-
tential (in Ry) has been modeled by the analytic form

FIG. 1. Fully saturated H monovacancy in x-Si. Si— Si bond
length is 2.35 A Si—H bond length is 1.48 A, and distance
between H atoms is 1.4 A.



3248
22
Vir=— et | L |4 2L, ()
r c rC
with a= —1.6 a.u., proton charge Z=1, and r,=0.7 a.u.

This potential accurately reproduces both the 1s eigenener-
gy and wave function of the isolated H atom.

III. CALCULATION

The electronic structure of our model defect has been
calculated with the self-consistent Green’s-function
method>!! In operator notation, this technique may be
described as follows. The perfect-crystal Green’s-function
operator is defined as

1

G%E)= lim — o
E—H"+ie

e—0t

(2)

where H® is the Hamiltonian of the perfect crystal. If the
Hamiltonian of the system containing the point defect is
separated into H =H°+ V, then the total Green’s-function
operator is given by

G(E)=[1-GYAE)V]~'GYE) . 3)

The position of the bound states within the band gap is
given by the condition

D(E)=det||]L-G%E)Y||=0, @)

while the defect-induced change in the density of states
N(E) is given by
2 d&(E)

AN(E)—;_dE— (5)

(spin included), where the phase shift 8(E) is

ImD(E)

E)=— -1
B(E)=—tan™" | 2 D(E)

(6)

For these operator equations to be useful, they must be
studied within some particular basis set. It has been veri-
fied formally*>'? that only a limited number of basis func-
tions ®,(T), namely those for which the defect-potential
matrix elements ¥,g are nonzero, are necessary to give the
new density of states correctly.

Similarly, the change in the charge density in real space
may also be obtained as follows:

EF 2
= DYT) |—=
XIM[G o (E) — G2 (E)1®(T)E ,  (7)

where Er is the Fermi energy.

The requirement of self-consistency has been satisfied in
the following by creating a new defect potential according
to the Kohn-Sham procedure!*:

V(E)=AVign+ 5 f'—f%d "+ Vielpl—
r

ch [Po] ’

(8)
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TABLE I. Decay lengths a of Gaussian basis functions e ~ar?
(a.u.)~2

Si
s p d f
a 0.3,0.7,0.14 0.25 0.25 0.25
H
s p
a 0.3,0.8,1.6 0.25

where Ap=p(T)—p°(T), p%T) is the perfect Si charge den-
sity, and V, [p] is the Xa approximation to the exchange
and correlation potentials with a=0.7. Equations (3)—(8)
have been solved iteratively until the difference between
output and input defect potentials ¥ (r) is less than 0.005
Ry. The effects of self-consistency on the present work
have been found to be important, as will be discussed
below.

For analysis of the results, we also need energy-resolved
changes in the charge density,
Ap(E,T =—;ZW‘(r IM[G 4 (E)— Gy (E)] @ (T)

a,a

9)

Since the spatial extent of Ap(E,T) is much greater than
that of V(r) and Ap(r), we have chosen a rather extensive
set of basis functions which extends well beyond the
second-nearest neighbors of the defect. Specifically, the
basis functions ®(T) have been taken to be logalized
Gaussians e~ multiplied by real spherical harmonics
centered on the atomic sites in the vicinity of the defect.
The Si basis functions include three s-like Gaussians with
decay constants a=0.3, 0.7, and 1.4 a.u., three p-like
Gaussians all with decay constant a=0.25 a.u., five d-like
Gaussians with decay constant a=0.25 a.u., and one f-
like Gaussian (xyz) with decay constant a=0.25 a.u.
These basis functions are placed on the missing Si site at
the center of monovacancy, on the four nearest-neighbor
Si atoms, and on the twelve next-nearest-neighbor Si
atoms. The H-centered orbitals include three s-like Gauss-
ians with ¢=0.3, 0.8, and 1.6 a.u., and three p-like Gauss-
ians with @=0.25 a.u. A summary of the basis set is
given in Table 1.

IV. RESULTS

Using the technique described above, we have calculated
the following quantities for the fully hydrogenated defect:
The difference AN(E) between the defect density of states
and the pure x-Si density of states, the total charge density
p(T), the difference charge density Ap(T) for eigenstates
near the Si valence- and conduction-band edges and inside
the valence band, and the local density of states for several
bond regions in the vicinity of the hydrogenated vacancy,
e.g., the Si—H bond and the neighboring Si—Si bond. We
present and describe in detail each of these results below.

Figure 2 shows the total density of states N°(E) for x-Si
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FIG. 2. Pure x-Si density of states N E) and the change AN(E) induced by a single hydrogenated defect. Left-hand panels show
entire valence band and first 3 eV of conduction band; right-hand panels focus on the vicinity of the band gap.

and the difference AN(E) between the density of states of
an infinite crystal with one defect and the perfect system.
The defect produces no bound states either in the Si band
gap or below the bottom of the valence band, so the
changes occur only inside the valence and conduction
bands as shown. The principal effect of the defect on the
valence band is to shift essentially Si-like states to lower
energy; the Si—H bonding character acquired by these
states is weak, as we discuss below. Thus AN(E)>0 at
the bottom of the valence band, below the the Si density of
states peak at —7.5 eV, and below the heavy-hole peak
around —3 eV. Conversely, the AN(E) curve shows de-
pletion above each N%(E) valence-band peak, and especial-
ly near the top of the valence band at 0 eV. AN(E) ap-
pears to tail into the gap because it contains a strong
E ~12 singularity at the valence-band edge which has been
broadened in our calculation, i.e.,, €>0 in Eq. 12). The
bottom of the conduction band also shows a small removal
of density of states. Through the entire energy region
shown we did not find any true resonant H-like states;
there is, however, a discernible maximum in the Si—H
bonding character of the vacancy eigenstates near —4.5
eV, as we will show later.

The removal of states from the band edges shown in the
lower right panel of Fig. 2 has particular significance for
the quantum-well model. Loosely speaking, the depletion
implies that both electrons and holes are “repelled” from
the defect site, so that the hydrogenated defect presents a
barrier to band-edge carriers. The decrease in the density
of states which we find at the top of the valence band is in
reasonable agreement with the 0.4-eV recession of the

FIG. 3. (a) Valence charge density p(T) in a (110) plane pass-
ing through the hydrogenated vacancy, (b) po(f:) in a (110) plane
for a perfect crystal. Units are electrons/A3. Solid circles
denote Si atoms and open circles denote H atoms.
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band edge found by photoemission'* and reported in previ-
ous theoretical studies*>®° We also find a small recession
of the conduction-band edge, while previous theories*’
have shown no movement of the band edge. In general,
we expect the pseudopotential Green’s-function technique
used in this work to be a more appropriate description of
conduction-band states than previously used tight-binding
or supercell calculations. We avoid the inadequate basis
set of the former and the nonphysical defect periodicity of
the latter. A more quantitative analysis of band-edge
properties is given in the discussion.

A complementary point of view of the electronic struc-
ture of the hydrogenated vacancy is provided by the total
valence charge density. Figure 3(a) shows p(T) in a (110)
plane passing through the hydrogenated vacancy. Two of
the H atoms lie in this plane, one lies below and one
above. The most noticeable feature of this contour plot is
that the total charge density has not been substantially
modified at the defect compared to that at the perfect
crystal [p%T); see Fig. 3(b)]. The maximum of the bond
charge density remains in the same place as in the undis-
turbed material, and its shape remains roughly the same.
It might be thought that this result may occur accidentally
because of the particular symmetry of the model structure
which places four protons (Z =1) close to the center
which originally contained a (pseudo-) Si atom (Z =4).
However, similarly shaped Si—H bonds with increased
charge near the H atom have been seen in other Si-
H—bonded systems (e.g., surfaces'> and vacancy super-
cells’). We believe that our calculation shows features of
four essentially isolated Si—H bonds. Among these
features is that the Si—H bond is noticeably more peaked
than the Si—Si bond charge, indicative of the greater
strength of the Si—H bonding. This effect is brought out
in Ap(T), the difference between the defect charge density
and the pure-Si charge density prior to creation of the va-
cancy (Fig. 4). The figure shows that charge is removed
from the interstitial regions of the defect and concentrated
in the bond. It also shows that the modification of the
back-bond region and of the next Si-Si region is very
small. However, it is incorrect to conclude that the effects
of the H defect are short ranged. Figure 5 shows the

FIG. 4. Ap(T), difference between the valence charge density
of the defect p(r) and that of x-Si, p%r). Notation and units as
in Fig. 3.
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FIG. 5. (a) Ap(T) and (b) p(T) of the hydrogenated vacancy
for eigenstates in the top 0.25 eV of the valence band. Notation
and units as in Fig. 3.

FIG. 6. (a) Ap(T) and (b) p(T) of the hydrogenated vacancy
for eigenstates in the bottom 0.25 eV of the conduction band.
Notation and units as in Fig. 3.
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difference density and charge density only for those states
within 0.25 eV of the valence-band edge. This result is ob-
tained from Eq. (7) by integrating over the limits —0.25 to
0 eV rather than — oo to Er. In contrast to the results for
the total valence charge, the Si-H region shows a 70% de-
crease in charge at the valence-band edge as compared
with an undisturbed Si—Si bond in the same energy re-
gion. This confirms in real space the picture of the Si—H
bond as a repulsive center for band-edge holes. Of
perhaps greater significance in Fig. 5 is that this charge
disturbance has considerable range: the neighboring Si—Si
bond has lost about 30% of its charge at the valence-band
edge, and even the next-nearest-neighbor bond has a per-
ceptible charge depletion. We have found that this long-
ranged behavior is not unique to the top of the valence
band. For example, the charge disturbance at the bottom
0.25 eV of the conduction band (Fig. 6) extends beyond
the first-nearest neighbors of the defect. However, the
barrier presented to band-edge electrons is qualitatively
different from that for band-edge holes. In particular,
note that the antibonding conduction-band charge is not
peaked on the bonding axes. The region of charge de-
pletion (that is, electron repulsion) is a shell at a radius
beyond the first-neighbor Si’s while closer to the vacancy,
the charge is enhanced in the region around the Si—H
bonds.

The nature of the valence-band states changes gradually
as we move to energies farther away from the band edge.
For about the first 2 eV the picture is essentially the same
as the band edge, with depletion of bond charge in the vi-
cinity of the defect. For lower energy this feature rev-
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FIG. 7. (a) Ap(T) and (b) p(T) of the hydrogenated vacancy
for eigenstates between —5 and —4 eV in the valence band. No-
tation and units as in Fig. 3.
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erses, with charge accumulation in the Si—H bond. This
accumulation reaches its maximum concentration near
—4.5 eV (shown in Fig. 7), corresponding to the pro-
nounced peak in AN(E) near —4.5 eV in Fig. 2. For still
lower energies the Si—H bond-charge peak persists down
to the bottom of the valence band, but is smaller and more
diffuse. The density-of-states peak near —4.5 eV has been
seen in most other theoretical calculations of hyrdogenat-
ed Si (Refs. 4,7, and 9); Bethe-lattice studies’ have estab-
lished that this structure is the most important result of
introducing bonded H in a Si network. A density-of-states
peak in this energy range has been found experimentally
through photoemission.!* Other experimental peaks as-
signed to monohydride configurations' are at approxi-
mately —7.5 and —10.5 eV. Although our AN (E) con-
tains features near these energies, as have previous
density-of-states studies,”’ these peaks result from shifts
in the density of states of the perfect sixfold ring structure
of the surrounding Si network.” We choose to stop short
of a quantitative comparison between our results and
photoemission, since it is likely that a variety of H envi-
ronments are present in a-Si:H. For instance the results of
Ref. 7 support the assignment of the —4.5-eV peak to H
atoms bonded to adjacent Si’s.

We have also calculated the local density of states in

I @
\
- 0 —

Si-HBOND 1, ,
1
s V'V Si-Si BOND —
= 1
5 [ 7]
!
os] 1 -
o ]
g I
! _
(4] !
2 1
Z ' +
II 'l
/,
4
l
4
T 7T 7T To
NEXT NEAREST Si-Si in PURE Si
Si-Si
(7]
[
Z | NEAREST Si-si
o}
@
[« 4
st
2
4
L
-08 -0.6 -04 -0.2 o
ENERGY (eV)

FIG. 8. Local density of states for the region of the Si—H
bond (dashed curve) and for an Si—Si bond (solid). On this ener-
gy scale all Si—Si bonds are essentially identical. (b) Local densi-
ty of states at the valence-band edge for an Si—H bond, the
nearest Si—Si bond, the next-nearest Si—Si bond, and a remote
Si—Si bond.



3252

D. P. DiVINCENZO, J. BERNHOLC, AND M. H. BRODSKY

-2

TABLE II. Parameters for Gaussian fit V(r)=,B;e ~4" 7 with B in Ry and ¢; in a.u.72

a B a B as Bs
yse 0.633 20.0 0.457 —17.7
Vie 1.15 —4.35
14 1.8414 —3.4506 0.4015 —1.0475 0.0543 —0.4079

various regions around the defect. This quantity is given
by

NelE)=S [ &4T) l_%G"“’(E) ® ()T,

, v bond
a,a

(10)

where the integral is performed within a sphere centered
on various bonds: the Si—H bond, the first-nearest and
second-nearest neighbor Si—Si bonds, and a remote Si—Si
bond. The results are shown in Fig. 8. All of the local
densities projected in this way retain features of the x-Si
density of states. The procedure used here to construct
the local density of states is different in detail than that
used in previous theoretical work.*>"° Still, the general
features of N,.(E) are similar to those found by earlier
studies, including (1) the narrowing of the heavy-hole peak
in the H-rich region consistent with the reduction of the
ppm interaction reported in Ref. 4, (2) the general move-
ment of the density of states in the Si-H region to lower
energy relative to the Si-Si region, and (3) the recession of
the valence-band edge near the defect. However, previous
studies have not noted the spatial dependence of the
valence-band-edge recession. Figure 8(b) shows this spa-
tial dependence. Measured from the Si—H bond, the re-
cession is significant even as far as the second Si—Si bond.
We shall return in the Discussion to the consequences of
this long-ranged disturbance caused by the hydrogenated
defect.

We emphasize that all of the quantitative results shown
above depend on determining a correct self-consistent de-
fect potential. To demonstrate this we have extracted
from our results a self-consistent H pseudopotential. This
is accomplished by fitting the final potential to a site-
centered form

4 H
VSU(T)=— V(D) + V(| T—1; |).

i=1

(11)

We have assumed VSF(?) to be the same as in an earlier
analysis of the bare Si vacancy’ and therefore have been

able to extract V3C(T). Both V€ and Vi< hazve been fitted

by a sum of Gaussians: V34(7)=3 8¢ " . The values
of the fitting constants ; and a; are given in Table II. To
demonstrate the accuracy of this decomposition, we have
recalculated AN(E)=N(E)—N%E) using Egs. (3)—(5),
with ¥ in Eqs. (3) and (4) replaced by the fitted ¥5€ of Eq.
(11). As Fig. 9 shows, AN(E) computed in this manner
agrees very well with the actual self-consistent AN(E).
This demonstrates that the defect potential can be decom-

posed into site-centered contributions. However, there are
substantial differences between V¢ and the potential of an
isolated H atom V3. (We have also fitted V3 by a sum of
Gaussians; see Table II) While V§j and V§{C are quite
similar near the origin, the long tail of the atomic poten-
tial is absent in V3f because of the screening effect
of its Si environment. Consequently the integrated
strength of the self-consistent H potential is smaller than
the atomic potential by a factor of 10. It is clear that a
non-self-consistent calculation based on the superposition
of atomic potentials would have given very poor results.

V. DISCUSSION

In the preceding sections we have presented detailed re-
sults for the electronic structure of a particular model hy-
drogenated site in crystal Si. We now use these results to
make several estimates which are relevant to the transport
and optical properties of a-Si:H. We propose that the
quantum-well model provides a link between the present
calculation and this goal. The model® assumes that the
presence of H is the dominant disorder for the band-edge
properties of a-Si:H, of greater importance, for example,
than oddfold Si rings or dihedral-angle distortions.'®!7 It
further assumes that the individual hydrogenated defects
create disturbances which extend ~ 15 bond lengths from
the vacancy site into the Si network. This implies that de-
fects do not interact strongly enough to form a pseudo-
binary alloy, but that each disturbance by itself has suffi-
cient extent to isolate regions of pure Si. Within these as-
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FIG. 9. AN(E) for the hydrogenated vacancy calculated us-
ing the fully-self-consistent potential (solid line) and using the
sum of site-centered Si and H potentials as in Eq. (11) (dashed
line).
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FIG. 10. Approximate density of states N(E) for a-Si:H for a
defect concentration of f=0.05.

sumptions, the local information obtained from our
Green’s-function calculation can be transferred to the
quantum-well model. We now show that this transfer
provides support for many of the predictions of the
quantum-well model. Keep in mind, however, that the es-
timates which we will now give do not have the rigor of
the results of the Green’s-function calculation for the
model defect given above.

To illustrate a simple procedure for transferring our
single-defect results into the many-defect solid (a-Si:H),
we consider an elementary picture of a mixture of a Si
with a SiyH, system, the latter being the composition of a
defect site. We assume the individual hydrogenated de-
fects to be noninteracting. Under this condition, the den-
sity of states is just N(E)=N%E)+fAN(E), where
NOE) is the Si density of states, AN(E) is the change in
the density of states from a single defect (Fig. 2), and f is
the defect concentration. This construction of N(E) is
similar in spirit but much more approximate than the
coherent-potential-approximation approach used in Ref. 4.
Since each defect contains four hydrogens, the hydrogen
concentration [H] is 4f. Such a N(E) is shown in Fig. 10
for f=0.05 along with N%E). The nature of our estimate
for N(E) produces grossly nonphysical features, such as a
negative density of states at each band edge. This is a re-
sult of neglecting the interactions between neighboring de-
fect sites, and Fig. 10 suggests that such interactions are
most important near the band gap. Still, the overall pic-
ture is correct: The band edges recede with the introduc-
tion of H. In order to examine the shift of the band edges
with H concentration, we have studied the following mea-
sure of the new band edges E;,’ e

&,
[ JN(E)E =0. (12)

ED,C
So in a very approximate way we attempt to average the
negative density near the old band edge with the adjoining
positive density. Figure 11 shows the new valence- and
conduction-band edges E and E as a function of f, as es-
timated by Eq. (12). For f=0.05 the relative increase of
the band gap is significantly smaller than experiment.'®
Disorder effects not included in this simple model, e.g., lo-
calization, cause additional widening of measurable gaps*
in real films. Figure 11 agrees with the theoretical esti-
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FIG. 11. Energies of the valence and conduction bands Ef

and E/ as estimated by Eq. (12) as a function of defect concen-
tration f.

mate of the overall band-gap widening due to H disorder
in Ref. 4, although we disagree on how much of this
widening occurs at each band edge. While both the
present work and Ref. 4 find that the effect is largest at
the valence-band edge, Fig. 11 shows a small recession of
the conduction-band edge. Reference 4 finds no such ef-
fect.

The above simple picture, while useful for obtaining a
rough estimate of the band-gap expansion due to a finite
number of H defects in the Si host, is incapable of predict-
ing the localization properties of the eigenstates in a-Si:H.
As discussed above, the Green’s-function calculation pro-
vides detailed information about the effect of the distur-
bance on the eigenstates, apart from simply the change in
the density of states AN(E). We can use this additional
information to make some estimates of band-edge locali-
zation and thereby test some of the assumptions and pre-
dictions of the quantum-well model. One of the initial
premises of the model was that the presence of a Si—H
bond excluded band-edge carriers, both electrons and
holes, from its vicinity out to a range of about 1.5 bond
lengths. If we identify the exclusion of carriers with the
removal of charge density around the defect, then Figs. 5
and 6 provide the information to test this assumption. As
discussed above, Fig. 5 shows that there is a substantial re-
moval of charge from the Si—H bond as compared with a
Si—Si bond near the valence-band edge. At the
conduction-band edge, Fig. 6 shows a slight addition of
charge near the Si—H bonds, and a removal of charge at
the Si sites, resulting in a net removal of charge (Fig. 2).
To this extent two assumptions of the quantum-well
model are confirmed. Moreover, the Green’s-function cal-
culations provide the necessary information about the
range of this charge removal. The range of the band-edge
disturbances is seen to be beyond the Si—H bond itself.
To quantify this range for the valence-band edge, we have
looked at the envelope of the charge disturbance Ap(r)
(Fig. 5), averaging out the rapid variation in the bond re-
gion. We find that this smoothed quantity can be fitted
by an exponential decay

r/r

‘. (13)

The mean decay length r,=2.7 A, measured from the
center of the vacancy, is well into the first Si—Si bond.

Ap(r)=p%r)e”
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By this measure the additional assumption of the
quantum-well model that the range of the disturbance
caused by the Si—H bond must extend, on the average,
halfway into the adjoining Si—Si bond, is confirmed for
the valence-band edge.

It is important to illustrate that the assumed formation
of localized states in regions of pure Si is dependent on the
range of the defect as well as its magnitude. Reference 6
used a two-dimensional square lattice to illustrate the
range dependence. To improve on this, we have studied
the percolation properties of a three-dimensional,
fourfold-coordinated diamond lattice with removed sites
of varying range. By numerical simulation on an 8000-
atom lattice, we have computed the percolation threshold,
that is, the concentration of removed sites needed to block
all the classical paths connecting one end of the sample to
the other. These simulations confirm the empirical cri-
terion for percolation!® which states that all bond paths
will be cut off if more than x, =0.85 of the volume is re-
moved. This criterion is embodied by the following rela-
tion between the range of the defect r. and the defect con-
centration f:

_Q’Si l—xc
f n

Here (g=20 A3 is the average volume per Si atom and
171=0.34 is the diamond-lattice hard-sphere packing frac-
tion. Table III gives the results of Eq. (14) for various de-
fect concentrations. The absence of classical bond paths
suggests but does not prove the existence of the localized
states; for valence-band states, whose charge density fol-
lows the bonds in the solid, the results are most applicable.
As we have demonstrated above, the range of the distur-
bance at the valence-band edge is between one and two
bond lengths. Table III shows that for this range between
a 25 and 15 at. % concentration of defects is needed to
stop percolation. Typically [H]=15—20 at. % in a-Si:H.
The relevant measured concentration of isolated Si—H
bonds is 5% to which must be added some fraction of the
total [H] that is in clusters.’® Each cluster acts essentially
as a larger single Si-H defect. So, the measured defect
concentrations are in the range necessary to cut off per-
colation at the valence-band edge.

Unfortunately the connection between the classical per-
colation limits and the position of the mobility edges is at
best qualitative. For example, in the classical picture all
states are either extended (percolating) or localized, while
in a quantum-mechanical description some states are lo-
calized no matter how small the potential disturbance.

4 3_
I =

In (14)

TABLE III. Defect range required to cut off percolation.

Required range Defect concentration

re (A) f (at. %)
2.5 25
2.7 20
3.0 15
3.4 10
4.3 5
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Therefore we have attempted to make some simple quan-
tum estimates of localization in the hydrogenated Si sys-
tem. A very elementary model based on the Anderson cri-
terion for localization?' gives the simple and intuitively
appealing result (see Appendix for derivation),

E,=[H]|Ey—Es| . (15)

Here E, is the energy width of localized states (i.e., the
difference between the mobility and band edges), and Ey
and Eg; are characteristic energies of the H and Si subsys-
tems. Thus, the localization is directly proportional to the
defect concentration and to the energy mismatch between
the defect and the bulk. We obtain a value for E, from
Eq. (15) by estimating Ey and Eg; for the valence band
from the average shifts of the local densities of states in
Fig. 8(a). Taking either the shift of the band edge, of the
main peak in the density of states, or of the entire valence
band, we estimate |Ey—Eg | ~1 eV. A previous esti-
mate*'* has given |Ey—Eg|~0.4 eV. Taking
[H]=5-15 at.% gives E,=0.05-0.15 eV for the
valence-band edge. This rather small estimate for E, is
not surprising considering the inaccuracies of this simple
application of the Anderson localization model, i.e., the
tight-binding approximation, the constancy of off-
diagonal matrix elements, and the failure to account for
the reduced coordination of H (1) as compared with Si (4).
As discussed in the Appendix all these effects increase lo-
calization. So Eq. (15), while providing an appealing in-
tuitive picture of the effects which lead to localization, is
not quantitatively reliable within the context of the ap-
proximations available.

We can, however, perform a different type of quantum-
mechanical estimate of localization which, while still not
rigorously justifiable, is directly comparable to the esti-
mates which have been previously made for dihedral-angle
disorder in a-Si.!'® We can therefore compare the relative
importance of H-induced versus network-induced disorder
in a-Si:H.

In Ref. 16, Yonezawa and Cohen estimated the effect of
dihedral-angle disorder on localization in a-Si by using the
following formula for the position of the mobility edge:

Ey=E, =4 [ By(TuT, (16)
where E,(T) is the local value of the band edge in the
disordered system. To apply Eq. (16) to the H-disordered
system, one must estimate the local band edge near the H
defect in a-Si:H. As a first step in performing this esti-
mate we use a simplified effective-mass description of the
Si conduction- and valence-band edges. The conduction-
band edge is represented by six noninteracting valleys each
with effective mass m,=0.32m, [=m})*m})*",
m}=0.92mg,, m=0.19m,),** and the valence-band edge
by three parabolic noninteracting bands at I" with effective
masses m,, =0.49m,, m,,=0.16m, and m,;=0.245m,.?
Within this representation we have constructed spherically
symmetric model potentials which reproduce the integral
of AN(E) (Fig. 2) within 0.5 eV of the band edges. We
have chosen these model potentials to be Gaussians,*

__,2/,C2

V(T)=ue , 17
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FIG. 12. Model potentials for the conduction- and valence-
band edges which mimic the effect of the real hydrogenated va-
cancy on the density of states AN(E) (see Fig. 2). Within the
effective-mass theory these model potentials may be viewed as
local band edges, as drawn.

with the same decay length as the calculated change in
charge density Ap(r) [Eq. (13)], i.e., r,=2.7 A. For this 7,
we find that the parameters u, =3.0 eV and u,=0.23 eV
accurately reproduce the AN(E) for the valence- and
conduction-band edge, respectively. Within the Thomas-
Fermi model of electron dynamics V(T) has more signfi-
cance than just a model potential. In fact we interpret it
as the local band edge E,(T) (see Fig. 12),2° just the quan-
tity we need to apply Eq. (16) for the mobility edge. Sub-
stituting Eq. (17) into Eq. (16),

[ 3,3
E“"Q—SI'IT /zurc . (18)

The identification of V(T) w1th a local band edge is justi-
fied under the condition ur>1 au.=7.6 eV A2 This
condition is satisfied for the model potentials which we
have constructed. From Eq. (18) we obtain the following
estimates of the mobility edges: E,=0.8 eV and E, =0.06
eV. These results are quite insensitive to the choice of pa-
rameters u,. and r, as long as the resulting potential
reproduces AN(E) at the band edges. Note that as before,
the effect of H on the valence-band edge is predicted to be
much greater than at the conduction-band edge. As for
the relative importance of H-induced disorder, the present
value of E,=0.8 eV when compared with the estimated

E,=03 eV for dihedral- -angle disorder!® suggests that the
presence of H has a greater effect than intrinsic Si net-
work defects on valence-band eigenstates.
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VI. CONCLUSIONS

We have calculated the electronic structure of the H-
saturated monovacancy in x-Si. No gap states are intro-
duced by the defect, and states are removed from the top
of the valence band. This is in agreement with the tradi-
tional understanding of the role of H in a-Si:H. We also
find a slight removal of states from the bottom of the con-
duction band. The defect eigenstates at the edge of the
conduction band are enhanced near the Si—H bonds and
reduced near the removed Si site. The eigenstates at the
edge of the valence band behave quite differently, with re-
duced density in the Si—H bonds and in the neighboring
Si—Si bonds. Both the valence- and conduction-band edge
eigenstates are correctly described as “barriers” to the pas-
sage of band-edge carriers through the H-rich region.
This is consistent with the assumptions of the quantum-
well model.

We have studied a number of simple models for band-
edge localization resulting from H disorder. We have ob-
tained estimates for the region of localized states of
0.05—0.8 eV for the valence band of 0.01—0.06 eV for the
conduction band. The variability of these estimates re-
flects the lack of any rigorous theory for the position of
the mobility edges. We are able to determine that the ef-
fect of H disorder is greater than that of dihedral-angle
disorder at the valence-band edge, and the effect of H is
much greater at the valence- than at the conduction-band
edge.
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APPENDIX

In this Appendix we show how Eq. (15) in the text is
obtained using the Anderson criterion for localization. In
the Anderson approach we assume that a minimal tight-
binding description of the disordered Si + SiH system ex-
ists with a constant off-diagonal matrix element ¥ and di-
agonal matrix elements for Si and SiH, Eg; and Ey. Then
ch% quantity which gives information about localization
is

S(E)=z exp

P(E')dE’

fln

where z is the average coordination number of the solid
and P(E) is the probability distribution of diagonal matrix
elements, which for a system with randomly dispersed H’s
is

) (A1)

vV
E—F

P(E)=[H]8(E —Ey)+(1—-[H])8(E —Eg;) , (A2)
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where [H] is the hydrogen concentration.
S(E) predicts the presence of localized states at energy
E according to the rule

S(E)>1 for extended states,

S(E) <1 for localized states , (A3)

S(E,)=1 for mobility edge .

If we assume [H] << 1 and E, much less than the valence-
band width, Taylor-series expansion of Eq. (A1) gives the
simple result

E,=[H]|Ey—Es| , (A4)
which is Eq. (15) in the text. The above analysis contains
a number of gross approximations: The simple assumed
tight-binding model, the constancy of the hopping matrix
element ¥V, and the constancy of the coordination number
z. Doubtless V is smaller in the H-rich region and, as
shown in Fig. 13, leads to an underestimate of Ey —Eg; in
Eq. (A3). Thus Eq. (A3) should only be taken as a quali-
tative prediction of the mobility edge, in particular with
respect to the meaning of the energy difference between
the alloy constituents.
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